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† Background and Aims Prediction of phenotypic traits from new genotypes under untested environmental
conditions is crucial to build simulations of breeding strategies to improve target traits. Although the plant response
to environmental stresses is characterized by both architectural and functional plasticity, recent attempts to integrate
biological knowledge into genetics models have mainly concerned specific physiological processes or crop models
without architecture, and thus may prove limited when studying genotype � environment interactions.
Consequently, this paper presents a simulation study introducing genetics into a functional–structural growth
model, which gives access to more fundamental traits for quantitative trait loci (QTL) detection and thus to prom-
ising tools for yield optimization.
† Methods The GREENLAB model was selected as a reasonable choice to link growth model parameters to QTL.
Virtual genes and virtual chromosomes were defined to build a simple genetic model that drove the settings of the
species-specific parameters of the model. The QTL Cartographer software was used to study QTL detection of simu-
lated plant traits. A genetic algorithm was implemented to define the ideotype for yield maximization based on the
model parameters and the associated allelic combination.
† Key Results and Conclusions By keeping the environmental factors constant and using a virtual population with
a large number of individuals generated by a Mendelian genetic model, results for an ideal case could be simulated.
Virtual QTL detection was compared in the case of phenotypic traits – such as cob weight – and when traits
were model parameters, and was found to be more accurate in the latter case. The practical interest of this approach
is illustrated by calculating the parameters (and the corresponding genotype) associated with yield optimization of a
GREENLAB maize model. The paper discusses the potentials of GREENLAB to represent environment � genotype
interactions, in particular through its main state variable, the ratio of biomass supply over demand.
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INTRODUCTION

The main objective of plant genetic studies is to link
chromosome loci to specific agricultural traits in the hope
of increasing breeding efficiency for crop yield improve-
ment. The recently developed marker-assisted selection
strategies rely on attempts to identify and quantify the
genetic contributions to the phenotype (set of physical
traits). To identify the number and position of loci or
genes controlling these target quantitative traits, the
overall strategy used by geneticists is to develop a popu-
lation of individuals (called a mapping population) segre-
gating for the target traits and for molecular markers.
Markers are ‘flags’ regularly spaced on the whole genome
map and representing intergenic (usually non-coding)
short strands of DNA that can be hybridized with their
counterparts on the target genome, thereby marking a
certain location (see Ribaut et al., 2001). Thus, it is possible
to establish a statistical link between polymorphism at these
markers and variability of the target quantitative traits in all
individuals of the mapping population. The chromosomal

segments, bordered by two adjacent significant markers,
are called quantitative trait loci (QTL). They contain the
gene of interest but have a confidence interval largely over-
taking the gene itself because of the limited power of the
classical statistical detection methods. The main phenotypic
traits that are classically studied for crops are yield, dur-
ation, plant height, resistance to biotic and abiotic stresses,
seedling vigour and quality (de Vienne, 1998). Although it
has allowed significant advances in crop genetic improve-
ment, there is nowadays a slowdown in yield potential
increase for some crops such as rice (Yin et al., 2003).
One major difficulty lies in the complex interactions
between genotype and environment (G � E) as those
traits integrate many physiological and biological phenom-
ena and interactions with field and climatic conditions.
Consequently, many QTL are only detected in a narrow
range of environmental conditions (Zhou et al., 2007) and
the classical genetic models built only from QTL analysis
have a correct predictive ability only in a limited range of
conditions. It leads to the definition of target environments
in breeding programmes and the selection of genotypes
adapted to specific environmental characteristics (Hammer* For correspondence. E-mail veronique.letort@centraliens.net
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et al., 2002). To overcome this difficulty, growing interest
in the use of ecophysiological models is currently emer-
ging; however, the communication between those two
fields remains difficult. There is an identified need to separ-
ate factors influencing a given phenotypic trait and shifting
from highly integrated traits to more gene-related traits (Yin
et al., 2002). But bridging the gap between genetics models
and growth models remains an ongoing process, although
several studies have underlined the potential interest in
building such a link (Hammer et al., 2002, 2006; Tardieu,
2003; Yin et al., 2004).

To deal with the gene level, it seems easier to make the
linkage with low-level physiological phenomena. Some
attempts to reduce the gap between genetic and ecophysio-
logical models are bottom-up, as in Tomita et al. (1999),
who simulated the transcription and translation metab-
olisms for protein synthesis inside a single-cell organism
with a virtual genome. But we are still far from getting
the whole simulation chain at this level of detail, from the
gene expression at the molecular scale to the resulting
plant growth processes. Coupland (1995) studied the
mutations of the Arabidopsis genome that affect the flower-
ing time and the interactions between genes for the response
to long or short days. But he concluded that an accurate
modelling was difficult to obtain because all the genes
involved had not yet been identified. Tardieu (2003)
argued that using gene regulatory networks to simulate
complex gene effects on phenotypic traits was not feasible,
due to the large amount of unknown information concern-
ing gene role and regulation rules and to the high number
of different genotypes that would have to be analysed.

