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Abstract
Decision making has recently emerged as a central theme in neurophysiological studies of cognition,
and experimental and computational work has led to the proposal of a cortical circuit mechanism of
elemental decision computations. This mechanism depends on slow recurrent synaptic excitation
balanced by fast feedback inhibition, which not only instantiates attractor states for forming
categorical choices but also long transients for gradually accumulating evidence in favor of or against
alternative options. Such a circuit endowed with reward-dependent synaptic plasticity is able to
produce adaptive choice behavior. While decision threshold is a core concept for reaction time tasks,
it can be dissociated from a general decision rule. Moreover, perceptual decisions and value-based
economic choices are described within a unified framework in which probabilistic choices result
from irregular neuronal activity as well as iterative interactions of a decision maker with an uncertain
environment or other unpredictable decision makers in a social group.

Introduction
Decision making is a cognitive process of choosing an opinion or an action among a set of two
or more alternatives, with several defining characteristics. First, choice alternatives are not
merely reflexive responses but involve goal-directed actions for which the expected outcomes
can be assessed to some degree and taken into account in a decision process. Second, a hallmark
of controlled decisions is the process of information accumulation and deliberate consideration.
Third, risk is inherent in virtually all interesting decisions; indeed, one can say that the essence
of decision making is to make a right choice in the face of uncertainty about its long-term
consequences.

Aside from momentous decisions, such as those on war and peace, marriage, or judicial verdict,
decision making pervades all aspects of flexible behavior in our daily lives. We decide on a
goal, then make a series of choices in order to achieve that goal. Voluntary selective attention,
in the sense of purposefully directing sensory processing, relies on decisions about what in the
external world are the most relevant, behaviorally, at any moment. Perception relies on
judgments about the sensory scene, where conflicting and ambiguous input signals need to be
detected, identified, and discriminated. Given the sensory information, an organism is faced
with the task of selecting a course of action among available options, based on expected
outcomes and associated risks of these actions. Choice preference and strategies must be
flexibly adaptive when the environment changes or when the outcome depends on all the
choices of interacting decision makers in a social setting.

In spite of a central role of decision making in cognition, little was known about its neuronal
underpinning until recently. The current decade has witnessed a surge of interest and activity
in this area, thanks to a confluence of animal behavioral physiology, human brain imaging,
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theory, and neural circuit modeling. In particular, neurophysiologists have begun to undertake
studies of behaving nonhuman primates in a variety of decision tasks, including perceptual
discrimination (Shadlen and Newsome, 1996, 2001; Romo and Salinas, 2001; Roitman and
Shadlen, 2002; Romo et al., 2004; Heekeren et al., 2008), target selection (Hanes and Schall,
1996; Schall, 2001, 2004; Cisek and Kalaska, 2005; Scherberger and Andersen, 2007),
economic choice behavior (Platt and Glimcher, 1999; Sugrue et al., 2004, 2005; Padoa-
Schioppa and Assad, 2006), and competitive games (Barraclough et al., 2004; Dorris and
Glimcher, 2004; Glimcher, 2003; Lee, 2008). These experiments have uncovered neural signals
at the single-cell level that are correlated with specific aspects of decision computation. Yet,
in the mammalian brain, a decision is not made by single cells, but by the collective dynamics
of a neural circuit. How are the observed neural signals generated? What are the properties of
a local cortical area (e.g., in the prefrontal or posterior parietal cortex) that enable it to subserve
decision computations, in contrast to early processing in primary sensory areas? How can one
establish the chain of causation linking molecules, circuits to decision behavior?

In close interaction with experiments, realistic neural circuit modeling provides a valuable tool
to address these fundamental issues. Biophysically based models can help bridge different
levels of description, probing cellular and network mechanisms that underlie the observed
neural spiking activity on one hand and account for the performance at the behavioral level on
the other hand. Moreover, decision computations depend on cortical circuits endowed with an
abundance of positive and negative feedback loops, the behavior of which is not readily
predictable by intuition alone. Theory of nonlinear dynamical systems offers a mathematical
framework for describing and predicting the behavior of such strongly recurrent neural
systems.

Cellular-level modeling has proven tremendously useful for understanding the behavior of
single synapses, single neurons, and sensory processing such as the mechanism of orientation
selectivity in primary visual cortex. On the other hand, cognitive processes like decision
making have largely been described by abstract mathematical models. The situation has been
changing in recent years. Biophysically based spiking network models have been developed
and applied to various experimental paradigms, including perceptual tasks that involve both
decision making and working memory, action selection and preparation, learning flexible
sensorimotor associations, and reward-based economic choice behaviors such as foraging or
interactive games. These models are similar in their basic assumptions. Recurrent synaptic
excitation is assumed to be sufficiently strong to generate multiple self-sustained stable states
of neural populations, which are mathematically referred to as “attractor states.” Reverberating
excitation is instantiated by a slow cellular process, giving rise to long ramping of neural
activity over time. Therefore, the network’s behavior is not necessarily dominated by steady
states (representing categorical choices), but slow transient dynamics provide a neural
mechanism for temporal accumulation of informadtion. On the other hand, feedback inhibition
implements competitive dynamics underlying the formation of a categorical choice.
Furthermore, highly irregular spiking activity of neurons plays a key role in generating
stochastic choice behavior. Finally, reward-dependent synaptic plasticity implements learning
that reflects outcomes of past choice history, leading to choice adaptation in a changing
environment or in interaction with other decision makers in a social setting. Because of their
commonalities, these models will be collectively referred to as “the recurrent neural circuit
model.”

This article reviews recent electrophysiological findings from this computational perspective.
The focus will be on basic computations: (1) accumulation of evidence (what is the cellular
basis of temporal accumulation of information?), (2) formation of a categorical choice (what
is the termination rule for a deliberation process in neuronal terms?); (3) reward-based
adaptation (are values of alternative responses learned by neurons or synapses; what may be
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the underlying plasticity process?); (4) stochasticity inherent in choice behavior (how is the
uncertainty about the world represented in the brain? what are the intrinsic neuronal sources
of randomness in choice behavior?). These computations are at the core of many decision
processes, regardless of their diversity and complexity; therefore, understanding their neuronal
underpinnings is essential for a biological foundation of decision making.

