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ABSTRACT

Linkage disequilibrium is often measured by two statistics, D and r, which can be interpreted as the
covariance and the correlation between loci and across gametes. When data consist of diploid genotypes,
however, gametes cannot be identified. A variety of iterative statistical methods are used in such cases, all
of which assume random mating. Previous work has shown that D and r can be expressed as covariances
and correlations across diploid genotypes, provided that mating is random. We show here that this result
also holds approximately when mating is nonrandom. This provides a means of estimating these
parameters without iteration and without assuming random mating. This estimator is nearly as accurate as
the widely used EM estimator and is many times faster.

IN diploid species, it is much easier to determine
genotypes than haplotypes. Consequently, we are

often ignorant about which nucleotides reside together
on individual chromosomes. We are ignorant, in other
words, about ‘‘gametic phase.’’ This makes it hard to
measure statistical associations (‘‘linkage disequilib-
rium,’’ LD) among loci. These associations are of
interest for many reasons. They help us map disease
loci, infer the histories of populations, and detect the
effects of natural selection. The power of such studies
has grown enormously as genome-scale databases, such
as the HapMap (2007), have become available. On the
other hand, their power is also limited by ambiguity
about gametic phase.

The methods currently used to estimate LD (Hill 1974;
Weir 1977; Excoffier and Slatkin 1995; Stephens

et al. 2001) simplify the problem by assuming that pop-
ulations mate at random. In most cases, some iterative
algorithm is then used to converge gradually on a solu-
tion. In this article we introduce an approximate method
that involves no iteration and allows for nonrandom
mating. It is nearly as accurate as the widely used EM
algorithm (Excoffier and Slatkin 1995) but much
faster.

The approximation works with pairs of biallelic loci.
In recent years, attention has shifted toward methods
that reconstruct entire haplotypes involving many sites
(Clark 1990; Excoffier and Slatkin 1995; Stephens

et al. 2001). Yet pairwise methods remain important.
They underlie several graphical methods in wide use
(Ding et al. 2003; Barrett et al. 2005), they provide the
backbone of descriptive studies of LD on genomic scales

(HapMap 2005), they are used in mapping disease
genes (Jorde 2000), and they are used to search for
the effects of positive selection (Wang et al. 2006).

METHODS

Theory: Several standard measures of LD can be
expressed in terms of covariances across gametes. In this
section, we derive analogous formulas in terms of
covariances across diploid genotypes.

Consider two genetic loci, one with alleles A and a and
the other with alleles B and b. In this system, there are
four gamete types, AB, Ab, aB, and ab, with relative
frequencies PAB, PAb, PaB, and Pab. Lewontin and
Kojima (1960) introduced

D ¼ PABPab � PAbPaB ð1Þ

as a measure of LD. A few years later, Hill and
Robertson (1968) introduced an alternative measure,

r ¼ D=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pAð1� pAÞpBð1� pBÞ

p
; ð2Þ

where pA and pB are the relative frequencies of A and B.
If the two loci are statistically independent, D and r both
equal zero. Both are positive if A tends to appear
together with B. Both are easy to estimate from gamete
frequencies, i.e., when gametic phase is known, and
both are in wide use today. Our goal is to estimate them
from data with unknown phase.

Eight parameters are needed to describe the com-
plete distribution of genotypes at two biallelic loci
(Weir 1996, pp. 125–127). We eliminate several of these
dimensions by imposing the following constraints. First,
we assume that PAB, PAb, PaB, and Pab have the same
values among male and female gametes. This implies
four constraints, three of which are independent.
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Another constraint involves the inbreeding coefficient,
f—the probability that two homologous genes within a
random individual are identical by descent (IBD). We
assume that this probability is the same at each locus,
thus imposing a fourth independent constraint. With
these constraints, the original eight dimensions collapse
to four. Thus, our model requires four parameters. We
describe it in terms of pA, pB, f, and D.

We also introduce two sets of variables, one describing
gametes and the other describing diploid individuals.
For gametes, let y ¼ 1 on A-bearing gametes and 0 on a-
bearing gametes. Similarly, let z ¼ 1 and 0 on B-bearing
and b-bearing gametes. The means of y and z are pA and
pB, and their variances are pA(1� pA) and pB(1� pB). For
diploids, let Y¼ 2, 1, and 0 in genotypes AA, Aa, and aa,
and let Z ¼ 2, 1, and 0 in genotypes BB, Bb, and bb.
Taking the two loci together, (yi, zi) represents the state
of gamete i, where i ¼ 1 or 2 within any diploid indi-
vidual. Such an individual has state (Y, Z), where Y¼ y1 1

y2 and Z ¼ z1 1 z2. If gametic phase is unknown, then
we can observe Y and Z but not yi and zi. We refer to y and
z as ‘‘genic values’’ and to Y and Z as ‘‘genotypic values.’’
It is well known that D is the covariance and r the
correlation between y and z. In what follows, we in-
troduce an approximation that extends these results to
Y and Z.