The top-down approach, considering ecophysiological
modelling at a higher organizational level, is more promis-
ing. Its principle is to integrate genetic knowledge in plant
growth models: for example, Buck-Sorlin (2002) detected
QTL for tillering and number of grains per ear in a winter
barley population. He used a linear regression to predict
the trait values associated with given allelic values at the
considered molecular markers and he integrated them into
a morphological growth model. But the effect of environ-
ment was not taken into account, although it is precisely
the role of models to provide helpful tools not only for
the dissection of physiological traits into their constitutive
components (Yin et al., 2002) but also for unravelling the
G � E interactions (Hammer et al., 2005). Dingkuhn
et al. (2005) attempted to link a peach tree model with
QTL but the predictive ability of the model decreased
when linked with the genetic model. Despite that unconvin-
cing result, their paper illustrates the interest to test further
QTL detection for high-level model parameters and empha-
sizes the necessary condition that those parameters should
act independently from each other and be subjected to
minimal G � E interactions. A successful approach was
achieved by Reymond et al. (2003), who focused on the
equation linking leaf elongation rate (LER) to meristem
temperature. The three parameters of this equation were
fitted from the data and then linked with their associated
QTL. Then the link between genetic and ecophysiological
models was used to predict leaf elongation rate of non-
tested combinations of genotypes and climatic conditions,

with satisfactory success (the model explained 74 % of
the observed variability for LER).

The value of this approach for breeding strategies is
quantified in Hammer et al. (2005) using
gene-to-phenotype simulations of sorghum: they linked
the yield to four basic traits (duration prior to floral
initiation, osmotic adjustment, transpiration efficiency, stay-
green), the values of which were simulated under three
different environmental conditions according to a genetic
model built from the relative information found in the bib-
liography. The simulation results showed that the predictive
power and efficiency of marker-assisted selection was
enhanced by the link with ecophysiological modelling.
They finally discussed the pertinence of such an approach
at the plant scale and the level of detail that may be required
for the growth model. To add further elements to this dis-
cussion, here we examine through a theoretical study the
use of a functional–structural growth model as a tool for
marker-assisted selection. As the target traits, such as
yield, are the results of the whole plant functioning, it is
important to study them in association with all the other
processes in the dynamic context of plant growth instead
of considering them independently of each other.
Functional–structural models (e.g. Wernecke et al., 2000;
Drouet and Pagès, 2003; or see Van der Heijden et al.,
2007) aim at describing the plant response to environmental
factors by integrating ecophysiological functions in the
plant architecture at the organ scale. Hence, they can be
powerful tools to help analyse the effects of G � E inter-
actions, acknowledging that their parameters are not
directly related to gene expression but assuming that they
should, at least, allow detection of more stable QTL than
classically used phenotypic traits. Indeed, parameters for
models at organ or plant level already integrate several
interacting physiological processes but they are likely to
be more stable under diverse environmental conditions
than the phenotypic traits that they drive.

Based on this principle, the present paper is a first simu-
lation study of QTL detection for parameters of a generic
functional–structural growth model on a virtual mapping
population built from a simple genetic model. The presen-
tation of this simulation tool of the chain from genotype to
phenotype is illustrated with virtual data that allow simplifi-
cations to make plant modellers more familiar with the
benefits of growth models for breeding work. The formalism
of the GREENLAB model was chosen: it is a dynamic
model taking into account architectural plasticity of the
plant and biomass allocation at organ level. Its mathematical
formalism allows the easy use of optimization methods, for
example in the goal of calculating the best parameters to gain
an objective criterion under given constraints. This speci-
ficity can make it a powerful tool for breeders. The potenti-
alities of such an approach are illustrated using the example
of a virtual diploid cereal that could be identified with maize.
A genetic algorithm was computed to find the parameters,
and therefore the associated genotype, that give the best
yield under a constant environment. This study is the
general framework of experiments currently conducted at
the Beijing Chinese Academy of Agricultural Sciences
(CAAS) on tomato genotypes.
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MATERIALS AND METHODS

Main characteristics of GREENLAB

In the model classification proposed by White and
Hoogenboom (2003), GREENLAB belongs to the level 3
class: it is a generic model whose parameter values are
specific for a given plant species. The first step of the
work was to add a genetic component: the resulting
complete model is thus a class 4 model, i.e. a model
where ‘genetic differences are represented by specific
alleles, with [allele] action represented through linear
effects on model parameters’ (White and Hoogenboom,
2003). The resulting flowchart of the final model is rep-
resented in Fig. 1. The arrows show the potential influences
of the plant genome in the model: it can control the setting
of the endogenous parameters of the model and the rules
driving the environmental impacts. The circular arrows
represent the various feedbacks between organogenesis,
biomass production and allocation that can be integrated
in the functional–structural model GREENLAB. For
example, an index of the plant trophic state can drive the
architectural development or changes in the plant architec-
ture can induce fluctuations of microclimate.

