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Active Site Formation, Not Bond Kinetics, Limits Adhesion Rate
between Human Neutrophils and Immobilized Vascular Cell
Adhesion Molecule 1
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†Department of Biomedical Engineering, and ‡Department of Pharmacology and Physiology, University of Rochester, Medical Center,
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ABSTRACT The formation of receptor ligand bonds at the interface between different cells and between cells and substrates is
a widespread phenomenon in biological systems. Physical measurements of bond formation rates between cells and substrates
have been exploited to increase our understanding of the biophysical mechanisms that regulate bond formation at interfaces.
Heretofore, these measurements have been interpreted in terms of simple bimolecular reaction kinetics. Discrepancies between
this simple framework and the behavior of neutrophils adhering to surfaces expressing vascular cell adhesion molecule 1
(VCAM-1) motivated the development of a new kinetic framework in which the explicit formation of active bond formation sites
(reaction zones) are a prerequisite for bond formation to occur. Measurements of cells interacting with surfaces having a wide
range of VCAM-1 concentrations, and for different durations of contact, enabled the determination of novel kinetic rate constants
for the formation of reaction zones and for the intrinsic bond kinetics. Comparison of these rates with rates determined previously
for other receptor-ligand pairs points to a predominant role of extrinsic factors such as surface topography and accessibility of
active molecules to regions of close contact in determining forward rates of bond formation at cell interfaces.

INTRODUCTION

Mathematical descriptions of the dynamics of cell adhesion

provide an analytical framework for developing an under-

standing of the principal physical mechanisms that determine

rates of cell bonding. A number of groups have developed

such descriptions for bond formation and breakage where

membranes with adhesive receptors come into contact. The

seminal work on this subject is an article by Bell (1) in which

basic descriptions of molecular reactions in two dimensions

were developed. Bell concluded that bond formation rates

between biological membranes were likely to be limited by

the rate of lateral diffusion of the adhesion receptors in the

cell membrane, and he proposed a simple model for how ap-

plied forces might affect bond breakage. Most subsequent

work in this area has focused on bond breakage under force

and understanding how loading affects the detachment of

bonded surfaces from each other. This subject has benefited

from a body of experimental work applying either atomic

force microscopy or the bioforce probe technique to measure

the breakage of single bonds under different loading condi-

tions (2–5). A key theoretical breakthrough came with the

recognition that the stochastic nature of bond breakage leads

to a dependence of the most probable force at which a bond

breaks on the rate at which force is applied to the bond (6).

This has led to a well-developed understanding of the phys-

ical mechanisms of bond breakage and how rapid loading

can actually lead to an increase in apparent bond strength.

Theoretical descriptions of bond formation have proved

less amenable to experimental testing. This is largely be-

cause it is much harder to control the myriad factors that

might affect bond formation than it is to control the load

on a bond that has already formed. Two principal approaches

for testing bond formation during cell adhesion are the flow

channel and micromanipulation. Of these, the flow channel

involves much higher complexity because of the mutual de-

pendence of bond formation rates, cell deformation, fluid

forces, and cell kinematics. Nevertheless, detailed dynamic

computer simulations have been developed that provide

good fidelity with experimental observations and the esti-

mation of kinetic coefficients in some systems (7–9). Even

so, the development of ever more realistic descriptions of

cell motion and adhesion under flow remain a work in prog-

ress. In contrast, micromanipulation of cells into contact with

other cells or chemically defined substrates is a relatively

simple approach in which many of the key factors affecting

adhesion can be controlled. The analytical framework for un-

derstanding the results of these experiments was developed

by Chesla and colleagues (10), who proposed a simple bimo-

lecular kinetic framework for interpreting cell adhesion mea-

surements. This framework has also provided predictions

that appear to be consistent with the majority of published

experimental observations, and ‘‘effective’’ kinetic rates of

bond formation have been calculated for a number of cell-

substrate combinations (11–14).

