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Adhesion Between Human Neutrophils and Immobilized
Endothelial Ligand Vascular Cell Adhesion Molecule 1:
Divalent Ion Effects
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ABSTRACT Integrin-mediated adhesion of circulating neutrophils to endothelium during inflammation involves multiple adhe-
sion molecules on both neutrophils and endothelium. Most studies of neutrophil adhesion have focused on adhesion to ICAM-1
(mediated by b2 integrins), but interaction with the endothelial ligand vascular cell adhesion molecule 1 (VCAM-1) may also play
a role in neutrophil adhesion to activated endothelium. In this study we demonstrate significant adhesion between neutrophils and
VCAM-1 mediated by b1 integrins, principally via a4b1 (VLA-4). We characterize the dynamics of adhesion in terms of rate con-
stants for a two-step bond formation process, the first involving juxtaposition of active molecules with substrate and the second
involving bond formation. The results indicate that the first step is rate limiting for VLA-4-VCAM-1 interactions. Changing divalent
cation composition affects these coefficients, implicating molecular conformational changes as a key step in the process.

INTRODUCTION

Leukocyte trafficking is regulated by several families of cell

adhesion molecules that function concomitantly or sequen-

tially to mediate leukocyte adhesion to endothelium (1). A

primary focus in studies of leukocyte adhesion has been

the family of b2-integrins, an integrin subtype that is unique

to leukocytes (2), and its principal endothelial ligand ICAM-

1 (3). A major role for this adhesive pairing has been well

established by a number of investigators (3–6). The role

that members of the b1-integrin family play in leukocyte

adhesion has also received attention. The principle endothe-

lial counter-receptor for b1-integrins is vascular cell adhe-

sion molecule-1 (VCAM-1, CD106), a cytokine-inducible

adhesion member of immunoglobulin superfamily found

on endothelium (7,8). Interactions between VLA-4 (a4b1)

and VCAM-1 have been found to play a significant role in

adhesion of lymphocytes (9,10), and monocytes (11), but

a role for these proteins in mediating neutrophil adhesion

in humans has been less clear. Early reports indicated that

VLA-4 interactions with VCAM-1 were important in medi-

ating adhesion of eosinophils and basophils but not neutro-

phils to cultured endothelium (12). But more recent reports

have documented the presence of several members of the

b1-integrin family on neutrophils including VLA-4 (a4b1),

VLA-5 (a5 b1) and VLA-9 (a9b1)) (13–15). Reinhardt and

colleagues (16) first demonstrated that significant upregula-

tion of VLA-4 presentation on neutrophils occurs in response

to inflammatory stimuli, and that VLA-4 can mediate neutro-

phil adhesion to TNF-a stimulated endothelium. They fur-

ther showed that even in the absence of exogenous stimuli,

significant numbers of neutrophils will adhere to immobi-

lized VCAM-1 under flow conditions, although at much

lower levels than other leukocytes (17). Thus, there is evi-

dence that VLA-4�VCAM-1 interactions can mediate neu-

trophil adhesion to endothelium.

Most integrins exist in multiple affinity states, and there-

fore, an important step for integrin-adhesion to occur is the

activation of the molecules to their high affinity conforma-

tion (18–21). In the circulation, this activation occurs as a re-

sult of inside-out signaling that is initiated by natural stimuli

(22–24). It is also possible to activate integrins artificially by

agents such as activating mAb (25,26) or changing divalent

cation concentrations (27). The response to divalent ions dif-

fers among different integrins. Manganese (Mn2þ) has been

shown to activate a wide range of integrins, including all

members of the b2-integrin family and many members of

the b1-family (26–29). In contrast, magnesium (Mg2þ) in

the presence of calcium chelator has relatively little effect

on the affinity of the b2-integrin Mac-1 (30,31) but causes

activation of the other principle b2-integrin LFA-1

(28,30,32,33). The affinities of b1 integrins are also modu-

lated by divalent cations to varying degrees (27). As in the

case of the b2-integrins, Mn2þ had more substantial effects

than Mg2þ in inducing an activation epitope detectable by

monoclonal antibody, but, significantly, the presence of

Mg2þ and chelation of calcium facilitated ligand binding

via a5 b1 (27). In contrast, VLA-4 is thought to be unique

among leukocyte integrins in that it is active in the presence

of calcium (27) and can initiate the adhesion of leukocytes

under physiological conditions without further activation

(26). The ability to modulate integrin affinity by changing

extracellular ion composition provides an opportunity to

explore the particular importance of integrin activation for

adhesion in the absence of general activation of the cell.Submitted March 26, 2008, and accepted for publication October 9, 2008.
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Neutrophil recruitment during the inflammatory response