A detailed description of GREENLAB can be found in
de Reffye et al. (1997) and Guo et al. (2006). The features
useful for an understanding of this study are summarized
here. GREENLAB is a generic growth model based on
dynamic equations that integrate organogenesis, biomass
allocation and production at the organ scale: the plant is
regarded as a population of organs classified according to
their chronological and physiological ages. Time steps,
also called growth cycles, are based on the plant plasto-
chron or phyllochron, i.e. are linearly related to the
thermal time (Jones, 1992). The net biomass production is
computed at each growth cycle and distributed at each
cycle to all the expanding organs regardless of their
location in the plant (Heuvelink, 1996) and proportionally
to their sink strengths. This functional part of the model
can be presented in a condensed form through the main
recurrence equation that defines the biomass production

Qn of the plant at cycle n:
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This equation is based on the assumption that fresh
biomass production is proportional to crop transpiration
with an effect of mutual shading of the leaves derived
from the Beer–Lambert law (Vose et al., 1995) and
adapted to the single plant case (Guo et al., 2006). E(n)
is the average potential of biomass production during
growth cycle n, which is determined by the environmental
conditions and that can, for example, be derived from
potential evapotranspiration. The empirical parameter r
defines a resistance to transpiration, k is a factor integrating
the light interception effect due to mutual shading of leaves,
Sp is the maximal ground projection area available to the
plant, Nb(n) is the number of leaves that appeared at cycle
n and that are photosynthetically active during tb cycles, e
is leaf specific weight (g cm22), Dn is the total plant
demand at cycle n, which is calculated as the sum of
organ sink strengths Po (in the case of maize, o takes its
value in the set fb, i, s, c, tg where the letters represent
respectively: b, blade; i, internode; s, sheath; c, cob; t,
tassel) varying with the organ chronological age according
to an empiric function fo( j ) that is defined for each organ
type by beta law density function parameters (for further
details, see Guo et al., 2006).

The organogenesis simulation relies on the plant
decomposition into simple structural units (metamers,
axes, structures) and their hierarchical organization
(Barthélémy and Caraglio, 2007). The architecture of the
plant is defined by automatic application of rules whose

FI G. 1. General flowchart linking the genetic model to the GREENLAB model. The genetic model can potentially have an influence on the determi-
nation of species-specific parameters of the model and on the rules driving the environmental impact. The functional–structural model includes

complex feedback processes between organogenesis, biomass production and allocation.
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parameters are species-dependent. Those rules can be either
predefined (deterministic version of the model; Yan et al.,
2004), stochastic (Kang et al., 2003) or dependent on the
functional state of the plant (Mathieu et al., 2004). The
use of a substructure factorization algorithm also allows a
condensed writing of the tree topology by a recurrent pro-
cedure (de Reffye et al., 2003; Cournède et al., 2006).
Hence, owing to its mathematical formulation, it is possible
to study analytically the model behaviour to extract some
intrinsic emergent properties (Mathieu, 2006) and to solve
optimization problems (Wu et al., 2003). As such, it is a
suitable tool for practical applications, such as yield optim-
ization, which is one of the main concerns of breeders. This
property is illustrated in the following section.

Genetic model: from genes to model parameters

This part is a virtual study of the potentials of applying
QTL detection methods to GREENLAB parameters. To
this end, some of the parameters were chosen to be con-
sidered as genetically determined and a simple genetic
model was built to introduce a plant genotype into the
growth model. To illustrate this study, the GREENLAB
parameters chosen for the simulations are taken from the
calibration results of Guo et al. (2006) and Ma et al.
(2007) on Zea mays L. The main endogenous parameters
can be distinguished on the basis of the stability study
made by Ma et al. (2007), but here 12 parameters were arbi-
trarily chosen: photosynthetic efficiency, blade thickness,
sinks of sheaths, internodes and cob, parameters of sink
evolution function for blades, sheaths, internodes and cob,
number of shorter internodes at the plant base, cob position
on the main stem, seed mass. Those parameters are gathered
in an array called Y, whose size is T, T being the number of
genetic parameters. Each parameter has a certain range of
variation centred on a reference value, which is set from
the calibration results on maize to obtain simulated pheno-
typic traits in a valid region.

To simplify the presentation, the virtual genome of the
plant is assumed to consist of only one pair of chromo-
somes, although maize has in reality ten pairs of chromo-
somes; the general case is easily deduced: the correct
chromosome number should be considered if a realistic
use of the simulation results was our objective but here,
for pedagogic purposes, the clarity of the illustration is pri-
vileged. As all the parameters are quantitative, genes can be
assumed to be numbers. Each gene can take several values,
called alleles. They are written in the matrix G (see Fig. 2).
The number of alleles for each gene can be easily modified
depending on the population studied and is not limited,
which allows introducing undetected alleles. Let N be the
number of genes and P the current maximal number
of alleles for one gene; the size of the matrix G is then
(N � P). A chromosome C is a vector of size N whose com-
ponents are chosen in the matrix G (one allele in each line).
The rules driving this choice can be defined by the user
dependent on the information available regarding the con-
sidered species. For example, it could be necessary to
take into account the uneven distribution of genotype fre-
quencies or the skewed distribution of alleles in a natural

population, which is generally due to sampling effect
owing to the small population size, and/or to gametic or
zygotic selection in a given area because of the presence
of genes influencing gamete or zygote viability, or, in
rarer cases, to translocation [e.g. Musa spp., Vilarinhos
(2004)]. These phenomena could be integrated by setting
probabilistic rules to build the individual genotypes. In
the present paper, the aim is to illustrate QTL detection
(the type of mapping population chosen being a recombi-
nant inbred lines population, for which the expected
allelic frequency is 1:1 for each individual marker) and
potential applications in optimization for selection.
Consequently, the alleles are chosen randomly and indepen-
dently from each other so that all possible genotypes are
available. The method is similar to that adopted by
Buck-Sorlin and Bachmann (2000) and Buck-Sorlin et al.
(2006), except that alleles are considered as variation coef-
ficients (e.g. allele value of 0.9 induces a variation of
210 % on the parameters it is related to) instead of
integer values. It allows us to use a simple formalism to
define complex rules for the resulting parameter variations.