The analysis here is motivated by recent observations in

our laboratory of adhesion of neutrophils to surfaces coated

with vascular cell adhesion molecule 1 (VCAM-1). That hu-

man neutrophils adhere at all to VCAM-1 is something of
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a surprise because VCAM-1 is not a ligand for the b2 integ-

rins LFA-1 and Mac-1 that are the principal integrins on the

neutrophil surface in humans. Flow cytometry measurements

reveal, however, that several b1 integrins that bind to

VCAM-1 are present on the neutrophil surface, albeit at

10-fold lower surface concentrations than their b2 counter-

parts (15–17). It is likely that this small number of molecules

is a key factor underlying our observations that revealed in-

adequacies of the simple kinetic theories that have been used

successfully in the past to describe bond formation rates. The

inconsistencies between first-order kinetic descriptions and

measurements of neutrophil adhesion to VCAM-1 motivated

the following analysis.

EXPERIMENTAL METHODS

Complete details of the experiments are given in the companion article in

this issue (18) Briefly, adhesion probabilities were measured by repeatedly

contacting neutrophils with beads (tosylactivated paramagnetic M-450

Dynabeads, Dynal, Lake Success, NY) coated with covalently attached re-

combinant extracellular domain of VCAM-1 (R&D Systems, Minneapolis,

MN). The concentration of VCAM-1 on the bead surface was measured

by labeling the beads with fluorescent antibody to VCAM-1 (R&D Systems)

and measuring the intensity in flow cytometry. The fluorescence signal was

calibrated using Quantum Simply Cellular beads (Flow Cytometry Stan-

dards, Fishers, IN) to determine the number of sites on the bead surface.

Appropriate controls for nonspecific labeling were performed. Neutrophils

were obtained from a drop of blood suspended in sterile buffer and placed

in a fluid-filled chamber on the stage of an inverted microscope. The operator

selected neutrophils based on their multilobular nuclei, picked them up with

a micropipette, and brought them into contact with a VCAM-1 coated bead

held in a second pipette (see Fig. 1 in the companion article (18)). Cell and

bead were brought into contact for a predetermined duration (1 s, 2 s, 5 s,

10 s, 20 s, or 60 s) and then separated.

Approximately 25 contacts were performed for each cell-bead pair, except

for 60 s contacts, where a new pair was selected for each test. Upon separa-

tion, adhesion was noted as a slight deflection of the cell surface as it was

withdrawn. The adhesion probability was calculated as the number of con-

tacts for which adhesion occurred divided by the total number of contacts.

The macroscopic area of contact between the cell and the bead was con-

trolled by the positioning of the bead and cell with the micropipettes and

kept constant throughout the duration of contact. We attempted to impose

similar areas of contact for all measurements, but some variability is inevi-

table. The formation of a bond is expected to increase linearly with the area

of contact. Therefore, to avoid differences between measurements because

of differences in contact area, adhesion probability was corrected to a stan-

dard area of contact (7.5 mm2), the mean contact area for all cells tested in the

study. Nonspecific adhesion was determined from measurements of cells

contacting VCAM-coated beads in the presence of an adhesion blocking

antibody to b1 integrins (antibody 4B4 at a concentration of 0.1 mg/ml,

Beckman Coulter, Miami, FL). Although not shown, results using

blocking antibody agreed well with background levels measured by substi-

tution of NCAM for VCAM-1 on the substrate or removal of divalent ions

with EGTA.

Analysis

Inconsistencies between data and theory

Bimolecular kinetic theories have provided a reliable framework for interpret-

ing cell adhesion measurements. These theories are based on application of

simple chemical kinetics in two dimensions. The number of bonds expected

to be formed when two surfaces come in contact<n> is related to forward and

reverse rate constants kf and kr (10):

hni ¼ Acr1r2Ka

�
1� e�kr t

�
; (1)

where the association constant, Ka ¼ kf/kr, Ac is the area of contact between

the two surfaces where molecules can interact, r1 and r2 are the surface con-

centrations of molecules on the two surfaces, and t is the length of time the

two surfaces are in contact. The expected bond number is also related to the

probability that adhesion will occur (Padh) between the two surfaces:

hni ¼ �lnð1� PadhÞ: (2)

Theoretically, Eq. 2 is valid for Poisson processes only when the expected

number of bonds is small, although in practice the predicted relationships

agree well with experimental observation even when adhesion probabilities

approach 1.0 (14).