is a complex process involving multiple molecular interac-

tions. Although most of the principal adhesion molecules in-

volved in the process have been identified, much remains to

be learned about the relative roles of different adhesion mol-

ecules in this complex dynamic process. The single cell mi-

cromechanical approach used in the current study enables us

to explore the distinctive behavior of different integrin-re-

ceptor pairs and to measure the time dependence of the for-

mation and strengthening of cellular adhesions. In a previous

report, we have characterized the dynamics of adhesion be-

tween neutrophils and the endothelial ligand ICAM-1, and

have obtained effective kinetic rate constants for LFA-1–

ICAM-1 interactions (30). In the course of that study, we

observed a surprisingly high level of adhesion between neu-

trophils and VCAM-1 in the presence of Mg2þ and EGTA.

Moreover, we observed that the behavior of neutrophils

binding to VCAM-1 did not follow the simple kinetic model

that had served as an adequate framework for interpreting

binding interactions to ICAM-1. In the companion article

in this issue (34) we develop an alternative kinetic scheme

that accounts for this behavior. In this article we characterize

the dynamics of neutrophil adhesion to VCAM-1 in terms of

this new framework, demonstrate significant contributions

from the b1-integrins in mediating this adhesion, and explore

the effects of changing divalent ion composition in the sus-

pending medium on the kinetics of cell adhesion.

MATERIALS AND METHODS

Cell preparation

Forpipette studies neutrophils were obtained from healthy donors by diluting

a drop of peripheral blood in 4% fetal bovine serum (HyClone, Logan, UT) in

BSS (balanced saline solution: 5 mM KCl, 140 mM NaCl, 11.1 mM Glucose

made with low endotoxin water obtained from Invitrogen, Grand Island, NY)

containing 10 mM N-[2-Hydroxyethyl] piperazine-N’-[2-ethanesulfonic

acid] (HEPES, Sigma, Saint Louis, MO), pH 7.4, 290 mOsm. Divalent cation

composition was adjusted by including either 3.0 mM Mn2þ, 5.0 mM Mg2þ

plus 0.5 mM EGTA, or 1.5 mM Ca2þ. The suspension was placed in a small

chamber on the microscope stage and two micropipettes were used to manip-

ulate a single cell into contact with the ligand-coated bead for controlled

durations. Neutrophils were selected based on their multi-lobular nuclei.

The selection process was validated by transferring selected cells by pipette

to a slide and verifying that the cells were neutrophils by histological staining

(>85% of cells selected were neutrophils).

For flow cytometry measurements, neutrophils were first isolated from

whole blood. Venous blood drawn from healthy donors was placed over

a layer of Polymorphs (Accurate Chemical & Scientific Corporation, West-

bury, NY). After centrifugation at 450g for 45 min, the band of polymorpho-

nuclear cells was visible. Neutrophils were harvested by pipette, then

washed in 4% fetal bovine serum (HyClone) in HANK’s balanced salt solu-

tion (BioWhittaker, Walkersville, MD), containing 10 mM HEPES, without

Ca2þ and Mg2þ, and brought to the final concentration: 5 � 106 cells/mL.

Then cells were treated at 4�C with saturating concentration of monoclonal

anti-human fluorescein isothiocyanate conjugated antibodies: 0.015 mg/mL

of anti-b1 integrin (CD29) B-D15 (BioSource International, Camarilo, CA),

0.02 mg/mL of anti-a4 integrin (CD49d) P1H4 (Chemicon International,

Temecula, CA), 0.005 mg/mL of anti-a5 integrin (CD49e) SAM-1 (Chem-

icon International), 0.025 mg/mL of anti-a9b1 integrin, Y9A2 (Chemicon

International). Isotype controls were obtained from the corresponding man-

ufacturer: IgG1 (Beckman Coulter, Miami, FL), IgG2a (R&D Systems, Min-

neapolis, MN) and IgG2b (Chemicon International). Fluorescence detection

was performed on an Epics Elite flow cytometer using forward and side scat-

ter to gate on granulocytes. To correlate fluorescence intensity with the num-

ber of bound antibodies on the cells, the fluorescence signal was calibrated

using Quantum Simply Cellular Beads (Flow Cytometry Standards Corp.,

Fishers, IN). A suspension of Simply Cellular Beads, containing five differ-

ent populations with known numbers of antibody binding sites, was labeled

to saturation with the same antibodies used to label the neutrophils. The fluo-

rescence intensity was converted to the number of binding sites using soft-

ware provided by the manufacturer.