From the values chosen on the pair of chromosomes (C1,
C2) of the plant, two kinds of rules, defined by the user,
drive the effect of those alleles: additivity or dominance.
In the case of additivity, the resulting effect will be the
mean effect of the two alleles, whereas in the case of dom-
inance, one allele is chosen to be the one expressed: the
choice of the dominant allele is simply represented by
their rank in matrix G (the dominant allele is in the first
column for each line). The application f is the set of rules
for each component of the ‘chromosome’ vectors to get
the fictitious chromosome C3 of allele effects, whose size
is N, by: C3 ¼ f (C1, C2) (see example in Fig. 2). From
that virtual chromosome C3, the ‘genetic’ vector of par-
ameters is calculated as a product of matrices:

Y ¼ D� A� C3 ð2Þ

where Y is the array of the parameters to set and A is a (T �
N) matrix defining the influence of genes on each para-
meter. The matrix A can include pleiotropic rules (one
gene has an influence on several parameters) and is also
used to define the effect of several genes on one trait
(which is the case for quantitative traits). For example,

FI G. 2. From genes to allele expression. The genotype of the plant is built
by choosing alleles among the set of all the possible alleles gathered in
matrix G. Function f defines the rules of additivity or dominance that

drive the allele effects in the virtual chromosome C3.
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if the first line of matrix A is 2 0 1 0 . . . 0, it means that the
first parameter depends on the first and third genes; and the
influence of the first gene is twice as important as that of the
third gene. Epistasis phenomena (effect of one gene on
another) are not considered here. D is a diagonal matrix
whose size is (T � T ) and whose coefficients are scaling
factors to have range compatibility. Indeed, the jth par-
ameter is defined by its variation around its reference
value Yr( j) so the diagonal coefficients D(i,i) of matrix D
are defined as:

Dð j; jÞ ¼ Yrð jÞPn
k¼1

Að j; kÞ
ð3Þ

The reference value Yr can, for example, be the mean
value of the parameter in the population.

Genetic model: simulation of plant reproduction

The reproduction mechanisms are defined for a diploid
plant, i.e. a plant having pairs of homologous chromo-
somes. For each pair of chromosomes, the ‘child’ inherits
one chromosome from each of its parents. This inherited
chromosome can be the result of a crossing-over (exchange
of two segments) between the homologous chromosomes of
the corresponding parent. Within a population of chromo-
somes, the number of crossing-over between two markers
determines the number of recombinants and is a function
of the distance between the two markers. Here we follow
a Poisson law and the points where the cutting occurs are
chosen randomly.

The previous section introduced the matrix A that rep-
resents the effect of genes on the model parameters. For
real experiments, determining the values of the coefficients
of matrix A is analogous to QTL detection on model par-
ameters as it relates to searching the associations between
locations on genome and parameter values. In the present
study, the model is used to simulate the phenotypic
values and the detection of QTL for the endogenous
parameters of GREENLAB. For application to real plants,
a preliminary step would thus be to estimate the hidden
parameters of the model from the organ- or compartment-
level experimental measurements on plants (Ma et al.,
2007). Several software packages are used by geneticists
to detect QTL, such as QTL Cartographer (Basten et al.,
2005). In the simulation, the detection of QTL associated
with given traits was performed on a mapping population
that was generated from recombinant inbred lines: the pro-
cedure can be represented as in Fig. 3. First, two individuals
are chosen to be the parents, generally with the criterion of
being as different and complementary as possible for the
considered traits. In the ideal case, those two parents are
completely homozygous (i.e. same allele values for all
genes) so that all individuals issued from their reproduction
have the same genome: one chromosome from one parent
line (noted 1111. . .) and one chromosome from the
second parent line (noted 2222. . . .). From that F1 gene-
ration, several selfings are performed until a population

whose individuals are homozygous for almost all their
genes (97 % for the F6 generation) is obtained. To study a
real population, the measurements are done on that F6 gene-
ration: geneticists genotype each plant with molecular
markers covering the whole genome, and measure the
target quantitative traits such as ear weight (details can be
found in de Vienne, 1998).

For the simulation, the DigiPlant software developed by
the Laboratory of Applied Mathematics at the Ecole
Centrale Paris (Cournède et al., 2006) was run. The
virtual genome of each plant was kept in memory, provid-
ing direct access to its GREENLAB parameters and to
any phenotypic trait by simulating the plant growth. Thus,
the three types of data needed as inputs of QTL
Cartographer are gathered for the virtual population (see
Fig. 3): (a) the genetic map with distances between
markers, (b) the genotypes of individuals at all markers
(noted 1 for two alleles from parent 1, 2 for two alleles
from parent 2 and H for heterozygous marker) and (c) the
phenotype of the same individuals for all targeted traits.

FI G. 3. Procedure to build data for QTL detection using QTL
Cartographer with recombinant inbred lines. From hybridization of two
homozygous parents, an F6 population is obtained by selfings until the
sixth generation. Three kinds of data are then collected: molecular map
of the genome with distances between markers, genotype of individuals
at each marker and phenotype of the same individual for the target trait
(e.g. cob weight). From these inputs, single marker analysis is performed

using QTL Cartographer to obtain marker-trait associations.