Neuronal Processes in the Frontoparietal Circuitry Underlying Accumulation
of Information and Categorical Choice

A hallmark of deliberate decision making is time integration, a process that enables us to
accumulate evidence in favor of or against alternative propositions and mull over choice
options. Although we are capable of producing rapid responses, rushed decisions may yield ill
effects. There is often a tradeoff between speed and accuracy: performance improves with
slower response times (Wickelgren, 1977). Moreover, we typically take a longer time to ponder
a more difficult decision, when information provided by the external world is conflicting or
when there are numerous options to consider (Hick, 1952; Vickers, 1970).

At the behavioral level, reaction time (RT) measurements have provided a powerful tool for
probing time integration in perception, memory, and cognitive processes (Donders, 1969;
Posner, 1978; Luce, 1986; Meyer et al., 1988). RT studies have led to the development of
accumulator models, which implement in various ways the idea of stochastic integration of
input signals to a fixed decision threshold. In a race model, accumulators representing different
choice options build up their activities, and whichever is the first to reach a prescribed threshold
produces the choice (Logan and Cowan, 1984). In a drift diffusion model for two-alternative
forced choices, an accumulator adds evidence in favor of one alternative and subtracts evidence
in favor of the other; a decision is made when it reaches either a positive threshold or a negative
threshold (Stone, 1960; Laming, 1968; Ratcliff, 1978; Smith and Ratcliff, 2004). A linear leaky
competing accumulator (LCA) model, which mimics a neural network, takes into account a
leakage of integration and assumes competitive inhibition between accumulators selective for
choice alternatives (Usher and McClelland, 2001). This model is easily extended to decisions
with multiple alternatives (Usher and McClelland, 2001; McMillen and Holmes, 2006; Bogacz
et al., 2007), which is not straightforward for the diffusion model (Niwa and Ditterich, 2008;
Churchland et al., 2008). For the two-alternative tasks, the LCA model is reduced to the
diffusion model in the special case when the leak and inhibition cancel out each other (Usher
and McClelland, 2001). The diffusion model is popular because of its simplicity yet proven
success with fitting behavioral data in numerous human studies (Ratcliff, 1978; Busemeyer
and Townsend, 1993; Smith and Ratcliff, 2004).

Although the concept of time integration is appealing, it is not obvious what types of choice
behavior engage such accumulation process (a characteristic of deliberate decision making)
and on what timescale (Uchida et al., 2006). Selection among a set of possible actions is a form
of choice that can occur quickly, when speed is at a premium. This is illustrated by examples
from simple organisms (Real, 1991): a toad produces a prey-catching or an avoidance behavior,
depending on whether an ambiguous moving object is perceived as prey or a predator (Ewert,
1997); or an archerfish, by watching a prey’s initial condition, quickly (within 100 ms) decides
on the course of action in order to catch the prey (Schlegel and Schuster, 2008). In rodents, a
study reported that olfactory discrimination is fast (~300 ms) in rats. Performance varied from
chance level to near 100% correct, as the task difficulty was varied by adjusting the relative
proportions of two odorants in a binary mixture, but the RTs were changed only slightly (by
~30 ms) (Uchida and Mainen, 2003). In contrast, another study found that, in mice, olfactory
discrimination performance was high (~95% correct), regardless of discrimination difficulty,
while RTs increased by ~80 ms from the easiest to the hardest (Abraham et al., 2004),
suggesting that in these tasks rodents exhibit speed-accuracy tradeoff on a timescale of less
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than 100 ms. In human studies, mean RTs typically range from tens of milliseconds to about
a second in simple perceptual tasks (Luce, 1986; Usher and McClelland, 2001).

What are the neural processes underlying time integration? Recently, electrophysiological
studies with behaving monkeys have revealed that reaction times can be related to neural
activity at the single-cell level. In a two-alternative forced-choice visual random-dot motion
(RDM) direction discrimination task, monkeys are trained to make a binary judgment about
the direction of motion of a near-threshold stochastic random dot visual motion stimulus and
to report the perceived direction with a saccadic eye movement. The task difficulty can be
parametrically varied by the fraction of dots moving coherently in the same direction, called
the motion strength or percent coherence c′. Extensive physiological and microstimulation
studies have shown that while direction-sensititve neurons in the area MT encode the motion
stimulus (Newsome et al., 1989; Britten et al., 1992, 1993, 1996), the decision process itself
occurs downstream of MT, potentially in the posterior parietal cortex and/or prefrontal cortex.
Shadlen and Newsome found that activity of neurons in the lateral intraparietal area (LIP) was
correlated with monkey’s perceptual choice in both correct and error trials (Shadlen and
Newsome, 1996, 2001). Moreover, in a reaction time version of the task (Roitman and Shadlen,
2002; Huk and Shadlen, 2005), the subject’s response time increased by ~400 ms from the
easiest (with c′ = 100%) to the hardest (with c′ = 3.2%) (Figures 1A and 1B). LIP cells exhibited
characteristic firing time courses that reflected the monkey’s response time and perceptual
choice (Figures 1C and 1D). From the onset of a random-dot motion stimulus until the time
the monkey produced a choice response by a rapid saccadic eye movement, spike activity of
LIP neurons selective for a particular saccadic target increased for hundreds of milliseconds.
The ramping slope was larger with a higher c′ (a higher quality of sensory information).
Furthermore, it was observed that the decision choice (as indicated by a saccade) was made
when the firing rate of LIP neurons (selective for that choice response) reached a threshold that
was independent of c′ and the response time. Therefore, these LIP neurons display stochastic
ramping to a set level, as expected for a neural integrator.