In some pipette experiments, adhesion was inhibited by introducing

blocking antibodies into the suspending medium in the pipette chamber.

These experiments were performed at 0.1 mg/mL of anti-b1 integrin, 4B4

(Beckman Coulter) and at 0.01 mg/mL of anti-b2 (CD18) integrin, IB4 (An-

cell, Bayport, MN), as well as at above mentioned concentrations of P1H4,

SAM-1 and Y9A2.

Coating beads

The beads (tosylactivated paramagnetic M-450 Dynabeads (Dynal, Lake

Success, NY)) were coated with soluble recombinant forms of human

VCAM-1 (R&D Systems), as described previously (30). Briefly, 107 beads

were incubated with ligand (3.3–8.3 mg/mL) at room temperature overnight.

Then unreacted tosyl groups were blocked by incubation with 0.25 M etha-

nolamine, washed and stored in 0.1% bovine serum albumin (Calbiochem,

La Jolla, CA) in phosphate buffered saline (Invitrogen) at 4�C.

The density of VCAM-1 on ligand-coated beads was measured by flow

cytometry. The beads were pre-incubated at 4�C overnight with FITC-con-

jugated antibody against human VCAM-1 (R&D Systems). To assess the

value for the nonspecific binding untreated beads were incubated with the

same FITC-conjugated antibody against human VCAM-1. To correlate fluo-

rescence intensity with the number of bound antibodies on the beads, the

fluorescence signal was calibrated using Quantum Simply Cellular Beads,

as described in the previous section.

Micropipette technique

The experiments were performed on the stage of an Olympus IX70 inverted

microscope (Spectra Services Inc., Rochester, NY), using Hamamatsu RS-

170 CCD (Microvideo Instruments, Avon, MA) as described previously

(30). Two micropipettes were positioned in a dual entry chamber mounted

on the microscope stage: one to hold the bead, another to manipulate the

cell. (Fig. 1) The bead and the neutrophil were held in contact for a user-

specified length of time, then separated. The experiments were recorded

on videotape and analyzed subsequently using Scion Image software to

determine the fraction of contacts resulting in adhesion and to measure the

contact area. An adhesion event was scored when there was any visible

deformation of the cell surface as the bead and cell were separated. The

adhesion probability was calculated as the total number of adhesive events

divided by total number of touches. All experiments were performed either

at room temperature (22�C) or at 37�C as indicated.

Calculations

Adhesion probability is related to the formation of intermolecular bonds in

the contact zone. Assuming that the formation of bonds is uncorrelated and

therefore follows Poisson statistics, the expected bond number, hni, is re-

lated to the adhesion probability through the relationship (35):

hni ¼ �lnð1� PadhÞ: (1)

The formation of adhesive bonds in the contact zone has been shown in

other systems to follow first order kinetics. The expected bond number

hni is expected to depend on a number of parameters, including the contact

time, t, and the contact area, Ac. In the companion article (34) we develop

a new kinetic framework involving a two step process leading to the
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formation of VLA-4-VCAM-1 bonds. The first step involves the forma-

tion of a reaction zone, which is defined as the presence of an active

form of the adhesion molecule in close apposition with the substrate.

The second step involves the binding reaction itself. As shown in the com-

panion article (34), for VCAM-1 substrate concentrations >200 sites/mm2,

the expressions for the expected bond number as a function of time takes

the form

�
n
�
¼
�
n
�

o
e�t=tRZ þ TRZ � Ac

1 þ KDRZ

�
1� e�t=tRZ

�
; (2)

where tRZ is a characteristic time for reaction zone formation, TRZ is the

total concentration of possible reaction zones on the surface, and KDRZ is

a dissociation constant for reaction zone formation. These coefficients are

related to the kinetic parameters of the model (34): tRZ ¼ 1/(kþ þ k�BI),

KDRZ ¼ k�BI/k
þ and k�=kþ ¼ ðTRZ� RZoÞ=RZo. In comparing the

multiple data sets, it is important to account for the fact that adhesion prob-

ability depends on the size of the contact area. The contact area between the

bead and the cell was determined from the size of the contact zone measured

from video recordings of the experiments (30). To avoid biasing the data be-

cause of the differences in contact area among different data sets, the mea-

sured adhesion probability (Padh) was corrected to the average contact area

(A0 ¼ 7.5 mm2) over the whole set of experiments performed in this study.