Letort et al. — Simulation of QTL Detection for Plant Growth Model Parameters 1247



To illustrate the potential applications of linking genetic
and growth models, a genetic algorithm was computed to
find which association of alleles gives a plant with the
highest cob weight. The principle of genetic algorithms is
derived from the Darwinian rules of genetics of popu-
lations: a short introduction can be found in Koza (1995)
and Sastry et al. (2005). In the present study, a simple
version was implemented, using the genetic processes
defined in the previous section.

(1) An initial population is randomly created, each indi-
vidual being attributed its genome (which is the
‘chromosome’ vector filled with alleles coding the
variables to optimize) and a fitness value (the objec-
tive function: the cob weight in our case).

(2) At each iteration, the current population is replaced
by a new population, generated with the following
steps.

(2.1) Pairs of individuals are selected in the popu-
lation with a probability depending on their
fitness value [this method is termed ‘roulette-
wheel selection’ in Sastry et al. (2005)].

(2.2) These selected individuals can reproduce through
a crossing-over process (‘one-point cross-over’),
with a given probability pc.

(2.3) Mutation (change of one allele into another one)
can occur with probability pm.

(3) When the final number of iterations is reached, the
individual having the best fitness value represents a
local solution of the optimization problem.

Thus, the average cob weight of the population increases
generation by generation thanks to the mechanisms of
genetic selection.

RESULTS

QTL detection on GREENLAB parameters

This section presents the results obtained from QTL
Cartographer with the set of virtual data, focusing on the
comparison of the QTL detection associated with pheno-
typic traits and with GREENLAB parameters.

In this simulation example, the matrix A was of size
(12 � 15), i.e. T ¼ 12 parameters were genetically deter-
mined by a set of N ¼ 15 genes. Each QTL corresponded
exactly to one virtual gene and it was placed at a marker
location. Markers were regularly spaced all along the
chromosome with a distance of 10 cM between two con-
secutive markers. Again, this could be changed when con-
sidering real mapping data. Today, however, there are
sufficient markers available in many species (e.g. in Ahn
and Tanksley, 1993 or Dunforda et al., 2002) to make a
choice of markers regularly spaced. For QTL detection,
because of the lack of precision on QTL position
(between 10 and 30 cM for the QTL confidence interval),
one marker every 10 cM is considered to be sufficient. To
distinguish the QTL clearly, three markers were intercalated
between two successive QTL. Single marker analysis was
sufficient to detect QTL, as in this virtual study, QTL
were represented by the position of non-zero components
of the matrix A defining the influence of genes on the

parameters. The single marker analysis method uses linear
regression to test the presence of a QTL at each marker
by using a likelihood ratio test whose statistic can be con-
verted into a LOD (logarithm of odds) score as in eqn (4):

LOD ¼ � logðL0=L1Þ ð4Þ

where L0/L1 is the ratio of the likelihood under the null
hypothesis (there is no QTL in the interval of markers) to
the alternative hypothesis (there is a QTL in the interval).
The first trait selected is the first parameter of the model,
i.e. the first component of the vector Y. If the first line of
the matrix A is: (0 0 1 0 0 0 0 1 0 0 0 0 0 0 0), then the
LOD curve showing the probability of QTL presence at a
marker is as presented in Fig. 4A. The position of the
two detected QTL is denoted by grey triangles. The LOD
scores are very high because, in the genetic model pre-
sented in the previous section, alleles have a linear effect
on the parameter values. When the trait is a parameter
depending on three QTL with different weights, as in the
second line of the matrix A: (0 0 3 0 0 0 0 2 0 0 0 0 0 1 0),
it gives the curve shown in Fig. 4B. Those examples
illustrate that, as expected given that virtual data are con-
sidered, QTL controlling the endogenous parameters of
GREENLAB are correctly detected by QTL Cartographer.

The simulation also allows us to evaluate the maximal
variation in parameter estimation errors that still permits
QTL detection. For parameter 8 (eighth line of the matrix
A in Fig.4) related to three major QTL, a coefficient of varia-
tion of 15 % on the associated values of this parameter
decreased the detection sharply, as shown by the comparison
Fig. 5A and B. This value is in fact a maximal limit as the
simulation is done under perfect conditions: no environ-
mental variation, linear effect of genes on model parameters,
no epistasis effects and Mendelian segregation.

QTL detection based on phenotypic traits

The classical direct measurements of plant architecture,
obtained from the growth simulation, were used to feed
the process. Cob fresh weight was chosen as a classical
phenotypic trait and the relationship between genes and
model parameters (matrix A) is the one defined in
Fig. 4. Figure 4E gives the results of QTL detection for
cob weight: only one major QTL can be detected. The
coefficients of the matrix A revealed that its position in
fact corresponds to genes influencing blade resistance
that have a very strong influence on ear weight in the
model. However, in the graphs in Fig. 4A–D other QTL
are detected when considering the parameters indepen-
dently. It means that, for the common measurements per-
formed on plant architecture such as plant height, leaf
surface or ear weight, only some of the QTL can be
detected, even in the ideal case of our simulation.
Indeed, those virtual measurements are the result of a
step by step plant growth process in which all the
genetic parameters are involved through complex
equations. For example, cob weight at cycle n is expressed

Letort et al. — Simulation of QTL Detection for Plant Growth Model Parameters1248



from eqn (5) as:

WcðnÞ ¼
Xn

i¼1

Pc fcðiÞ
Qi�1

Di

ð5Þ

with notations defined in the first section of this paper and
the ratio Qi21/Di calculated from eqn (1). It shows that
almost all the parameters of the model are involved in
the determination of Wc(n). Even under the assumption
of constant environment, the values of classical pheno-
typic traits are the results of complex interacting phenomena
that are integrated into the functioning of the growth
model. The conclusion of the simulation is that QTL
detection gives better results if performed on model par-
ameters than on phenotypic traits. Hence, growth models
can be a useful tool for breeding strategies, but only
under the condition that there are ways to control the par-
ameter influence on the phenotypic traits and to optimize
their values.