Another physiological study reported that, while monkeys performed a task of detecting the
presence of a visual motion stimulus, neurons in ventral intraparietal (VIP) area of the posterior
parietal cortex exhibited ramping activity that was correlated with the subjective judgment (a
higher activity in hit and false-alarm trials than in miss and correct rejection trials) and response
time (ranging from 400 to 700 ms) (Cook and Maunsell, 2002). MT neural responses were
larger in hits (with successful detection) and misses (failure), implying that the strength of
signals provided by MT neurons to higher areas was stronger in trials with ultimately successful
detection than in failed trials. In VIP but not MT, neuronal activity was significantly larger
than baseline in false-alarm trials, suggesting that the subjective judgment was computed
downstream of MT. This study thus supports the notion that the parietal cortex is part of the
brain system underlying accumulation of information and subjective judgment in visual
perception.

Regarding ramping neural activity, so far most recordings have been limited to one cell at a
time, and ramping activity is usually reported as trial-averaged neural activity (but see Roitman
and Shadlen, 2002). This leaves the question open as to whether a spike train in a single trial
indeed displays a quasilinear ramp of firing rate. Alternatively, neurons could actually undergo
a sudden jump from one rate to another, but the jumping time varies from trial to trial in such
a way that the trial average shows a smooth ramp (Okamoto et al., 2007). Additional
experiments, perhaps with multiple single-unit recording, would help to resolve this issue.
Moreover, it is still unclear whether the observed neural activity in the parietal cortex is
generated locally or reflects inputs from elsewhere.
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The posterior parietal cortex plays a major role in selective visual attention (Colby and
Godberg, 1999; Corbetta and Shulman, 2002; Sereno and Amador, 2006; Ganguli et al.,
2008), but it seems unlikely that neural signals observed in these perceptual decision
experiments can be solely attributed to attentional effects. Attention presumably should be
focused on the RDM stimulus, not the targets, until a choice is made. Even with divided
attention between the motion stimulus and targets, it is unclear how an attentional account can
explain the time course of neural dynamics, namely target-specific ramping activity that
reflects the gradual formation of a decision and marks the end of the process. Another potential
interpretation of the ramping activity is motor intention, as LIP is specifically involved with
planning saccades (Andersen and Buneo, 2002). One way to test this possibility is to ascertain
whether decision-correlated activity of parietal neurons remains the same regardless of the
modality of the ultimate behavioral response.

Decision-related activity has also been observed in the prefrontal cortex, a high-level cognitive
area that plays a major role in time integration and a gamut of other cognitive functions (Fuster,
2008; Miller and Cohen, 2001; Wang, 2006a). In a fixed-duration version of the RDM direction
discrimination task, the monkey was required to maintain fixation through a 1 s viewing period,
the stimulus offset was followed by a delay period, then the monkey signaled its choice by a
saccadic eye movement. In contrast to the RT version, now the activity of recorded neurons
correlated with decision (during motion viewing) and that with motor response (after the delay)
could be temporally dissociated. Neurons in the lateral prefrontal cortex (Kim and Shadlen,
1999) and LIP (Shadlen and Newsome, 1996, 2001; Roitman and Shadlen, 2002) showed a
similar activity pattern: their activity reflected the monkey’s choice, but, while it was a graded
function of the motion strength c′ during motion viewing, persistent activity during the delay
became insensitive to c′. The implication was that the subject made the decision during stimulus
viewing and maintained actively the binary choice across the delay to guide a later behavioral
response. These results suggest that decision making and working memory can be subserved
by the same cortical mechanism, presumably residing in the parietofrontal circuit. It should be
noted that recordings from prefrontal neurons have not yet been done in the reaction time
version of the RDM discrimination task. Prefrontal neurons often display ramping activity
during a mnemonic delay period, but this could reflect anticipation and timing of an upcoming
response rather than decision computation (Fuster, 2008; Chafee and Goldman-Rakic, 1998;
Quintana and Fuster, 1999; Brody et al., 2003; Miller et al., 2003; Watanabe and Funahashi,
2007). Physiological recordings from the prefrontal cortex using RT paradigms are needed to
assess whether prefrontal neurons display ramping activity in a way similar to that observed
in parietal neurons and, if so, whether ramping activity is generated locally in one area (and
reflected in another) or through a reciprocal loop between the two areas.

Romo and collaborators carried out a series of experiments, using a different task paradigm
and sensory modality, that provided ample evidence for the involvement of the prefrontal cortex
in perceptual decisions. In a somatosensory delayed discrimination task, monkeys report a
decision based on the comparison of two mechanical vibration frequencies f1 and f2 applied
sequentially to the fingertips, separated in time by a delay of 3–6 s. Therefore, the behavioral
response (signaling whether f1 is perceived as larger or smaller than f2) requires the animal to
hold in working memory the frequency of the first stimulus across the delay period (Figure
2A). It was found that neurons in the inferior convexity of the prefrontal cortex and the premotor
cortex showed persistent activity during the delay, with the firing rate of memory activity
increasing (a “plus cell”) or decreasing (a “minus cell”) monotonically with the stimulus
frequency (Figures 2C and 2D). During comparison decision, neural activity became binary:
a “plus neuron” showed high firing in trials when the monkey’s choice was f1 > f2, low firing
in trials when the monkey’s choice was f1 < f2; a “minus neuron” showed the opposite trend.
In this task, working memory precedes decision making, but again the same circuit is engaged
in both processes. In a modified version of the task, the decision report is postponed a few
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seconds after the comparison period, and medial premotor neurons were found to retain the
monkey’s choice and past sensory information in the form of persistent activity across the
second delay (Lemus et al., 2007), reinforcing the point that the same circuit is involved in
both working memory and decision making. A remarkable accomplishment of Romo’s work
is to systematically explore neural activity during the same task across a number of cortical
areas (primary and secondary somatosensory areas, premotor and lateral prefrontal areas),
which yielded a rich picture of neural dynamics in these areas as the process unfolds in time
(Hernández et al., 2002; Romo et al., 2004). Additional evidence for a role of the frontal lobe
in subjective decisions was reported in a detection task using near-threshold vibrotactile
stimuli. de Lafuente and Romo showed that activity of premotor neurons in the frontal lobe,
but not that of primary somatosensory neurons, covaried with trial-by-trial subjective reports
(whether a stimulus was present or absent) (de Lafuente and Romo, 2005). Similar detection
psychometric functions were obtained with premotor cortex miscrostimulation or mechanical
stimulation, suggesting that the stimulated frontal site may be causally related to this decision
behavior.