We use the words ‘‘variance,’’ ‘‘covariance,’’ and ‘‘cor-
relation’’ in two different ways: as functions of prob-
ability distributions and as functions of data. These
words refer in the first sense to parameters and in the
second to statistics. Where the meaning is not clear from
context, we refer to ‘‘theoretical’’ or ‘‘sample’’ variances,
covariances, and correlations.

The theoretical covariance between Y and Z can be
expanded as a sum,

CðY ; ZÞ ¼ Cðy1; z1Þ1 Cðy1; z2Þ1 Cðy2; z1Þ1 Cðy2; z2Þ:

Two of these pairs, (y1, z1) and (y2, z2), lie on individual
chromosomes and thus have covariance D. The other
two depend in a complex way on the association be-
tween uniting gametes. For individual loci, it is conven-
tional to describe this association in terms of the
probability, f, that two uniting gametes are IBD. Com-
plications arise, however, in applying this machinery to
two-locus haplotypes. Because of recombination, the
two genes at one locus may be IBD even if those at the
other locus are not. Nonetheless, consider the case in
which recombination is absent. In that case, (y1, z1) and
(y2, z2) are IBD with probability f and independent with
probability 1� f. When they are IBD, C(y1, z2)¼C(y1, z1)¼
D. Otherwise, y1 and z2 are independent and their co-
variance is zero. Thus,

CðY ; ZÞ ¼ 2Dð1 1 f Þ: ð3Þ

We propose to use this formula as an approximation,
even when recombination does occur. To get a sense

of the resulting error, consider a monoecious sexual
population—one with sex but no sexes. Recombination
occurs at rate c, and f measures the inbreeding of the
current generation relative to its parents. To simplify
things, we assume that the genotypes of the parental
generation were formed by random mating. We do allow
for nonrandom mating, however, when these parents
mated to form the current generation. With this setup,
C(y1, z2) is nonzero only if both gametes are non-
recombinants, an event with probability (1 � c)2 � 1 �
2c. In that case, the argument of the previous paragraph
applies. Thus, C(y1, z2)� fD(1� 2c), and the same is true
of C(y2, z1). This gives

CðY ; ZÞ � 2Dð1 1 f Þ � 4fcD;

ignoring terms of order c2. Had we used Equation 3 as an
approximation, that approximation would have in-
volved an error of �4fcD. This error is large only if f, c,
and D are all large. Yet a large value of c nearly always
implies a small value of D—unlinked loci are unlikely
to be in strong LD. Thus, we are unlikely to make
a substantial error by using using Equation 3 as an
approximation.

The variances of Y and Z can be derived without
recourse to this approximation. That of Y is

VY ¼ 2pAð1� pAÞð1 1 f Þ ð4Þ

and a similar expression holds for VZ (Weir 2008, p.
136). The correlation between Y and Z is defined as
rYZ ¼ CðY ; ZÞ=

ffiffiffiffiffiffiffiffiffiffiffi
VY VZ

p
. In view of Equations 2–4, this

reduces to

rYZ � r : ð5Þ

In other words, the correlation between genotypic
values is approximately equal to that between genic
values.

Weir (2008) has derived similar formulas. Like us, he
derives formulas for C(Y, Z). In the special case of
random mating, he also shows that rYZ ¼ r (Weir 2008,
p. 132). Equation 5 suggests that Weir’s result may
be useful as an approximation even when mating is
nonrandom.

These formulas suggest a simple way to estimate LD
from unphased data. It is easy to estimate the sample
correlation between genotypic values. Equation 5 im-
plies that such estimates can be interpreted as estimates
of r. These in turn can be transformed into estimates of
D by inverting Equation 2. The statistical properties of
these estimates are investigated below by computer
simulation.

Computer simulations: We used two types of com-
puter simulation. The direct sampling algorithm (de-
scribed in the appendix) specifies all parameter values,
uses these to sample from the distribution of gametes,
and then joins gametes to form diploid individuals.
We use this approach to evaluate the approximation
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discussed above. This approach is flexible but requires
arbitrary assumptions about the values of pA, pB, and r.