Determination of the allelic combination optimizing ear weight

As an example for studying the parameter influence on
a phenotypic trait, the relationship between GREENLAB
parameters and cob weight value was analysed under a
stable environment. The coefficients of the matrix A are
defined by:

8 i ¼ 1 : : T ; 8 j ¼ 1 : : N; Aði; jÞ ¼ 0 if i = j

and Aði; iÞ ¼ 1:
ð5AÞ

This means that each parameter of the model is influenced
by only one single QTL. So the detected QTL for cob
weight are those associated with the parameters that have
a strong influence on the calculation of cob weight in the
model. Thus, Fig. 6 shows which parameters are the most
important for the determination of maize cob weight.
Almost all the QTL positions are detected, which is relevant
as all the parameters are linked through eqn (1) for the

FI G. 4. QTL detection on four model parameters [Y(1), Y(2), Y(3), Y(4)] and on the corresponding cob weight. The curves show the probability of QTL
presence at each marker position along the chromosome (the x-axis gives marker positions in cM). The matrix A coefficients define the effect of each gene

on the model parameters. Grey triangles indicate the most probable QTL positions.
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determination of cob weight. Moreover, the relationship
between cob weight and the model parameters can be
complex, as shown in Fig. 7: the shape of the surface defin-
ing the cob weight variation is not globally convex.

However, thanks to its mathematical formalism and to its
simulation speed, it is possible to apply optimization
methods to GREENLAB. The results of the genetic algor-
ithm give the allelic combination that optimizes cob
weight under given environmental conditions. To simplify
the presentation, the matrix A was the simplest one: one
gene had an influence on only one parameter. This means
that the optimization gives the model parameters to gain
the highest ear weight under constant environmental con-
dition. The procedure could be easily generalized once
the coefficients of matrix A have been determined. The
12 parameters that were defined as genetically determined
in the first section could take real values, for those concern-
ing the functioning part of the model, and integer values for
the topological ones. All the other parameters of the model
and the environment factors were assumed to be constant.
The results are given in Table 1. For some parameters,
the results could be easily guessed from analysis of the
model behaviour. Blade thickness and blade resistance
need to be as small as possible as their diminution increases
the plant’s ability to perform photosynthesis. By contrast,
large seed biomass gives a stronger plant. Sinks of unpro-
ductive organs (except cob) should take minimal values

to avoid waste in biomass partitioning. The number of
short internodes should be as large as possible as it lets
the plant allocate biomass uppermost to the blades that
are the future sources of assimilate production. However,
for other parameters, the influence is more complex and
can only be found thanks to the algorithm. The optimization
results found for cob sink and the cob sink variation par-
ameters are coherent with the observations from Fig. 7
that tend to show the existence of an optimum point not
situated on the interval boundaries. The increase in cob
weight induced by the parameter optimization is about
60 %. However, this optimum is not a global maximum,
as the use of a genetic algorithm implies that the parameters
have only discrete variations in a predetermined space. The
grid should be refined and the search domain extended if
more precise values were needed for real applications.

DISCUSSION

In the present study, some important aspects of the chain
from genetic model to plant growth model were simulated,
ending with QTL detection. A preliminary step is to set the
general framework of a simulation tool that will be
improved and adapted to specific species when real data
of QTL detection on GREENLAB parameters are available.

FI G. 5. Influence of measurement errors (for parameter values) on QTL detection. The curves show the probability of QTL presence at each marker
position along the chromosome (the x-axis gives marker positions in cM). With random white noise on the parameters with a standard deviation

equal to 15 %, the quality of QTL detection decreased sharply.

FI G. 7. Variation of cob weight according to cob sink and cob sink vari-
ation function. Although the surface is not convex, an optimum can be

found.

FI G. 6. QTL detection for cob weight considering a diagonal matrix A.
The curve shows the probability of QTL presence at each marker position
along the chromosome (the x-axis gives marker positions in cM). Almost
all of the 12 genetic parameters of the model are found to have an influence

on cob weight.
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The presentation of that simulated procedure could be an
original tool to help modellers understand the potential of
linking their growth models to quantitative genetics and it
illustrates the statement of Dingkuhn et al. (2005):
‘Classical, descriptive phenotyping is based on traits that
are too integrative or utilitarian (e.g. yield or leaf area
index) and, therefore, insufficiently based on biological
functioning to be directly related to gene level information’.
Indeed, in the simulation, better QTL detection was
observed on model parameters than on classical phenotypic
traits. Although this study provides no real proof as the
simulation was made with hypotheses of simple genetic
rules and under constant environmental conditions, it is of
pedagogic interest as simulation results help us to under-
stand the procedure for linking quantitative genetics and
ecophysiology and thus enhance communication between
those two research fields.