Human studies on the physiological correlates of RTs in perceptual discrimination tasks began
in the 1980s, with the development of event-related potential measurements (Gratton et al.,
1988). Interestingly, it was found that the time-to-peak of the P300 component recorded in the
parietal cortical area increased with the difficulty of stimulus discriminability and RT but was
indifferent to the stimulus-response compatibility (Kutas et al., 1977; McCarthy and Donchin,
1981). Electroencephalographic recordings, however, lack sufficient spatial resolution to
localize brain areas critically involved in time integration. Recently, human functional
magnetic resonance imaging is beginning to be applied to studies of evidence accumulation.
In one study (Binder et al., 2004), a subject was asked to identify a speech sound in a noisy
auditory stimulus, blood-oxygen-level-dependent (BOLD) functional magnetic resonance
imaging (fMRI) of the auditory cortex was found to reflect the signal-to-noise ratio (the quality
of sensory information), whereas that of the inferior frontal cortex increased linearly with the
reaction time (an index of decision process). In another study (Ploran et al., 2007), as a subject
viewed pictures that were revealed from a blank screen gradually in eight steps (2 s each), the
areas that exhibited a gradual buildup in activity peaking in correspondence with the time of
recognition were the parietal and frontal areas as well as the inferior temporal area. Moreover,
a recent study showed that a free motor decision could be decoded from BOLD signals in the
frontal and parietal cortex long (seconds) before it entered awareness (Soon et al., 2008).

Therefore, growing evidence from human neuroimaging and monkey single-neuron
physiology suggests that the parietal and frontal cortices form a core brain system for temporal
accumulation of data and categorical choice formation in perceptual judgments. These areas
may provide top-down signals to sensory neurons, whose spiking activity commonly displays
weak trial-to-trial correlated variability with monkeys’ choices (Britten et al., 1996; Shadlen
and Newsome, 1996; Parker and Krug, 2003; Law and Gold, 2008).

A challenge for future work is to elucidate precisely how the parietal and frontal circuits work
together, potentially playing differential and complementary roles, in decision making. Rather
than proceeding strictly in serial stages, a decision is likely to involve parallel processing across
brain regions. Such a scenario has been advocated in a model where action selection and
response preparation take place simultaneously in diverse cortical areas (Cisek, 2006).
Empirical evidence, however, is scarce. One promising approach to this outstanding issue is
to examine inter-areal interactions by recording simultaneously single units and local field
potentials from two or more areas in behaving animals (Pesaran et al., 2008).
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Recurrent Cortical Circuit Mechanism
How are decision computations instantiated in a cortical circuit? A clue came with the
observation that decision-related neural activity has been reported in cortical areas that
typically exhibit mnemonic persistent activity during working memory maintenance. For
instance, in an oculomotor delayed response task, neurons in both LIP and prefrontal cortex
display directionally tuned persistent activity (Gnadt and Andersen, 1988; Funahashi et al.,
1989). Motivated by this observation, it has been proposed that this is not a mere coincidence,
but suggests a common circuit mechanism underlying decision making and working memory
(Wang, 2002). A leading candidate mechanism for the generation of persistent activity is strong
recurrent excitation in a local cortical circuit that gives rise to stimulus-selective attractor states
—self-sustained population activity patterns of a neural network (Amit, 1995; Goldman-Rakic,
1995; Wang, 2001). Can such an attractor network model also account for decision-making
computations?

To address this question, a biophysically based model originally developed for working
memory (Brunel and Wang, 2001) was applied to simulate the RDM discrimination experiment
(Wang, 2002). It is worth emphasizing that this local circuit model stresses shared
characteristics of the prefrontal and parietal areas and does not speak to the issue of whether
memory or decision-related neural activity is generated in one of these areas or both.
“Biophysically based models” generally refer to models with an anatomically plausible
architecture, in which not only single spiking neurons are described biophysically with a
reasonable level of accuracy but also synaptic interactions are calibrated by quantitative
neurophysiology (which turned out to be critically important).

Figure 3 illustrates such a recurrent neural circuit model (Wang, 2002;Wong and Wang,
2006;Wong et al., 2007). In a two-pool version of the model, subpopulations of spiking neurons
are selective for two-choice alternatives (e.g., A = left motion, B = right motion). Within each
pyramidal neural group, strong recurrent excitatory connections can sustain persistent activity
triggered by a transient preferred stimulus. The two neural groups compete through feedback
inhibition from interneurons. Conflicting sensory inputs are fed into both neural pools in the
circuit, with the motion strength c′ implemented as the relative difference in the inputs (Figure
3A). Figure 3B shows a simulation with zero motion strength. At the stimulus onset, the firing
rates (rA and rB) of the two competing neural populations initially ramp up together for
hundreds of milliseconds before diverging from each other when one increases (by virtue of
recurrent excitation within that neural pool) while the other declines (due to winner-take-all
competition mediated by feedback inhibition). The perceptual choice is decided based on which
of the two neural populations wins the competition. With a varying c′, the ramping activity is
faster when the quality of sensory data is higher (Figure 3C). The model captures important
features of activity of LIP cells recorded from behaving monkeys. First, neural activity is
primarily correlated with the decision choice (even in error trials or when the motion strength
is zero). Second, the neural decision process proceeds in two steps: sensory data are first
integrated over time in a graded fashion, followed by winner-take-all competition leading to a
binary choice. Third, after the stimulus is withdrawn, the network stores the decision choice
in working memory, in the form of persistent activity that is insensitive to c′.