To avoid these arbitrary assumptions, we also examine
the estimators using data generated by a coalescent
simulation with recombination (Hudson 1990). In this
simulation, the parameters we specify are those de-
scribing evolutionary history. We take the results of
Schaffner et al. (2005) as a reasonable model of human
evolutionary history, and their publication should be
consulted for details. Briefly, their model holds that
Europe and Asia were colonized from Africa, with
bottlenecks at the time of colonization. Our program
assumed random mating, a mutation rate of 2.2 3 10�8,
and a recombination rate of 1 cm/Mb. It generated a
simulated sample of 50 diploid ‘‘African’’ individuals,
each with 1000 chromosomes. Chromosomes were 1 Mb
long, and the average chromosome varied at 2979 poly-
morphic sites (SNPs) within the sample. Our program
crawled along each chromosome, comparing each pair of
SNPs within a moving 1600-SNP window, but excluding
pairs .500 kb apart. Each comparison involved estimat-
ing r using the derived alleles at each of the two SNPs.

Both types of computer simulation generated sam-
ples of haploid gametes, which were used to calculate
the ‘‘true value’’ of r2. True value is in quotation marks
because there are really two versions of ‘‘truth’’: (1) the
value within the population as a whole and (2) the value
within our sample of gametes with known phase. We
measure deviations from the latter value because we
are interested in the error resulting from unknown
gametic phase.

Each simulation also combined gametes to form
diploid genotypes with unknown gametic phase. The
programs then used these data to estimate r2 by two
methods: (1) the EM method introduced by Excoffier

and Slatkin (1995) and (2) the method introduced
here, which we refer to by our own initials (Rogers and
Huff, RH). The EM algorithm is designed to reconstruct
haplotypes involving many polymorphic loci. We coded
a reduced version, which deals only with a pair of
biallelic loci. This ensures that execution speed is not
reduced by unnecessarily compex code. The EM algo-
rithm works with a vector of haplotype frequencies,
which it improves iteratively until some tolerance
criterion is reached. Following Excoffier and Slatkin

(1995), we set the tolerance parameter to 10�7. (In our
version, this means that the sum of absolute differences
between two successive frequency vectors is ,10�7.)

RESULTS

The RH method is based on an approximation that is
exact under complete linkage (c¼ 0) or when mating is
random ( f ¼ 0). At larger values of c and f, approxima-
tion error generates bias, which should inflate the
standard error (SE) of our estimates. For this reason,
we expect SE to increase with c whenever f . 0. The
larger the approximation error is, the steeper this
rate of increase should be. Figure 1 uses this idea to
evaluate approximation error. In Figure 1’s top left
panel, the curve for random mating ( f ¼ 0) appears to

Figure 1.—The effect of recombination rate
(c) on the standard error (SE) of the RH estima-
tor. Each point is based on 100,000 data sets sim-
ulated by direct sampling.
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be completely flat, as expected in the absence of
approximation error. In the other curves in that panel,
f . 0 and error does increase with c, especially when
inbreeding is strong. Yet even then, the approximation
error is minor until c . 10�2. Even under strong
inbreeding, therefore, the approximation is excellent
for sites that are separated by ,1 cM.

These conclusions depend on the particular values of
pA, pB, and D9 that are assumed in the top left panel of
Figure 1. The other panels of Figure 1 carry out the same
analysis for different sets of parameter values. In the
bottom two panels of Figure 1, D9 is near zero, and all of
the curves are essentially flat, irrespective of the value of
f. This suggests that there is little approximation error
under weak LD, even if inbreeding is strong. This is
consistent with our analytical error analysis (see above),
in which the error was proportional to D. The top right
panel of Figure 1 considers the case in which LD is
very strong. In this case, strong inbreeding leads to a
substantial approximation error, but as before this error
is important only for loci separated by .1 cM. This is the
only situation we have found in which the approxima-
tion error is large, and it refers to a situation—strong
LD between essentially unlinked loci—that is unlikely to
happen often in nature.

Each panel of Figure 1 also shows that SE declines
with f. This makes sense because ambiguity about
gametic phase arises from individuals who are hetero-
zygous at both loci. In inbred samples, there are few
such individuals and it is therefore easy to estimate LD
(Fallin and Schork 2000).