A critical prediction of these theories is that when the density of either

ligand becomes large, or if the contact time becomes very long, the adhe-

sion probability should approach 1.0. This is not observed for neutrophils

adhering to VCAM-1 when Mg2þ is used to induce integrin high affinity

state. For surface concentrations of VCAM-1 above 200 sites/mm2, the

probability of adhesion becomes independent of VCAM-1 surface concen-

tration, but the probability of adhesion does not approach 1.0. This is illus-

trated in Fig. 1 A. Using Eq. 2, measurements of adhesion probability as a

function of contact time were used to obtain expected bond number hni as

a function of time for beads with a surface density of VCAM-1 between 250

and 370 sites/mm2 (solid triangles). The bimolecular kinetic theory (Eq. 1)

was fit to these data by nonlinear least-squares regression. The coefficients

obtained from the regression were used in Eq. 1 to predict the adhesion

probability as a function of contact time for beads with a higher surface

density of VCAM-1 (860 sites/mm2). This is shown as the dashed curve in

Fig. 1 A, predicting much higher adhesion rates for this surface concentra-

tion of VCAM-1. Measurements of adhesion probability for these beads

(open circles), however, produced results that were indistinguishable from

the data obtained with the lower surface concentration beads.

This disparity between theory and experiment is not resolved by postulat-

ing more complex reaction schemes in a simple two-dimensional reaction

space. Even with additional reaction steps and kinetic coefficients to produce

a bond, when the reaction time and the density of ligand become large,

the probability of adhesion invariably approaches 1.0. To account for the

observed behavior, we take into account the fact that when a cell contacts a

substrate, it does not form large, uniform regions of close contact. Rather,

the cell contacts the surface only at discrete locations corresponding to the

tips of microvilli or the tops of membrane folds. In keeping with this, we

postulate the existence of localized ‘‘reaction zones’’ (RZs) within the mac-

roscopic area of contact. For these RZs to be active there are two require-

ments: first, there must be close physical contact between the opposing

surfaces; and second, there must be adhesion molecules in the region of con-

tact in an active (or high affinity) conformation. ‘‘Potential’’ RZs are regions

of the surface that are not in close contact with the substrate (but which could

move or deform to come in close contact) or a region of close contact that

contains no adhesion molecules or no molecules in the active (high affinity)

conformation.

We first considered a simple approach to account for the possible limiting

effects that the absence or existence of RZs might have on bond formation.

We postulated that the probability of adhesion is the product of the probabil-

ity that an RZ exists, Prz, times the probability that bonds will form within

the zone, Phni:

Padh ¼ Prz � Phni: (3)

We further assumed that the probability that an RZ exists was a constant

proportional to the macroscopic area of contact, and P<n> could follow

first-order kinetic behavior as described in Eqs. 1 and 2. This scheme satisfies

the condition that the adhesion probability would not exceed a certain max-

imum value, but, unfortunately, it does not account for other aspects of

observed behavior. This is illustrated in Fig. 1 B. In this case the maximum

probability of adhesion PRZ is 0.35 (Fig. 1 B). The solid curve is based on
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a least-squares regression to the data for a surface density of 860 sites/mm2,

and the dashed curve is the predicted curve for the same kinetic parameters

and a density of 310 sites/mm2. The agreement between theory for the lower

density (dashed curve) and measurement (open circles) is poor. These results

indicate that the existence of an RZ is not a stationary, time-independent

probability but, rather, must evolve over a time frame comparable to the con-

tact times tested in the experiments. These results motivate the following

analysis.

Time dependence of RZ formation

Consider a model in which the number of RZs in existence within a macro-

scopic area of contact evolves over time (See Fig. 2 A). We consider an RZ

to be a region where the cell membrane is in proximity to the opposing sub-

strate and to contain an unbound integrin in its high affinity state. When the

integrin binds to its receptor on the substrate, a bonded zone (ZB) is formed.

Potential reaction zones (PRZ) cannot form bonds but can become RZs by

one or a combination of three mechanisms. These are illustrated in Fig. 2,

B–D. A region containing a high affinity integrin that is not in close contact

can move into close contact (Fig. 2 B), an integrin in close contact that is in

a low affinity state can undergo a conformational change to a high affinity

state (Fig. 2 C), or an integrin in the high affinity state may diffuse into a re-

gion of close contact that does not initially contain one (Fig. 2 D). The model

does not distinguish between these different mechanisms but treats the tran-

sition from PRZ to RZ as a single kinetic step with forward and reverse rate

constants kþ and k�. The general scheme takes the form shown in Fig. 2 E.