The “attractor landscape” can be illustrated in the decision space, where rA is plotted against
rB (Figure 3D). In this example, the sensory evidence is in favor of the choice A, so attractor
A has a larger basin of attraction (orange) than that of attractor B (brown). The system is initially
in the spontaneous state, which falls in the basin of attraction A, and evolves toward the decision
state A in a correct trial (blue). However, at low c′ the bias is not strong, and noise can induce
the system’s trajectory to travel across the boundary of the two attraction basins, in which case
the system eventually evolves to the decision state B in an error trial (red). The crossing of a
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boundary between attraction basins is slow, which explains why the reaction times are longer
in error trials than in correct trials, as was observed in the monkey experiment (Roitman and
Shadlen, 2002). This decision-space analysis hammers home the point that the system is not
rigid but is flexible in response to external signals. Attractor states can be created or destroyed
by inputs; hence, the same network can subserve different functions, such as decision making
during stimulus presentation followed by active memory of the choice across a delay in the
fixed-duration RDM task. This conclusion is supported by other recent modeling studies of
the RDM experiment (Roxin and Ledberg, 2008; Grossberg and Pilly, 2008).

As illustrated by the above example, an attractor network is not just limited to steady-state
behavior but can use long transients to perform interesting computations. As initially proposed
for working memory, one candidate cellular substrate for slow reverberation is the NMDA
receptors at local recurrent excitatory synapses (Wang, 1999). A simple estimate of the
network’s time constant is given by τnetwork = τsyn/(|1 − wrec|) (where τsyn is the synaptic time
constant, and wrec is the strength of recurrent connections), which is longer than τsyn in the
presence of wrec (Seung, 1996; Wang, 2001). For instance, if τsyn = 100 ms for the NMDA
receptor-mediated synapses (Hestrin et al., 1990), and wrec = 0.9, then τnetwork = 1 s. Thus, the
network displays transient dynamics of ramping activity on a timescale of up to 1 s, and this
ability critically depends on the NMDA receptors (Wang, 2002; Wong and Wang, 2006). Note
that this mechanism relies on the slow kinetics of NMDA receptor-mediated channel and
emphasizes the importance of NMDA receptors for online cognition (rather than its well-
known role in long-term synaptic plasticity). Other slow biophysical mechanisms, such as
short-term synaptic facilitation (Abbott and Regehr, 2004) or calcium-dependent processes in
single cells (Major and Tank, 2004), may also contribute to time integration. These candidate
scenarios, all positive-feedback mechanisms, can be experimentally tested with behaving
monkeys (using pharmacological means) as well as rodent and other simpler animal systems.

Is the recurrent neural circuit model simply an implementation of the diffusion model?
Interestingly, in contrast to the one-dimensional diffusion model, a “decision-space” analysis
(Figure 3D) showed that the dynamics of the attractor neural network is inherently two
dimensional (Wong and Wang, 2006). This is consistent with the finding that, in the LIP data
recorded from the RDM experiment (Roitman and Shadlen, 2002), the dynamics within each
of the two selective neural pools is dominated by a slow mode (Ganguli et al., 2008); thus, the
description of two competing neural pools requires two dynamical variables. A two-variable
model is needed to explain the observation that LIP neuronal activity displays a biphasic time
course, with neurons selective for the two opposite targets first ramping up together before
diverging away from each other (Roitman and Shadlen, 2002; Huk and Shadlen, 2005). The
same type of behavior was also observed in a free motor decision task (Scherberger and
Andersen, 2007).

Furthermore, importantly, the diffusion model and the recurrent neural circuit model have
distinct predictions at the behavioral level. First, the recurrent circuit model produces longer
response times in error trials than in correct trials (Wong and Wang, 2006), consistent with the
monkey experiment (Roitman and Shadlen, 2002). By contrast, a neural implementation of the
diffusion model yields the opposite effect (Mazurek et al., 2003). Longer RTs in error trials
can be realized in the diffusion model with the additional assumption that the starting point
varies stochastically from trial to trial (Ratcliff and Rouder, 1998). Second, the diffusion model
never reaches a steady state and predicts that performance can potentially improve indefinitely
with a longer duration of stimulus viewing, e.g., by raising the decision bound. In the recurrent
circuit model, ramping activity eventually stops as an attractor state is reached (Figure 3D).
Consequently performance plateaus at sufficiently long stimulus-viewing times (Wang,
2002). This model prediction is confirmed by a recent monkey experiment (Kiani et al.,
2008). Third, the attractor network model has been shown to be able to subtract negative signals
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as well as add positive evidence about choice alternatives, but the influence of newly arriving
inputs diminishes over time, as the network converges toward one of the attractor states
representing the alternative choices (Wang, 2002). This prediction is also confirmed by the
monkey experiment, which showed that the impact of a brief motion pulse in addition to the
random-dot stimulus was greater with an earlier onset time (Huk and Shadlen, 2005; Wong et
al., 2007). This violation of time-shift invariance cannot be accounted for by the inclusion of
a leak. In fact, in contrast to the recurrent circuit model, the LCA model actually predicts that
later, not earlier, signals influence more the ultimate decision, because an earlier pulse is
gradually “forgotten” due to the leak and does not affect significantly the decision that occurs
much later (Wong et al., 2007).