The results just presented pertain to only one of the
factors that contribute to statistical error. To study the
others, we turn next to coalescent simulations. Figure 2
summarizes estimates of r2 based on 601,778,210 pairs of
SNPs, which were generated by coalescent simulation.
The EM method failed to converge in a small fraction
(0.04%) of the comparisons. The pairs were sorted into
20 bins, on the basis of the physical distance separating
the two SNPs. The left panel of Figure 2 shows the mean
estimate of r2 within each bin. Both estimators show the
expected pattern, with r2 declining as distance increases.
X’s indicate the means of the ‘‘true’’ values of r2. The
means of both estimators are larger than the true values,

indicating a small upward bias. This bias is a little larger
for the RH method than for EM.

The right panel of Figure 2 shows the standard errors
(SE) of both estimators. (Note that these are the stan-
dard errors of individual estimates, not of the means
displayed in the left panel.) The two estimators differ
only a little. The EM algorithm has a small advantage
(smaller SE), especially for tightly linked loci. For the
RH estimator, the bias in estimates of r2 does not arise
from any bias in the underlying estimates of r. On the
contrary, these latter estimates are essentially unbiased
(data not shown). Instead, the larger bias in the RH
method reflects a larger sampling variance in estimates
of r.

The smaller sampling variance of EM is not surpris-
ing, as EM is a maximum-likelihood estimator and
should therefore have near-optimal statistical proper-
ties, at least in large samples. Nonetheless, this advan-
tage appears to be small and should be weighed against
other considerations.

One such consideration involves the assumption of
random mating. EM makes this assumption, but the RH
method does not. Consequently, one might suppose
that inbreeding would introduce bias into EM estimates
or elevate their standard errors. This, however, is not the
case. As mentioned above, inbreeding makes it easier to
estimate LD. Both estimators of r2 have smaller standard
errors under inbreeding than under random mating.
The bias and standard error of EM are consistently
smaller than those of the RH method, even under
inbreeding (data not shown).

Another consideration has to do with execution
speed (Figure 3). Sample size affects the speed of both
algorithms, but not in the same way. Both begin with
the same initial step: a single pass through the data
to construct a 3 3 3 table of genotype counts. Both
algorithms then use this table in a second stage that does
not depend on sample size. In the RH algorithm, this
second stage is very fast, so the algorithm is dominated
by the initial tabulation. Its execution time thus in-
creases linearly with sample size. The second stage of the
EM algorithm involves a series of iterations. This process
is relatively costly and dominates when sample size is
small. Execution time is thus insensitive to sample size

Figure 2.—Performance of estimators of r2.
Left, mean estimates of r2; right, standard errors
(SE) of estimates.
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except in large samples. In these larger samples, the
tabulation step dominates, and execution time in-
creases linearly with sample size. The RH algorithm is
faster at all sample sizes, and this advantage is dramatic
in small samples. With n ¼ 25, for example, the RH
algorithm is nine times as fast as EM. Even with n¼ 200,
the RH algorithm is over twice as fast. These values refer
to optimized C code, but a Python implementation
exhibited similar behavior (data not shown).

DISCUSSION

The results reported here are based on approximate
formulas that express LD in terms of covariances across
diploid genotypes rather than across gametes. Equation
5 shows that r (the correlation across gametes) can be
estimated from rYZ (the correlation across unphased
genotypic values). From r it is easy to obtain other
measures of two-locus LD, such as D or D9.

In this study, simulations were used to estimate the
sampling distributions of all statistics. With real data, it
would be easier to bootstrap across individuals or to use
a randomization test. For example, one could randomly
permute the genotypes at one of the two loci and then
estimate D or r from the permuted data (Slatkin and
Excoffier 1996). A thousand such estimates would
approximate the sampling distribution of the statistic
under the hypothesis of linkage equilibrium.

Our method involves several simplifying assumptions.
First, it assumes that gamete types have equal frequen-
cies within male and female gametes. Crow and
Kimura (1970, pp. 44 and 45) discuss sex differences
in allele frequencies, and their analysis also applies to
gamete types. As they point out, these frequencies are
ordinarily very similar in the two sexes but may differ in
unusual circumstances. They might differ, for example,
in a hybrid population in which males came from one
population and females from another, or where most
immigrants were of one sex, or where there was strong
selection on one sex. Once these distorting influences

end, however, the differences between male and female
frequencies rapidly disappear. At an autosomal locus,
they disappear in a single generation. Thus, the assump-
tion of equal male and female frequencies should hold
in most natural populations.