Once an RZ forms, bond formation proceeds with forward and reverse

rate constants kf and kr. In the case where bonds are rare relative to the num-

ber of ligands on the substrate, the substrate concentration can be considered

constant and the forward rate constant for this second-order reaction kf may

be replaced by the pseudo-first-order rate k0f:

k0f ¼ kf � ½SUB�: (4)

Finally, we note that bonds may also break directly to an inactive form of

the RZ, a process governed by the rate constant k�BI.

A more general model might include the diffusion of PRZs into and out of

the macroscopic region of contact. This step takes on major significance

in situations where a large number of bonds form between the cell and sub-

strate such that the supply of unbound sites in the interface becomes depleted

and delivery of molecules to the contact zone becomes limiting. This case

has been thoroughly treated in a recent report (19). In the analysis here,

where bond formation is a relatively rare event, we can assume that this pro-

cess is at steady state, with PRZs diffusing in and out of the macroscopic

contact region at equal rates. Thus, the total concentration of PRZs within

this region (TRZ) can be considered constant.

The governing equations for the system shown in Fig. 2 E are as follows:

dPRZ

dt
¼ �kþ PRZ þ k�RZ þ k�BIZB (5)

dRZ

dt
¼ kþ PRZ� k�RZ� k0f RZ þ krZB (6)

dZB

dt
¼ k0f RZ� krZB� k�BIZB; (7)

where ZB is the concentration of ZBs in the interface. We can now eliminate

PRZ by using our condition that the total concentration of RZs in the inter-

face is constant, and obtain

dRZ

dt
¼ kþTRZ�

�
kþ þ k� þ k0f

�
RZ þ

�
kr � kþ

�
ZB (8)

dZB

dt
¼ k0f RZ�

�
kr þ k�BI

�
ZB: (9)

An important limiting case occurs when the concentration of molecules on

the substrate becomes very high, such that the forward rate k 0f is much greater

than kr, and we can approximate the reaction as PRZ %
kþ

k�BI

ZB, which leads to

A

B

FIGURE 1 Adhesion probability of human neutrophils to VCAM-1

coated bead as a function of time. (A) Solid curve is based on a nonlinear

least-squares regression of first-order kinetic theory (Eq. 1) to expected

bond number hni obtained from measurements of adhesion probability as

a function of contact time for beads with a surface density of VCAM-1

(r1) of 310 sites/mm2. Data for these beads are shown as solid triangles.

The dashed curve shows the theoretical prediction based on Eq. 1 and the

kinetic parameters obtained for the solid curve but with r1 set to 860

sites/mm2. Measured values for adhesion to the 860 sites/mm2 beads are

shown as the open circles. The discrepancy between measurement and sim-

ple first-order theory is evident. Bars represent standard error of the mean.

Between 20 and 40 cell-bead pairs were tested for each data point. Probabil-

ity values have been corrected for nonspecific adhesion (Eq. 14) and ad-

justed to account for differences in contact area. (See companion report

for details (18).) (B) Predictions based on the assumption that the measured

adhesion probability is the product of a constant probability that an RZ exists

(PRZ ¼ 0.35) and a first-order Phni, consistent with Eq. 1. The solid curve

corresponds to the fit to data obtained using beads with VCAM density of

860 sites/mm2 (solid triangles), and the dashed curve is generated from

the fitted parameters but with a lower VCAM density (310 sites/mm2). Dis-

crepancies between the predictions and measurements for the lower density

beads (open circles) are evident. Probability values have been corrected for

nonspecific adhesion before the calculations.