Recurrent excitation must be balanced by feedback inhibition (Brunel and Wang, 2001). The
diffusion model assumes that a difference signal about the conflicting inputs is computed
occurs at the input level (Ratcliff, 1978; Mazurek et al., 2003). This idea has been taken
seriously in a human fMRI experiment, in which the task was to discriminate whether an
ambiguous image is a face or a house, and the BOLD signal in the dorsolateral prefrontal cortex
was found to covary with the difference signal between the face- and house-selective regions
in the ventral temporal cortex (Heekeren et al., 2004). This work suggests that some brain
region(s) may encode difference signals in discrimination of categorically distinct signals. The
situation is likely to be different for discrimination between options in the same dimension,
such as left versus right motion direction, which is likely to occur within a local network. In
the recurrent circuit model, competition between neural pools selective for choice alternatives
is instantiated by lateral synaptic inhibition (Wang, 2002; Wong and Wang, 2006). This
feedback mechanism, not the feed-forward subtraction, is supported by the observation that
micro-stimulation of one neural pool in LIP not only sped up the decisions in its preferred
direction but also slowed down the decisions in the antipreferred direction (Hanks et al.,
2006). In another relevant analysis, Ditterich (2006) found that a diffusion model produced
reaction time histograms with long right tails (reflecting unusually long RTs), inconsistent with
the monkey experiment. The inclusion of lateral inhibition worsened the problem, resulting in
even longer right tails, especially at low coherence levels. This is not the case in the recurrent
neural circuit model, which produces decision-time distributions that do not show pronounced
right tails and are similar to those observed in the monkey experiment (X.-J. Wang, 2006, Soc.
Neurosci., abstract). A distinguishing feature of the nonlinear attractor model is strong
recurrent excitation, which is absent in linear accumulator models. The positive-feedback
mechanism ultimately leads to an acceleration of the ramping neural activity toward a decision
bound, preventing excessively long decision times. Indeed, Ditterich showed that monkey’s
reaction-time distributions could be well fitted by an accumulator model, with the additional
assumption that the decision bound decreased over time. This is functionally similar to a
hypothesized “urgency signal” that grows over time (T.D. Hanks et al., 2007, Soc. Neurosci.,
abstract). Equivalently, the desired effect can be accomplished by a temporally increasing
ramping slope, which naturally occurs in the recurrent circuit model without additional
assumptions. On the other hand, human studies commonly report skewed RT distributions with
a long right tail, which is well captured by the diffusion model (Ratcliff, 1978; Luce, 1986;
Ratcliff and Rouder, 1998; Usher and McClelland, 2001; Sigman and Dehaene, 2005) but not
the existing neural circuit model. It will be interesting to identify, in animal as well as human
studies, conditions under which RT distributions do or do not display a prominent tail, and to
come up with a neural mechanistic account of this phenomenon.

Recurrent circuit models have also been developed for the somatosensory discrimination
experiment (Romo et al., 2002, 2004). Miller et al. (Miller et al., 2003) showed that fine-tuning
of connectivity in this model yields a line attractor capable of parametric working memory,
similar to the one in the gaze-control system (Seung et al., 2000). Moreover, two such neural
populations coupled by reciprocal inhibition exhibit persistent activity that is positively and
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negatively, respectively, monotonically tuned to the first frequency f1, as observed in prefrontal
neurons in this task (Romo et al., 1999; Brody et al., 2003; Miller et al., 2003). This circuit is
thus capable of storing f1 across the delay period. Machens et al. (2005) showed that such a
circuit could also perform discrimination computation (f1 > f2 or f1 < f2) during the comparison
period (Figure 2E), provided that a switching mechanism was posited for the afferent stimuli,
such that the second stimulus reached the memory/decision circuit with the opposite sign of
tuning to the first stimulus. In an alternative scenario, an integral feedback mechanism
instantiates comparison computation without requiring input switching (Miller and Wang,
2006a). Using a phase-plane analysis, Machens et al. showed elegantly how the attractor
landscape is differentially reconfigured by external signals for each of the task epochs (cue
loading, memory maintenance, comparison); hence, the same circuit can subserve both
working memory and decision computation (Machens et al., 2005). The model predicts positive
trial-by-trial correlation between neural pairs of the same (positively or negatively monotonic)
tuning type, and negative correlation between neural pairs of opposite tuning. This prediction
is confirmed by neural data recorded from the prefrontal cortex. Interestingly, in contrast to
the fixed-duration version of the RDM discrimination task, where decision precedes a delayed
response that requires working memory of a binary chosen option, in the vibrotactile
discrimination task, parametric working memory of an analog quantity (f1) precedes a two-
choice decision process. Nevertheless, models for these two kinds of behavioral tasks display
striking similarities (including phase-plane plots). The near-threshold detection experiment
(de Lafuente and Romo, 2005) has also been modeled by a similar attractor network model
(Deco et al., 2007a). Taken together, these results further support slow reverberating dynamics
as a general mechanism for both working memory as well as decision making.

Termination Rule for a Decision Process
How do we know precisely when a graded accumulation process ends and a categorical decision
is formed? In an RT task, a decision time can be deduced from measured reaction time (minus
motor response latency), which has been shown to be correlated with threshold crossing of LIP
neuronal activity (Roitman and Shadlen, 2002). If so, what would be the biological substrate
of such a decision threshold? The answer may lie downstream. A plausible scenario is that,
when decision neurons integrate inputs and reach a particular firing rate level, this event triggers
an all-or-none response in downstream neurons and leads to the generation of a behavioral
output. In the case of oculomotor tasks, a natural candidate is movement neurons in the frontal
eye field (FEF) and superior colliculus (SC), which are brain regions essential for selecting,
preparing, and initiating saccadic eye movements. These neurons are selective for saccade
amplitude and direction and fire a stereotypical burst of spikes immediately before a saccade
is initiated (Hanes and Schall, 1996; Munoz and Fecteau, 2002). While here we focus on
response execution, FEF and SC, like LIP, are also involved in other aspects of oculomotor
decision and response selection.