Moreover, it gives the opportunity to discuss further the
assets of functional–structural models, and in particular
of GREENLAB, as candidate plant growth models for
QTL detection on their parameters. In the first papers
exploring the possibility to link genetic models to plant
growth models, the QTL were associated either with the
parameters controlling specific physiological phenomena
(Yin et al., 1999; Reymond et al., 2003) or with the par-
ameters of crop models (Hammer et al., 2005). However,
process-based models present several limitations that
could restrict applications in genetics. Indeed, their main
drawbacks are: a poor predictive ability of architectural
response to environmental factors, such as tillering or
organ abortion (Dingkuhn, 1996; Luquet et al., 2007), dif-
ficulties in obtaining a reliable computation of leaf area

index (LAI), which is largely the main component of
biomass production modules (Marcelis et al., 1998;
Heuvelink, 1999), an empirical control of environmental
stresses at compartment level (Jeuffroy et al., 2002), diffi-
culties dealing with inter-plant variability and handling
the often complex interactions between all the different
physiological modules (Heuvelink, 1999). These drawbacks
result from the fact that process-based models do not take
into account plant morphogenesis: at compartment level,
as all organs are mixed together, the memory of the
growth process is lost, as is the architectural plasticity that
reflects the feedbacks between growth and development
processes. The endogenous parameters that control both
plant development and plant growth are useful key com-
ponents for yield prediction. Thus, they provide new infor-
mation to renew the breeding process. It provides an
adequate strategy to measure plant morphogenesis and to
analyse its dynamical biomass production and partitioning.

Several authors (Hammer et al., 2002, 2006; Chapman
et al., 2003; Tardieu, 2003) discussed the properties
required of growth models to expect reasonable chances
of success when applied to genetics. Hammer et al.
(2002) state that their main quality should be a good predic-
tive ability under various environmental conditions. This
property can be verified if the growth model parameters
define the environmental control of growth phenomena
at the different biological levels. Although further
analysis remains to be undertaken, the predictive ability
of GREENLAB has been demonstrated by Ma et al.
(2007). The authors found that parameters were stable
along development stages and that the model could
explain part of the inter-seasonal phenotypic variability.
Ma et al.’s paper confirmed the analysis of Dingkuhn
et al. (2005) who discussed the use of GREENLAB as a
link to genetics. The main drawback they detected was
the absence of detailed biological knowledge; however,
they suggested that it was ‘worthwhile to test the
GREENLAB approach in a genetic context, despite its rudi-
mentary physiology’. Indeed, Hammer et al. (2002) also
emphasized the point that gene-to-phenotype prediction
did not require an increase in model complexity, as long
as it allowed understanding of some key processes so that
various combinations of phenotypic responses could be
generated through different G � E conditions. The stability
analysis of GREENLAB parameters tends to reinforce this
conviction as it revealed that a small set of chosen rules
was sufficient to reproduce plant response to environmental
variations (Ma et al., 2007). In the most recent development
of GREENLAB, it is possible to simulate the complex plas-
ticity of plant architectural and functional responses to
environmental factors (Mathieu, 2006). Indeed, the par-
ameters are driven by a state variable of the model: the
ratio of global biomass supply Q to total plant demand D.
The environmental conditions strongly affect the biomass
supply and the genetic background of the plant intervenes
in the determination of the demand at each growth cycle.
The Q/D ratio can be considered as an index of plant
vigour and can in particular reflect the environmental
impact on plant growth, in combination with its genome
effect. Consequently, the model follows the rules defined

TABLE 1. Optimization of cob weight under stable environment:
parameter ranges and best individual parameter values

Parameter
Reference

value
Variation
range (%)

Optimal
value

Blade thickness (cm) 0.028 +5 0.027 (min)
Blade resistance 354 +5 336.3 (min)
Blade sink 1 – 1
Sheath sink 0.7 +10 0.63 (min)
Internode sink 2.17 +10 1.95 (min)
Cob sink 202 +30 180
Blade sink variation
parameter

0.4 +20 0.32 (min)

Sheath sink variation
parameter

0.53 +20 0.48

Internode sink variation
parameter

0.79 +20 0.63 (min)

Cob sink variation
parameter

0.62 +30 0.7

Number of short
internodes at the bottom

6 +20 7 (max)

Cycle of ear appearance 15 +20 12 (min)
Seed biomass (g) 0.3 +10 0.33 (max)
Cob weight (g) 773 – 1221

All parameters are dimensionless except blade thickness (cm), seed
biomass (g) and cob weight (g). When the optimal value is situated
at the interval boundary, it is indicated by ‘min’ (minimal value) or
‘max’ (maximal value). The corresponding cob weight is given from a
simulation under the same constant environmental factor.
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by Chapman et al. (2003) that stated that a growth model
should include ‘principles of responses and feedbacks’ to
‘handle perturbations to any process and self-correct, as
do plants under hormonal control when growing in the
field’ and to ‘express complex behaviour (. . .) even given
simple operational rules at a functional crop physiological
level’.