Biophysical Journal 96(1) 268–275



Neutrophil Adhesion to VCAM-1 271
dZB

dt
¼ �

�
kþ þ k�BI

�
ZB þ kþTRZ: (10)

This results in the following expression for the time evolution of bonds in

the interface when substrate ligand concentrations are high:

ZB ¼ ZBoe�t=tRZ þ TRZ

1 þ KDRZ

�
1� e�t=tRZ

�
; (11)

where tRZ ¼ 1/(kþ þ k�BI) and KDRZ ¼ k�BI/k
þ. The quantity ZBo is the

zero time concentration of RZs and corresponds to the finite probability

that an RZ exists upon initial contact. Note from the first term on the right-

hand side of Eq. 11 that these initial bonds decay with time, whereas from

the second term, new bonds evolve over time. If we suppose that the system

is in steady state before contact and that contact itself does not alter the equi-

librium between active and inactive zones, then the initial concentration of

bonds is related to the kinetic coefficients, kþ and k�, by

k�

kþ
¼ TRZ� RZo

RZo

: (12)

For assessing adhesion probability, it is convenient to express this in

terms of the expected number of bonds in the interface, hni. This is

obtained by taking the product of the concentration ZB times the area of

contact Ac:

hni ¼ hnioe�t=tRZ þ TRZ � Ac

1 þ KDRZ

�
1� e�t=tRZ

�
: (13)

RESULTS

There are five unknown kinetic coefficients in the reaction

scheme shown in Fig. 2 E. Three of the five coefficients can

be determined by considering cases in which the concentra-

tion of VCAM-1 on the surface is sufficiently high that the

dependence of bond formation on VCAM-1 concentration

becomes negligible. In this case, we collect data obtained for

all VCAM-1 concentrations above 200 sites/mm2 and fit the

time dependence of adhesion probability to these data based

on Eq. 13, which is valid when the substrate surface concen-

tration becomes very large. This case is depicted in Fig. 3.

We assume a value for TRZ (5/mm2) based on the total

number of VLA-4 molecules on the cell surface and normal-

ize the data to a contact area of 7.5 mm2 (the mean contact

area for all the experiments performed in the study). Non-

specific adhesion (Pbkg) was measured in the presence of

blocking antibody to b1 integrins. The specific adhesion

E

FIGURE 2 Cartoon (A) and schematic (E) of reaction scheme that allows

the formation and disappearance of RZs. In panel E, PRZ and RZ represent

the surface concentration of potential and active RZs in the macroscopic

contact zone, ZB is the surface concentration of bonds, SUB represents

the concentration of ligand on the substrate. PRZs may become (active)

RZs by multiple mechanisms illustrated in B (displacement of the membrane

into close contact), C (conformational change of the adhesion molecule from

a low to a high affinity state), and D (diffusion of a high affinity adhesion

molecule into a region of close contact). The amalgamation of these mech-

anisms is captured in the rate constants kþ and k� (E). Formation of a bond

with an RZ is governed by kinetic constants kf and kr, and breakage of bonds

to form a potential (inactive) RZ is characterized by kBI (E).

FIGURE 3 Time-dependent behavior of the system when the ligand

concentration of the substrate is very large. The solid curve shows the

least-squares regression of Eq. 13 for all data obtained for beads with

VCAM concentration >200 sites/mm2. Error bars represent the mean 5

standard error. (Note: Mean 5 SE was calculated for the primary experi-

mental measurement (Padh) then the range (Padh 5 (mean 5 SE)) was con-

verted to hni via Eq. 2. The resulting range for hni was asymmetric, but in

the figures the mean of the plus and minus errors is shown.) Each point rep-

resents between 35 and 60 cell-bead pairs, except for the 2 s and 20 s points

for which there were over 140 cell-bead pairs. Values of the fitted

coefficients are given in the text.
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probability Padh is obtained from the probability measured in

the absence of blocking antibody Pmeas according to

Padh ¼
Pmeas � Pbkg

1� Pbkg

: (14)

Least-squares regression results in values for the fitted co-

efficients of tRZ ¼ 14.8 5 4.09 s, and KDRZ ¼ 53.7 5 3.67,

which corresponds to kþ ¼ 1.2� 10�3 s�1 and k�BI¼ 0.066

s�1. The initial number of RZs hnio is 0.19 5 0.03 mm�2.

Applying Eq. 12, we obtain k� ¼ 0.25 s�1. (Fits were ob-

tained using Origin (Microcal Software, Northampton, MA,

and 5 values are the standard errors of the fitted parameters.)