This correction was made by first converting the adhesion probability to

hnimeas (Eq. 1) then adjusting hni meas to a standard value hni by

hni ¼ hnimeas �
A0

Ameas

; (3)

where Ameas is the mean contact area of the data set. Then hni was converted

back to the normalized adhesion probability Po related to the expected num-

ber of bonds via Eq. 1.

RESULTS

Flow cytometry measurements revealed that the mean density

of VCAM-1 molecules was 210 sites/mm2, 250 sites/mm2,

370 sites/mm2, 650 sites/mm2, 860 sites/mm2, 970 sites/mm2

and 990 sites/mm2 for the different bead preparations used

in this study. Interestingly, when the surface concentration

of VCAM-1 exceeded 200 sites/mm2, the adhesion probabil-

ity was found to be independent of the ligand density (34), in-

dicating that this concentration was saturating for the bond

formation step. Surface concentrations of the different types

of b1 integrins on human neutrophils (CD49d, CD49e,

VLA-9) were also measured. Ten thousand cells from each

of five different donors were tested (Fig. 2). The distribution

of fluorescence labeling indicates single cell populations with

a mean of ~8,000 b1 subunits per cell, as well as significant

numbers of a4, a5, and a9 subunits: 31%, 24% and 31% of

the total respectively (Table 1). These results are in general

agreement with previous findings (13–15). We also per-

formed measurements to determine whether the expression

levels of the b1 integrins were stable under the conditions

of our experiments. Isolated neutrophils were incubated for

15, 60 or 120 min either in 3 mM Mn2þ at 21�C, or in

5 mM Mg2þ plus EGTA or 1.5 mM Ca2þ at 37�C. No signif-

icant changes in expression levels were observed (data not

shown).

In our initial experiments to determine the extent to which

these integrins might mediate neutrophil adhesion to

VCAM-1, adhesion measurements were performed on 15

bead-cell pairs from each of seven different donors using

VCAM-coated beads in the presence of Mg2þ plus EGTA

5 µm
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C

FIGURE 1 Interaction between the bead and the cell during the experi-

ment: (A) initial contact; (B) no adhesion; (C) adhesive event. The adhesive

event here resulted in the formation of the membrane strand between the cell

and the bead. This occurred after some, but not all the adhesive contacts.

Original magnification 200� for all panels. (Bar ¼ 5 mm.)
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FIGURE 2 Immunofluorescent analysis of VCAM-1 receptor molecules

expressed on human neutrophils. Cells were labeled for (top left) a4 (using

anti-CD49d antibody P1H4); (top right) a5 (using anti-CD49e antibody

SAM-1); (bottom left) a9 (using anti-a9b1 antibody Y9A2); (bottom right)

b1 (using anti-CD29 antibody B-D15) and their corresponding isotype

controls.
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or Ca2þ. Cells were perturbed as little as possible. A drop of

whole blood was dispersed in buffer and cells were selected

individually for testing based on their observed multi-lobular

nuclear structure. In these initial experiments, each cell was

placed in contact with a bead for 60 seconds at 37�C and then

separated. The probability of adhesion to VCAM-1 coated

beads was significantly higher in the presence of Mg2þ

plus EGTA (53%) than in Ca2þ (23%), confirming expecta-

tions that replacement of calcium with magnesium should in-

crease integrin-mediated adhesion. In the presence of Mg2þ

plus EGTA at 37�C the adhesion probability for 2 s contacts

(46%) was not statistically different from that measured for

60 s contacts (53%), but at room temperature, the adhesion

probability increased significantly over this time frame:

Padh ¼ 59% for 60 s contacts versus 33% for 2 s (Fig. 3).

The finding that the adhesion process in 5 mM Mg2þ sat-

urated at probabilities <100% at high concentrations of

VCAM-1 (650 sites/mm2) and long contact times led to the

conclusion that this process cannot be described with a sim-

ple bimolecular kinetic model (57). In the companion article

(34), an alternative kinetic scheme is proposed in which the

formation of adhesive contacts is limited by the formation of

reaction zones at the interface of the cell and the substrate.