Our second assumption is about the probability ( f ) of
identity by descent. This probability depends on the
mating system and on population history, factors that
might affect X, Y, and autosomal loci differently. Within
any given chromosome, however, these factors should
affect all neutral loci equally. Thus, f should have the
same value at all neutral loci on any single chromosome.
On the other hand, genotype frequencies may be dis-
torted at individual loci either by selection or by genotyp-
ing errors. The RH method should be useful provided
that these distorting influences are rare. These assump-
tions, of course, refer to the population rather than the
sample. Even when our assumptions hold, estimates of
f will vary from locus to locus because of the effects of
sampling.

The EM estimator, which is currently in wide use,
ignores the effect of inbreeding. The RH estimator, on
the other hand, allows for inbreeding, but ignores
recombination. Neither approximation seems to in-
troduce appreciable error. Nonetheless, the bias and
standard error of the RH estimator are somewhat larger
than those of EM. This is not surprising, since EM is a
maximum-likelihood estimator and inherits the near-
optimal properties of that method. On the other hand,
the RH estimator is much easier to code. It is so easy, in
fact, that we now use it routinely in exercises assigned to
an undergraduate population genetics class. In addi-
tion, the RH method is substantially faster—about nine
times as fast as EM in samples of size 25. The current
release of HapMap contains �4 million SNPs. To
compare each of these with its neighbors within 1 Mb
or so, one must make several billion comparisons. Thus,
genome scans for LD involve a lot of computing, and the
speed of the RH algorithm may be an important
advantage.

Software for this project was written in Python, C, and
Oracle. The Python and C programs are available at
http://www.anthro.utah.edu/�rogers/src/covld.tgz.

We are grateful for comments from Henry Harpending, Lynn Jorde,
Jon Seger, and Bruce Weir. Initial experiments with the RH algorithm
were done by students in two of our classes, and we are grateful to them
as well.
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APPENDIX: DIRECT SAMPLING ALGORITHM FOR
GENERATING DIPLOID GENOTYPES

In the generation of the parents, the four types of
gametes have probabilities

ðy; zÞ Probability
ð1; 1Þ pApB 1 D
ð1; 0Þ pAð1� pBÞ � D
ð0; 1Þ ð1� pAÞpB � D
ð0; 0Þ ð1� pAÞð1� pBÞ1 D

9>>>>=
>>>>;

ðA1Þ

(Hedrick 2004, Equation 10.1).
In this probability distribution, gametes are classified

by their state at the two loci. We also need to classify
them in terms of identity by descent. In sexual species
with separate sexes, homologous genes cannot be IBD
from the generation of their parents. To avoid this issue,
we model a population of monoecious sexuals. The
inbreeding coefficient f represents the probability that
two homologous genes are IBD from the generation of
their parents.

A two-locus gamete is ‘‘recombinant’’ if an odd number
of crossover events occurred between the two loci. This
happens with probability c, the recombination rate.
Within recombinant gametes, the two loci are indepen-
dent provided that the parents mated at random. In
comparing two-locus gametes, there are three cases to
consider:

Case 1: Neither gamete is a recombinant, an event with
probability (1 � c)2. In this case, the two gametes are
IBD with probability f. Thus, we generate the first
gamete by sampling from (A1). Then, with probabil-
ity f, we duplicate the first gamete to obtain the
second. Otherwise (with probability 1� f ), we sample
once again from (A1).

Case 2: One gamete is a recombinant, an event with
probability 2c(1 � c). In this case, the nonrecombi-
nant gamete may be (i) IBD with the A/a locus of the
recombinant (probability f ), (ii) IBD with B/b (prob-
ability f ), or (iii) IBD with neither locus (probability
1� 2f ). The nonrecombinant gamete cannot be IBD
with both loci of the recombinant. To deal with these
cases, our algorithm takes the following steps: (i)
generate the nonrecombinant gamete by sam-
pling from (A1); (ii) with probability f, obtain the
A/a locus of the second gamete by copying the
first; otherwise sample from Bernoulli(pA); and (iii)
obtain the B/b locus of the second gamete in an
analogous fashion.

Case 3: Both gametes are recombinants, an event with
probability c2. At each locus, the two genes are IBD
with independent probability f. In that case, the two
genes at each locus are generated by independent
samples from the appropriate Bernoulli distribution.
Otherwise (with probability 1� f ), they are two copies
of a single Bernoulli variate.
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