The ability of the model to match the dependence of adhe-

sion on substrate concentration is illustrated in Fig. 4. In this

case, we consider data obtained for contact durations of 5 s

and at six different VCAM-1 concentrations ranging from

28 to 860 sites/mm2, and we obtain our theoretical curve by

numerical integration of Eqs. 8 and 9. Unfortunately, the pre-

cision of the data are not sufficient to determine the remain-

ing two parameters, kf and kr, unambiguously. Moy and

colleagues (20) used atomic force microscopy to evaluate

the force dependence of breakage of the VCAM-1-VLA-4

bond at different loading rates. For slow loading rates, the

value for the off-rate of VLA-4 from VCAM-1 (kr) at zero

force was determined to be 0.13 s�1. Using this value for

kr, and the values for kþ, k�BI, and <n>o obtained from the

fit to the high density data, we determined kf by weighted

least-squares regression with one free parameter to be

0.0051 mm2s�1, with a 90% confidence interval: (0.0010–

0.091) mm2s�1.

As a check for consistency, the time courses for different

surface concentrations of VCAM-1 were determined by nu-

merical integration of Eqs. 8 and 9 using the best fit values

for all the parameters given in the paragraphs above (Fig. 5

A). As expected, curves for VCAM-1 concentrations >200

sites/mm2 were similar and were well matched to the data

shown in Fig. 3. In addition, curves for lower concentrations

(100 and 30 sites/mm2) agreed well with measurements ob-

tained for 5 s contacts at those concentrations. In Fig. 5 B,

a three-dimensional plot of expected bond number as a func-

tion of VCAM-1 concentration and contact time for the best

fit parameters is shown. Note that at VCAM-1 concentrations

above 200 sites/mm2, the expected number of bonds becomes

relatively insensitive to VCAM concentration, in agreement

with experiment.

DISCUSSION

Controlled adhesion of cells to a substrate involves bond for-

mation between adhesion molecules on the cell surface and

counterreceptors on the substrate. Part of this process is lim-

ited by simple chemical kinetics of bond formation; but for

molecules attached to surfaces, it is also a requirement that

they be positioned in close contact so that the chemistry of

bond formation can proceed. Thus, forward rates of adhesion

may be limited not only by the intrinsic reactivity of the ad-

hesive molecules involved but also by physical barriers to

close contact between the surfaces and the availability of

reactive molecules in those regions (21,22). In the analysis

here, we extend the simpler bimolecular reaction theory de-

veloped by Chesla and colleagues (10) and explicitly address

the requirement that molecules be in close physical contact

before bonds can form. We postulate that RZ formation is

a kinetic process that precedes bond formation. We imagine

that, in general, RZ formation could involve multiple physi-

cal processes, including dynamic modulation of surface to-

pography in the interface causing regions of the membrane

to contact and separate from the substrate, lateral diffusion

of adhesive molecules into and out of the regions of close

contact, and/or changes in the conformation and affinity of

molecules in close contact with substrate, enabling them to

form bonds.

The ability to distinguish between these two aspects of

cell-substrate adhesion in this study is in large part because

of the relatively low number of b1 species on the cell surface.

In a companion report, we provide evidence that neutrophil

adhesion to VCAM-1 is mediated by b1 integrins, which

are present on the cell surface at ~8000 copies per cell, and

more precisely, the integrin a4b1 (VLA-4), which is present

on human neutrophils at ~2500 copies per cell (18). These

numbers are substantially less than the more common b2

forms, which are present at several tens of thousands of cop-

ies per cell (15). The mean spherical area of a neutrophil is

240 mm2, but the surface area of the membrane bilayer is ap-

proximately two times that (24), making the concentration of

FIGURE 4 The dependence of the expected bond number on substrate

concentration. The data represent measurements taken for a 5 s contact du-

ration. The solid curve shows a weighted nonlinear least-squares regression

with one free parameter (kf) between the data and the numerical integration

of Eqs. 8 and 9. Values for kþ, k�BI, and k� were obtained from the time

dependence of the data at high density (see Fig. 3). The value for kr was

fixed at 0.13 s�1 (19). The value for kf determined from the regression was

0.0051 s�1 with a 90% confidence interval (0.0010–0.091) mm2s�1.

Biophysical Journal 96(1) 268–275



Neutrophil Adhesion to VCAM-1 273
all b1 species on the cell surface <20 copies/mm2 and the

concentration of VLA-4 on the cell surface ~5.0/mm2.