The governing equation for this process at high VCAM-1

concentrations is given in Eq 2. The kinetics of adhesive con-

tact formation at room temperature is thus characterized in

terms of the coefficients tRZ and KDRZ. To determine these

coefficients, adhesion probability was measured for 1, 2, 5,

10, 20 and 60 second contacts between neutrophils and

VCAM-1 coated beads. Parallel experiments in the presence

of the b1 blocking antibody 4B4 served as control. Adhesion

probability was converted to the number of bonds formed per

unit contact area according to Eq. 1. In the presence of

a blocking antibody, the apparent number of bonds formed

increased more or less linearly with time (Fig. 4 A). Adhe-

sion in the absence of a blocking antibody appeared to con-

sist of the sum of two contributions: specific interactions

(those not blockable by 4B4) with an exponential depen-

dence on time plus a linearly increasing nonspecific compo-

nent. The nonspecific component was determined by linear

regression to the data obtained in the presence of 4B4, and

those coefficients were used to assess the kinetic rates for

specific neutrophil/VCAM-1 interactions. Background adhe-

sion was similar in the Mn2þ, Mg2þ or Ca2þbuffers. The in-

crease in adhesion with time also showed similar behavior

but different magnitudes of adhesion in the presence of

5 mM Mg2þ plus EGTA (Fig. 4 A), 3 mM Mn2þ (Fig. 4 B)

or in the presence of 1.5 mM Ca2þ (Fig. 4 C). The kinetic

constants were obtained from least squares regression to

Eq. 2 accounting for background adhesion. For VCAM-1/

neutrophil interactions in the presence of 5.0 mM Mg2þ:

tRZ¼ 14.8 5 4.09 s, KDRZ¼ 53.7 5 3.67, and hnio¼ 0.19,

in the presence of 3.0 mM Mn2þ: tRZ ¼ 3.21 5 2.894,

KDRZ ¼ 23.25 5 4.53, and hnio ¼ 0.29, and in the presence

of 1.5 mM Ca2þ, tRZ ¼ 2.33 5 1.15 s, KDRZ ¼ 160 5 23

and hnio z 0. This corresponds to values for the kinetic

coefficients: in Mn2þ, kþ ¼ 0.013 s�1, k�BI ¼ 0.30 s�1,

and k� ¼ 1.65 s�1, Mg2þ, kþ ¼ 1.2�10�3 s�1, k�BI ¼
0.066 s�1, and k�¼ 0.25 s�1, and in Ca2þ, kþ¼ 2.7�10�3 s�1,

k�BI ¼ 0.43 s�1, and k� is too large for us to measure.

To evaluate which ligands on the neutrophil mediate adhe-

sion to VCAM-1, additional experiments with blocking anti-

bodies were performed. The addition of anti-b1 blocking

antibody 4B4 caused a 70% reduction in binding to

VCAM-1 in every buffer tested in the study (Fig. 5 A).

The presence of b2 blocking antibody had no significant

effect on the adhesion probability (Fig. 5 B). The significant

reduction caused by b1 blocking antibody is shown for

comparison. Thus, the specific binding of neutrophils to

VCAM-1 is attributable to members of the b1 integrin family.

Additional blocking experiments were performed to deter-

mine which b1-integrins on the neutrophil surface mediate

the adhesion to VCAM-1. Cells were tested for 20 second

contacts at room temperature. In 5 mM Mg2þ, the presence

of Y9A2 antibody (anti-a9) or SAM-1 (anti-a5) had little ef-

fect on adhesion probability, but P1H4 (anti-a4) as well as

the combination of SAM-1 and P1H4 gave a reduction in

TABLE 1 The antibody binding capacity for integrins,

expressed on neutrophils

Antibody Targeted integrin Antibody binding capacity

B-D15 b1 (CD29) 8000

P1H4 a4 (CD49d) 2500

SAM-1 a5 (CD49e) 2100

Y9A2 a9b1 (VLA-9) 2500

**

***
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FIGURE 3 Time and temperature dependent adhesion probability for

VCAM-1 coated bead - cell interactions. The experiments were performed

in the presence of 5 mM Mg2þ plus EGTA at room temperature. For 2 s con-

tacts each bar represents data from 10 cell-bead pairs from each of three

donors (total of 30 cell-bead pairs). Each cell - bead pair was contacted 25

times. For 60 s contacts, n ¼ 105 from seven donors. The surface concentra-

tion of VCAM was ~650 sites per mm2. Error bars indicate standard error.

The stars denote a statistically significant difference in adhesion probability

(**p < 0.01 and ***p < 0.001, Student’s t-test).
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adhesion that was significant and statistically indistinguish-

able from the baseline levels (presence of 4B4 mAb) (Fig. 5

C). In 1.5 mM Ca2þ, only VLA-4 is expected to exhibit appre-

ciable affinity for VCAM-1 (27,36). Consistent with this, the

a4-blocking antibody P1H4 reduced neutrophil adhesion in

Ca2þ to baseline levels (Fig. 5 D). Similar results were ob-

tained for two-second contacts, but the observed differences

were less distinct because of the lower adhesion probabilities.