To test this scenario for a decision threshold, we considered an extended, multiple-circuit model
(Lo and Wang, 2006). Decision neurons in the cortex (as described above) project to movement
neurons in the SC (Figure 4A). This model also includes a direct pathway in the basal ganglia,
with an input layer (caudate, CD) and an output layer (substantia nigra pars reticulata, SNr),
which is known to play a major role in controlling voluntary movements (Hikosaka et al.,
2000). As a neural pool in the cortex ramps up in time, so do their synaptic inputs to the
corresponding pool of SC movement neurons as well as CD neurons. When this input exceeds
a well-defined threshold level, an all-or-none burst of spikes is triggered in the SC movement
cells, signaling a particular (A or B) motor output. In this scenario, a decision threshold (as a
bound of firing rate of decision neurons) is instantiated by a hard threshold of synaptic input
for triggering a special event in downstream motor neurons. Figure 4B shows a sample trial of
such a model simulation for the visual motion direction discrimination experiment. The rate

Wang Page 10

Neuron. Author manuscript; available in PMC 2009 July 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of ramping activity fluctuates from trial to trial, as a result of stochastic firing dynamics in the
cortex, and is inversely related to the decision time (as defined by the time when a burst is
triggered in the SC) on a trial-by-trial basis (Figure 4C). Moreover, when the task is more
difficult (with a lower motion coherence), ramping activity is slower, leading to longer reaction
times. However, the threshold of cortical firing activity that is read out by the downstream
motion system has the same narrow distribution (insert in Figure 4C), regardless of the ramping
speed or reaction times. Therefore, the variability of reaction times is mostly attributed to the
irregular ramping of neural activity itself rather than trial-to-trial variability of the decision
bound. This model reproduced the monkey’s behavioral performance and reaction times
quantitatively (Figure 4D).

Can a decision threshold be adaptively tuned in this circuit? In a speed-accuracy tradeoff, too
low a threshold leads to quicker responses but more errors, whereas too high a threshold
improves the accuracy but prolongs response times. Neither of these yields maximal rewards.
A commonly held idea is that optimality can be achieved by adaptively tuning the decision
threshold (Gold and Shadlen, 2002; Bogacz et al., 2006). Since in the neural circuit model the
decision threshold is defined as the minimum cortical firing needed to induce a burst response
in the downstream SC neurons, one would expect that this threshold could be adjusted by plastic
changes in the cortico-collicular pathway: with an enhanced synaptic strength, the same level
of cortical input to the superior colliculus could be achieved with less firing of cortical neurons.
Interestingly, this is not the case when the system is gated by the basal ganglia. This is because
neurons in SNr normally fire tonically at a high rate (Figure 4B) and provide a sustained
inhibition to SC movement neurons (Hikosaka et al., 2000). This inhibition must be released
(as ramping activity in the cortex activates CD neurons, which in turn suppresses the activity
in the SNr), in order for SC neurons to produce a burst output. This highly nonlinear
disinhibition mechanism implies that the decision threshold is much more readily adjustable
by tuning the synaptic strength of cortico-striatal pathway than by changes of the cortico-
collicular synaptic strength (Lo and Wang, 2006). This finding is particularly appealing in light
of the fact that cortico-striatal synapses represent a prominent target of innervations by
dopamine neurons. Given that dopamine neurons signal rewards or reward-prediction errors
(Schultz, 1998) and that long-term potentiation and depression of the cortico-striatal synapses
depend on the dopamine signals (Reynolds et al., 2001; Shen et al., 2008), our work suggests
that dopamine-dependent plasticity of cortico-striatal synapses represents a candidate neural
locus for adaptive tuning of a decision threshold in the brain, a prediction that is testable
experimentally. More generally, it remains to be seen whether a decision threshold (defined
neurophysiologically in terms of a neural activity bound), or some other attributes like the onset
time or ramping slope of putative decision neurons, is actually dynamically adjusted in a speed-
accuracy tradeoff.

Although decision threshold is a critical element in reaction-time tasks, it should not be equated
to a general decision rule that terminates an accumulation process. This is clearly illustrated
in the fixed-duration version of the RDM task in which the viewing time is controlled externally
and the subject is required to refrain from making an overt response until either at the stimulus
offset (Britten et al., 1992; Kiani et al., 2008) or after a mnemonic delay period (Shadlen and
Newsome, 2001; Roitman and Shadlen, 2002). The subjects, and LIP neurons, do not appear
to integrate sensory information through the whole stimulus presentation period (provided it
is sufficiently long), which was suggested to indicate that threshold crossing may still be the
rule for terminating the decision process in these situations (Kiani et al., 2008). Such a scenario
would require a readout system (that detects the event of threshold crossing) to send a feedback
signal to stop the integration process in decision neurons. In contrast, in the recurrent neural
circuit model, integration stops naturally when the system has reached a steady state. This can
occur without triggering an overt behavioral response, presumably because downstream
movement neurons (in FEF and SC) are inhibited by virtue of an external cue (e.g., the fixation
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signal) and/or internally generated control signals. Conceptually, the recurrent neural network
suggests that categorical choice is determined naturally by which of the alternative attractors
wins the competition. The response time is interpreted in terms of the time at which neural
signals from a decision circuit are read out by the motor system, which can be flexibly adjusted
and differently controlled in a reaction-time task or a fixed-duration task.

This general idea not only applies to perceptual decisions but also action control. Indeed, a
recurrent circuit approach has been used to build models for action selection and movement
preparation (Wilimzig et al., 2006; Cisek, 2006; Heinzle et al., 2007). The timing of a
movement, or even whether a response is ultimately produced, is potently controlled by
inhibitory processes, such as suppressive gating of movement neurons by “holding” neurons
(Hanes and Schall, 1996; McPeek and Keller, 2002; Narayanan and Laubach, 2006; Boucher
et al., 2007), and by the basal ganglia (Hikosaka et al., 2000). Therefore, selection of an action
may not be casually linked to the reaction time, at least under some circumstances. In a popular
model for inhibitory control of action, there is a race between a GO process and a STOP process,
whichever crosses a threshold first wins the race and determines whether a response is inhibited
or not (Logan and Cowan, 1984; Boucher et al., 2007). In a recurrent neural circuit model of
countermanding action, the decision is described as a bistable dynamics, similar to the two
forced-choice perceptual decision, except that now the attractor states correspond to cancelled
versus noncancelled response (C.C. Lo and X.-J. Wang, 2007, Soc. Neurosci., abstract). In this
view, the outcome of a decision process is to some extent insensitive to the precise value of
the decision threshold, e.g., raising the threshold beyond a certain level does not necessarily
improve the performance. Hence, again, categorical choice can be dissociated from a decision
threshold.