Thus, for a contact area of 7.5 mm2, the mean value for

this study, there should typically be between 35 and 40 mol-

ecules in the contact zone, assuming a uniform distribution

over the surface.

However, the fraction of surface area within the macro-

scopic contact zone that is in molecularly close contact

with the substrate is substantially less than the total because

of the irregularity of the surface topography. Williams and

colleagues (22) estimate this fraction to be on the order of

3%, making the expected number of molecules in close

contact of order 1.0. In this case, it is not surprising that

the existence of a molecule in close contact with substrate

would be rate limiting for bond formation. This also explains

why disagreement with the bimolecular framework has not

been observed in previous studies in either neutrophils (14)

or other cell types (10,11,22) where the density of active

molecules on the cell surface was substantially higher. In

previous studies of neutrophil adhesion to ICAM-1, we sur-

mised that physical factors contributed to the apparent

kinetic constants that were determined from measurements

of adhesion probability (14). Based on our findings here, it

appears likely that the step of RZ formation is part of the

kinetic process when other molecules mediate cell adhesion

to substrates, but in situations where the density of molecules

on the cell surface is so high, the existence of an RZ in the

interface may not become rate limiting.

Although the number of adjustable parameters in the

proposed kinetic scheme is larger than the number found in

previous formulations, simpler models (as described in the

Introduction) failed to provide predictions consistent with the

behavior of the system. The forward rate for RZ formation

and the dissociation rate of bonds to inactive forms are

well determined by fits to the time course of bond formation

for high VCAM-1 substrates. These are novel parameters

and do not correspond to other published coefficients for

VLA-4/VCAM-1 interactions. Although the physical events

that correspond to these coefficients are not precisely known,

the fact that the coefficients are sensitive to divalent cations

in the extracellular medium (see companion report) suggests

that fluctuations in the molecular affinity of VLA-4 play

a significant role in the formation of these zones. Indeed,

numerous reports of VLA-4-VCAM-1 interactions or inter-

actions between VLA-4 and small peptides indicate that

VLA-4 exists in different affinity states that are modulated

by divalent ions in the suspending medium (25–27). These

considerations favor an interpretation that it is the occurrence

of a VLA-4 molecule in its high affinity state within a region

of close contact that is the limiting factor for bond formation

in these experiments. From a physiological perspective, this

is quite satisfying because the activation state of integrins

can be regulated by intracellular signaling pathways in re-

sponse to chemical stimulus (28).

The values reported for the coefficients here are the best

estimates we believe are possible, given the substantial

variability in the data. In the limit of high VCAM-1 concen-

tration, the fitted parameters hnio, KDRZ, and tRZ are reason-

ably well determined, with uncertainty <10% for KDRZ,

~15% for hnio, and ~35% for tRZ. If instead of using these

parameters in the fit, we write Eq. 13 in terms of kþ, k�,

and kBI
�, we find uncertainties of ~25%, 35%, and 30%, re-

spectively, and with substantial codependency among the co-

efficients. (This reflects the point that the sums and ratios of

A B

FIGURE 5 (A) Expected bond number hni as a function of contact time at different VCAM-1 concentrations. Solid symbols are the data shown in Fig. 3, av-

eraged for all VCAM concentrations>200 sites/mm2. Open triangle is the 5 s contact data for [VCAM-1]¼ 100 sites/mm2, and the open circle is the 5 s time point

for [VCAM-1] ¼ 30 sites/mm2. Curves were generated by numerical integration of Eqs. 8 and 9. The VCAM-1 concentrations used to generate the curves are

given to the right of each curve (in sites/mm2). Parameter values were fixed at the values obtained in Figs. 3 and 4. (B) Three-dimensional view of the model

prediction of hni as a function of contact time (in seconds) and VCAM-1 concentration (in sites/mm2). Individual data points for all different concentrations

and contact times tested are shown as diamonds. Note that lighter gray symbols fall below the surface as viewed. Error bars represent standard deviations.
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these coefficients are known with greater precision than their

actual values.) The value for kr is obtained from the litera-

ture, but uncertainty in the fitted value for kf (even keeping

the rest of the parameters fixed) is large: the 90% confidence

interval corresponds to 580% of the best fit value. These un-

certainties result from the complexity of the model, measure-

ment uncertainty, and the impracticality of doing thousands

of experiments to account for statistical variability in the

measurements.