DISCUSSION

Mediators of adhesion to VCAM-1

Our results indicate that neutrophil binding to VCAM-1 un-

der the conditions of our experiments is primarily mediated

by VLA-4. Other candidates for binding to VCAM-1 that

are present on neutrophils include VLA-5 and VLA-9

(a5b1 and a9b1), but blocking antibodies against these forms

had negligible effect on adhesion. For the case of a9b1, this is

consistent with solution studies that showed a much lower

affinity of a9b1 than a4b1 for VCAM-1 (37). The b2 integrin

family members aXb2 (CD11c/CD18) and aDb2 have also

been detected on neutrophils (38,39). The latter, aDb2, can

be rapidly upregulated in response to stimulus (40), and

both are known to bind preferentially to VCAM-1(40–43).

However, the lack of inhibition of adhesion by the b2 block-

ing antibody IB4 indicates that most, if not all, adhesion of

neutrophils to VCAM-1 is mediated through b1-integrins,

and that b2-integrins play a minor, if any, role in mediating

the adhesive contacts for resting cells to VCAM-1 coated

surfaces. A possible explanation for this is that the other in-

tegrins are confined to regions of the surface that do not

make physical contact with the substrate, or that these forms

are simply not present in a high affinity conformation under

the conditions of our study.

Divalent ions and integrin activation

The use of Mn2þ and Mg2þ, rather than other more physiolog-

ical activators of neutrophils, to induce the high affinity con-

formation of integrins enabled us to study the dynamics of

integrin-VCAM-1 interactions in the absence of whole cell ac-

tivation. Prior studies in our laboratory have shown that Mg2þ

has no effect on L-selectin or b2 integrin expression on the cell

surface (44), an important sign that the neutrophils are not

activated even though integrins assume the high affinity con-

formation. (Upregulation of the b2 integrin Mac-1 and down-

regulation of the surface expression of L-selectin are early

markers of cell activation (45–47).) Our observation that

Mg2þ and Ca2þ caused increases in cell adhesion over con-

trols is consistent with prior studies of cell adhesion to

VCAM-1 coated substrates that demonstrated that VLA-4

can mediate adhesion in the presence of either of these metal

ions (48). Other reports confirm this and also show that VLA-4

affinity is higher in Mg2þ than in Ca2þ, and highest in the

presence of Mn2þ (49). The ability of VLA-4 to bind ligand

effectively in the presence of Ca2þ is unusual among integrins,

most of which assume a low affinity conformation in the pres-

ence of Ca2þ. That we observe neutrophil adhesion to VCAM-1

in the presence of Ca2þ supports our conclusion that VLA-4 is

the principal mediator of cell adhesion in this study.
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FIGURE 4 Dependence of adhesion probability on contact time. The ex-

periments were performed at room temperature as repeated tests of cell-bead

touches for different contact durations. The total adhesion probability was

converted to the expected number of bonds hni (see Eq. 1) and plotted as

hni versus time. Error bars indicate standard error. (A) The experiments

were performed in the presence of 5 mM Mg2þ plus EGTA for 1, 2, 5,

10, 20 and 60 seconds duration. The model used to fit the upper data was

Eq 2 plus a linear portion reflecting background adhesion: 0.0055x þ
0.089. From nonlinear least squares regression, hnio ¼ 0.19 5 0.035,

tRZ ¼ 14.8 5 4.09 s, and KDRZ ¼ 53.7 5 3.67. (B) The experiments were

performed in 3 mM Mn for 1, .2, .5, 10, and 20 seconds duration. Model

used to fit the data was Eq 2 with a linear portion reflecting background:

0.137 þ 0.021x. The fitted parameters were hnio ¼ 0.29 5 0.418, tRZ ¼
3.21 5 2.894 s, and KDRZ ¼ 23.25 5 4.533. (C) The experiments were

performed in the presence of 1.5 mM Ca2þ for 1, 2, 5, 10 and 20 seconds

duration. Model used to fit the data was Eq 2 with a linear portion reflecting

background: 0.039þ 0.0067x. The fitted parameters were hnio¼ 0.0 (fixed),

tRZ ¼ 2.33 5 1.15 s, and KDRZ ¼ 160 5 23.
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Meaning of the coefficients