Another key point is that QTL detection implies heavy
data processing on populations of high individual numbers.
As in most models, some GREENLAB parameters (e.g.
organ sinks) cannot be directly measured on plants: those
hidden parameters have to be estimated from experimental
data collected with destructive measurements. The data col-
lection process for each individual can seem tedious if done
on complete measurements (Guo et al., 2006) but, as shown
in Ma et al. (2007), the number of needed data can be reduced
by methods of aggregation or sampling at different levels. In
addition, the speed of the fitting procedure is a key factor for
processing the large number of populations required for QTL
detection. Thanks to its mathematical formalism, the inverse
problem can be computed. GREENLAB is associated with a
dedicated fitting tool for parameter estimation that relies on
the generalized non-linear least squares method (Zhan
et al., 2003), which allows very fast resolution (usually, ten
iterations are sufficient and the computation time is generally
a few seconds).

Finally, it is worthwhile anticipating the limitations in
the use of GREENLAB for QTL detection. First, the
model’s ability to discriminate genotypes with close
allelic composition is an important issue (Tardieu, 2003)
and depends on the accuracy of the fitting procedure. In
addition, the level of required accuracy still needs to be
determined. Other criteria such as geometrical shape of
organs might need to be taken into account, as it is one
of the main features used by breeders to differentiate
between genotypes. In their generic framework for combin-
ing crop modelling and QTL mapping to select the best
crop ideotype for a specific environment, Yin et al.
(2003) particularly recommended testing the growth
model under several environments: thus, the G � E inter-
action would be analysed in a biological way and not
only statistically as in classical genetic models. With
regard to the GREENLAB model, testing under several
environments has been undertaken in Ma et al. (2007) but
this step should be further investigated.

Moreover, the integrative scale of the growth model may
be too large. The basic rules that drive plant growth would
thus be unlikely to be the direct expression of independent
genes, even if they proved stable in various environmental
conditions. Indeed, Luquet et al. (2007) investigated the
phenotypic impact of a single-gene mutation in the
genome of the ‘Nipponbare’ rice cultivar. They used a
model simulating phenotypic plasticity through resource
allocation by introducing an internal competition index
for the plant. Apart from detailed observations of differ-
ences between the growth of mutant and wild cultivars,
the estimation of model parameters highlighted that many
traits affected by the mutation closely interacted and it
was difficult to reconstruct their causal chronology. It
means that some traits can be artificially associated with

the same QTL even though the underlying gene influences
only one physiological function of the plant. Using a
growth model at the plant level can thus induce artificial
pleiotropic effects as the determination of some parameters
could be driven by common primary mechanisms (Yin
et al., 2003).

A genetic algorithm was used to optimize the parameters
in order to achieve the highest cob weight for maize. One
advantage of this kind of optimization algorithm is that it
can take into account complex constraints (by defining the
viability of individuals) and multi-objective criteria (with
weighted fitness values, for example). Thus, if one single
allele has combined effects on the phenotype, with positive
influence on some traits and negative on others, the algor-
ithm can help to find the best compromise. Here, the optim-
ization procedure was realized on 12 parameters that were
considered as genetically determined, but in a complete
study, more parameters, and their interacting effects,
should be included. For example, the importance of tassel
presence was not taken into account in the model so
tassel sink and its sink variation parameter were kept con-
stant. In the same way, new constraints should be added
to have more realistic optimized values. Considering, for
example, plant height, the biomechanical constraints in
the internodes were not implemented, and thus allometric
relationships for internodes were also kept constant and
the optimization algorithm gave a sink value for internodes
as small as possible. Therefore, the optimization criteria
should be adapted and made more complex to answer
specific objectives on real species. Regardless, it provides
an interesting contribution of modellers to breeders’ work,
even if the model relies on simplifying assumptions. The
modeller can determine the best allelic combination of
genes controlling a given trait through the model under
specified conditions. Then the production of the genotype
can be more or less difficult depending on the positions
of the considered genes and the distances between them,
but breeders have developed strategies to separate closely
linked genes, involving large segregation populations to
gain and select the proper recombinant. Regardless, it is
extremely useful for genotype building to have an idea of
the value of a virtual ideal genotype without having really
to build them, especially in the case of pleiotropy when
compromises have to be made. This approach could
broaden the set of morphological, physiological, biochemi-
cal and phenological traits commonly used to characterize
ideoptypes, as defined by Donald (1968) and Rasmusson
(1987). Using model parameters to build ideoptypes
should help to overcome the limitations due to environ-
mental pressure on QTL detection (Beattie et al., 2003).
Their exploitation in breeding programmes, however, is
conditioned by their heritability, by the level of genetic
variations in the populations and by the genetic correlations
among them (Reynolds et al., 2001).

A test of the application of the method is planned to
detect QTL for GREENLAB parameters on tomato
plants. The data collected will feed the simulation tool
with real molecular maps, genotypes of individuals and
allele effects on the model parameters. A set of experiments
is currently under way at the CAAS in Beijing. Tomato
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plants of about 45 known genotypes are being grown in the
greenhouse and detailed measurements are taken at four
growth stages to fit GREENLAB parameters. Analysis of
those experimental data should provide a further study of
QTL detection on model parameters versus phenotypic
traits. It is to be hoped that this will confirm what this
paper only illustrates through simulation, i.e. the potential
of integrating functional–structural models in the
gene-to-phenotype chain and interest in using a mathemat-
ical approach to perform optimization processes.
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