Comparison to other measurements

A number of studies have been performed to examine bind-

ing between VCAM-1 in solution and VLA-4 on membrane

surfaces. The kinetic coefficients depend critically on the

divalent cation composition of the medium, and Mn2þ is

frequently used to bring about an activated conformation

of VLA-4. Under these conditions, the KD is on the order

of 50 mM (29), and the off rate is ~0.014 s�1 (30), making

the forward rate ~3 � 105 M�1s�1. These values are compa-

rable to those measured for LFA-1-ICAM-1 interactions

when one of the molecules is in solution and one is surface

bound: kf ¼ 2 � 105 M�1s�1 and kr ¼ 0.03 s�1 (31,32).

Although these values are not directly comparable to

kinetic coefficients for surface-confined molecules, they in-

dicate that the molecular events of bond formation for these

two different molecular pairs are similar, as might be ex-

pected.

Comparison of measurements of on and off rates for sur-

face bound molecules for these molecular pairs reveals

important differences, reflecting contributions of extrinsic

factors to bond formation between surfaces. The forward rate

of 0.005 mm2s�1 obtained in this study is substantially faster

than effective forward rates that have been estimated for

LFA-1-ICAM-1 interactions, 2.5 � 10�6 mm2/s (14). Part

of these differences is certainly due to the fact that the

latter value encompasses not only the forward rates of

molecular interaction but also the physical constraints on

forming molecularly close contacts containing reactive mol-

ecules (RZ formation). Thus, both membrane topography

and molecular accessibility are likely contributors to the

slower forward rates reported previously for LFA-1-

ICAM-1. Williams and co-workers examined the role of sur-

face topography in cell adhesion (22) and concluded that

<3% of the macroscopic contact area may actually be in

close contact with substrate. Using this factor, an effective

forward rate for LFA-1-ICAM-1 binding in areas of close

contact would be ~10�4 mm2/s, still substantially slower

than the rate we obtain for VLA-4-VCAM-1. Part of this ad-

ditional difference may be due to the possibility that not all

LFA-1 molecules assume the high affinity conformation in

the presence of Mg2þ/EGTA. However, solution studies sug-

gest that the conditions under which those measurements

were made should be saturating for LFA-1 activation

(14,33).

Other mechanisms may limit adhesion between surfaces,

particularly if one is a cell surface. An important factor

that may have a substantial influence on effective rates of re-

action is the distribution of molecules over the cell surface.

The effective coefficients are calculated on the basis of a uni-

form distribution of molecules on the membrane. If the dis-

tribution is nonuniform, the actual molecular concentration

in the contact zone may be higher (or lower) than the

mean surface concentration, causing the effective rates to

be faster (or slower) than they would be if the distributions

were uniform. Abitorabi (34) reports that b1 integrins

tend to be clustered on the tips of the microvilli on resting

neutrophils. This should lead to higher than average concen-

trations in the contact zone and higher effective rates than

one should observe if the molecules were randomly distrib-

uted. In contrast, it is thought that b2 integrins, in particular

Mac-1, tend to be found in the valleys between microvilli

(See also Erlandsen et al. (35)). If LFA-1 is similarly

distributed, one would expect lower effective forward rates

for adhesion to ICAM-1 because the concentration of integ-

rin in the contact zone would be lower than the mean for

LFA-1.

Another potential mechanism involves the presence of the

glycocalyx on the cell surface and the possibility that it may

act as a steric barrier to close approach between the two sur-

faces (21,36). Of relevance to this is the fact that VCAM-1 is

a longer molecule than ICAM-1, possessing an additional

immunoglobulin G repeat that extends the binding site

farther from the surface. This could mitigate effects of steric

hindrance by the glyocalyx and decrease the apparent

dissociation constant for bond formation. Whatever the

underlying mechanism, the contrast between the similarity

of binding rates measured for LFA-1-ICAM-1 and VLA-4-

VCAM-1 in solution compared to the differences between

rates measured for surface adhesion emphasizes the domi-

nant role that molecular availability at the interface plays

in limiting adhesion between cells and other surfaces.
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