The probability that a cell will adhere to a surface depends

directly on the rate at which bonds between the molecules

on the opposing surfaces can form. When molecules are con-

fined to the surfaces of cells, formation of adhesive bonds re-

flects contributions from multiple mechanisms operating on

molecular and microscopic scales. In addition to the intrinsic

reactivity of the molecules themselves (which may itself vary

with conditions), adhesion depends on several extrinsic fac-

tors, such as the size of the contact area, the lateral distribu-

tion and mobility of the molecules on the cell membrane, and

the topography of both the cell and substrate surfaces. A sig-

nificant aspect of our study is the finding that the probability

of adhesion is independent of the concentration of VCAM-1

on the bead surface over the range of surface concentrations

>200 sites/mm2. This observation led to the development of

a novel kinetic model that explicitly recognizes the need to

have an active molecule in close contact with the substrate

if bond formation is to proceed (34). We refer to these local-

ized sites as reaction zones. In that model, the kinetics of

binding involves five kinetic coefficients: kþ and k�, govern-

ing the formation of a reaction zone; kf and kr, representing

the kinetics of transition between bonded and unbonded

reaction zones; and kBI
�, representing the transition of a

bond to an inactive zone.

Of the five parameters, the ones associated with reaction

zone formation, kþ, k�, and, to some extent, kBI
�, reflect

most of the influence of extrinsic influences on bond forma-

tion, including surface topography and the nonuniform dis-

tribution of molecules on the cell surface. Although it has

never been critically tested, these factors are not expected

to be influenced by different divalent ion compositions in

the extracellular space. In this regard, our finding that kþ,

k�, and kBI
� are all affected by divalent ion composition

may seem surprising. But reaction zone formation also re-

quires that molecules in regions of close contact be in

a high affinity state and capable of forming a bond in the in-

terface. Evidence that divalent ions affect molecular confor-

mation and affinity comes from the work of Chigaev et al

(49), who used fluorescence energy transfer to reveal

changes in molecular folding in concentrations of different

divalent cations. Thus, the results from this report indicate

that changes in molecular conformation between low and

high affinity forms are a key mechanism underlying the

kinetics of reaction zone formation.

Insights from solution kinetics

It is instructive to review the effects of divalent ions on the

kinetics of VLA-4–VCAM-1 interactions in the solution.

Measurements of kinetic constants for VLA-4–VCAM-1 in-

teractions in Mn2þ gave values for Kd, kr and kf of 30 nM,

0.03 s�1, and ~10.0 � 105 M�1 s�1, respectively (49). The

value of Kd increased upon the addition of Ca2þ as a result

of increasing off rate, e.g. at 10 mM Ca2þ, Kd ¼ 500 nM,

and kr ¼ 1.2 s�1. Using a small peptide to mimic VCAM-1

binding to VLA-4, Chen et al. (50) also found that off rates

in the presence of calcium were substantially higher than for

Mg2þ or Mn2þ. This trend is also evident in our own findings
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FIGURE 5 Effect of blocking antibodies on adhe-

sion to VCAM-coated beads. (A) Every bar represents

the adhesion probability to VCAM-1 coated beads for

10 second contacts. The amount of VCAM is 650

sites/mm2. Addition of anti-b1 blocking antibody

4B4 caused the 70% reduction in adhesion probability

in all buffers tested in the study: 1.5 mM Ca2þ, 5 mM

Mg2þ, 3 mM Mn2þ. (B) Each bar represents 30 cell -

VCAM-bead pairs interacting for 2 seconds (25 con-

tacts for each pair) in the presence of 5.0 mM Mg2þ

plus EGTA at room temperature. The amount of

VCAM is 650 sites/mm2. The b2 blocking antibody

IB4 had no effect on the adhesion probability, but

the b1 blocking antibody 4B4 reduced the adhesion

probability to 15%. The slight additional degrease in

Padh when 4B4 and IB4 were used in combination

was not statistically significant. (C and D) Experi-

ments were performed as repeated tests of 20 contacts

for each cell-bead pair. Contact time was 20 seconds.

Each bar represents data from 8 to 36 cells total. Gray

bars represent control condition for the sparsed bars

(condition labeled on the x axis). (C) In the presence

of 5 mM Mg2þ plus EGTA; (D) In the presence of

1.5 mM Ca2þ. Error bars represent standard error.

The asterisk denotes a statistically significant differ-

ence in adhesion probability (*p < 0.05, **p < 0.01,

***p < 0.001; Student’s t-test).
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that the reverse rate for molecular activation is very large in

the presence of Ca2þ. In contrast, solution studies show very

little dependence of forward rates on divalent ion composi-

tion. This led Chen and colleagues to speculate that in their

studies of small molecule binding from solution, it was the

binding reaction (rather than conformational change) that

was facilitated by the presence of Mg2þ or Mn2þ. This

view is contradicted by studies using activation-sensitive an-

tibodies that show substantial increases in binding in the

presence of activating cations (27,51). It is also contradicted

by our own results that kþ, reflecting the forward rate for

molecular activation, is an order of magnitude larger in the

presence of Mn2þ, indicating that Mn2þ facilitates the con-

formational change leading to high affinity.

Is VLA-4 relevant for neutrophil adhesion in
human health?

Conventional wisdom that VLA-4 should play a relatively

minor role in neutrophil adhesion in the human vasculature

seems well justified based on the relative numbers of b1

and b2 integrins on human neutrophils (e.g., 2500 copies

of VLA-4 vs. 25,000 copies of LFA-1 (aLb2)). Although

there is strong evidence for the importance of VLA-4–

VCAM-1 interactions in mice (52,53), extrapolation of ob-

servations in mice to the human system are of questionable

value in this case because, unlike their human counterparts,

mouse neutrophils express VLA-4 at high levels (54,55).

In addition to lower expression of VLA-4 in human systems,

the expression of VCAM-1 on human endothelial cells ap-

pears to be lower than expression of ICAM-1, for example,

although there is evidence that VCAM-1 expression can

be significant. Human umbilical vein endothelial cells

(HUVEC) increase their expression of VCAM-1 roughly

10-fold after treatment with inflammatory agents such as

TNFa, although the levels remain substantially lower (30-

fold) than those for ICAM-1 in the same system (56). Hent-

zen et al. (57) report ICAM-1 densities in the range of 9000

sites/mm2 for HUVEC, suggesting VCAM-1 levels should be

on the order of 300 sites/mm2, a number that is intriguingly

close to the density at which neutrophil interaction becomes

independent of VCAM-1 density in our study. Thus, al-

though direct measurements of VCAM-1 expression in hu-

man vasculature are not available, it seems probable that

the VLA-4 ligand VCAM-1 is expressed at substantial levels

in the human system.

Even though the expression levels of VLA-4 are substan-

tially lower than the b2 integrins in human neutrophils, the

observations presented here indicate that their ability to

form bonds is comparable. For example, for the specific

case of a 2s contact with a surface having a ligand density

of 200 sites/mm2 the expected bond number for fully acti-

vated VLA-4 (in Mn2þ) binding to VCAM-1 is ~0.13/

mm2, whereas the expected bond number for LFA-1 medi-

ated binding to ICAM-1 under comparable conditions is

~0.04/mm2. (Compare Fig. 4 B herein with Fig. 6 in reference

(30). Thus, even though the surface density of VLA-4 on

neutrophils is ten times smaller than LFA-1, its ability to

form bonds under comparable conditions appears to be three-

fold higher! Furthermore, VLA-4 is known to mediate adhe-

sion of lymphocytes to HUVECs (17), yet expression levels

of VLA-4 on lymphocytes is only about fourfold higher than

on neutrophils, ~10,000 copies per cell (50). Based on these

comparisons, a significant role for VLA-4–VCAM-1 inter-

actions appears likely for human neutrophils.

CONCLUSIONS

Measurements of adhesion frequency between neutrophils

and bead surfaces coated with VCAM-1 reveal substantial

b1-integrin mediated adhesion, principally via a4b1 (VLA-

4). Although adhesion is observed in the presence of Ca2þ,

it is enhanced in the presence of Mg2þ, and substantially

enhanced in the presence of Mn2þ, consistent with known

characteristics of VLA-4. The system behaves in a manner

consistent with a kinetic scheme in which the formation of

a reaction zone, i.e., a region of membrane in close contact

with a substrate containing at least one adhesion molecule

in the high affinity state, is, in this case, a key rate-limiting

step. The small number of VLA-4 molecules on the neutro-

phil surface and their different affinity states in different

cationic environments has enabled us to distinguish and

characterize this distinct step. The dependence of reaction

zone formation on the divalent cations present in the solution

and the likelihood that different divalent ions may alter the

distribution of VLA-4 between high and low affinity forms

suggests that the kinetics of reaction zone formation involves

fluctuation of VLA-4 molecules between low and high affin-

ity states. These measurements represent the first, to our

knowledge, quantitative characterization of adhesion dy-

namics between neutrophils and VCAM-1, and reveal

a more complex kinetic behavior than previously supposed.
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