Value-Based Economic Choice
To make the “right” decision is ultimately about achieving a behavioral goal. In laboratory
experiments, the goal is often to garner maximum rewards. This type of decision making relies
on the brain’s ability to evaluate the desirabilities of available options as a prerequisite to
choosing and to adaptively change decision strategies when choice outcomes do not meet
expectations. This field, a fusion of reinforcement learning theory and neuroeconomics, has
been the topic of several recent reviews (Sugrue et al., 2005; Rushworth and Behrens, 2008;
Loewenstein et al., 2008; Soltani and Wang, 2008).

Significant progress has been made on neural representation of reward signals and reward
expectations. A seminal finding was that phasic activity of dopamine neurons in the ventral
tegmental area (VTA) encodes a reward prediction error (the difference between the expected
and actual reward) (Schultz et al., 1997; Schultz, 1998; Roesch et al., 2007). Consistent with
a prediction error signal, spiking activity of dopamine neurons increases with both reward
magnitude and probability (Fiorillo et al., 2003; Tobler et al., 2005; Roesch et al., 2007).
Moreover, a recent study found that neurons in the primate lateral habenula reflect reward-
prediction errors with an opposite sign from dopamine neurons (exhibiting a strong increase
in spiking activity when the actual reward is smaller than the expected outcome), suggesting
that the lateral habenula is a source for negative prediction error signal (Matsumoto and
Hikosaka, 2007). On the other hand, neural signals correlated with reward expectation have
been consistently observed in the striatum, amygdala, orbitofrontal cortex (OFC), and anterior
cingulate cortex (ACC) in single-unit recording from behaving animals (reviewed in
Rushworth and Behrens, 2008). The expected value is often characterized as a leaky integrator
of experienced rewards. For instance, neural firing in ACC of behaving monkeys has been
described as a temporal filter of past rewards, on a timescale of several trials (or tens of seconds)
(Kennerley et al., 2006; Seo and Lee, 2007). In reinforcement learning theory, the error signal
is postulated to update the reward expectation, which in turn is used to compute the error signal
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(Sutton and Barto, 1998; Bayer and Glimcher, 2005; Rushworth and Behrens, 2008). Thus,
the reward expectation and the prediction error depend on each other and must be computed
iteratively, possibly in different brain regions connected in a reciprocal loop. For instance,
through a learning process that depends on dopaminergic inputs, reward expectation may be
evaluated in a circuit including the striatum and frontal cortex. This signal is then fed back to
midbrain dopamine cells to be compared with the actual reward to yield a prediction error.
However, reward expectation and prediction error signals are mixed in multiple brain areas
and are often difficult to disentangle.

It is useful to distinguish a brain system for reward valuation and those neural circuits that use
this information to guide choice behavior. Brain structures activated in decision making and
modulated by reward signals include caudate (Samejima et al., 2005; Hikosaka et al., 2006),
lateral parietal cortex area LIP (Platt and Glimcher, 1999; Sugrue et al., 2004), and prefrontal
cortex (Watanabe, 1996; Roesch and Olson, 2003). Reinforcement learning models suggest
that action values are learned at synapses onto neurons in a decision circuit, thereby influencing
choice behavior (Seung, 2003; Wörgötter and Porr, 2005). To illustrate this point, consider a
neural network shown in Figure 2A. Recall that the network behavior is described by a softmax
decision criterion, that is, the probability of choosing A versus B is a sigmoid function of the
difference in the inputs (ΔI) to the two competing neural pools (Figure 4D, upper panel).
Suppose that the strengths of the two synaptic connections cA and cB are plastic, then synaptic
modifications will alter the network decision behavior over time. Specifically, we used binary
synapses that undergo a stochastic Hebbian learning rule, namely that synaptic plasticity
depends on coactivation of presynaptic and postsynaptic neurons and takes place
probabilistically (Fusi, 2002; Fusi et al., 2007). In addition, it is assumed that synaptic learning
depends on reward signals, based on the observation that dopamine signal is known to gate
synaptic plasticity in the striatum (Wickens et al., 2003; Shen et al., 2008) and prefrontal cortex
(Otani et al., 2003; Matsuda et al., 2006). For instance, synapses for inputs to decision neurons
are potentiated only if the choice is rewarded, and depressed otherwise. Therefore, in a learning
process, synapses acquire information about reward outcomes of chosen responses, i.e., action-
specific values. As a result of synaptic modifications, the input strengths for the competing
neural groups of the decision network vary from trial to trial, leading to adaptive dynamics of
choice behavior.

Such a model was tested by applying it to a foraging task in which a subject makes a sequence
of choices adaptively in an unpredictable environment. In a monkey experiment (Sugrue et al.,
2004; Lau and Glimcher, 2005, 2008), rewards were delivered to two (A and B) response
options stochastically at baiting rates λA and λB, respectively, according to a concurrent
variable-interval reinforcement schedule, in which choice targets are baited with rewards
probabilistically and remain baited until the subject chooses the target and collects the reward.
The studies found that monkey’s behavior conformed to the matching law, which states that a
subject allocates her or his choices in a proportion which matches the relative reinforcement
obtained from these choices (Herrnstein et al., 1997) (Figures 5A and 5B). Moreover, neural
activity of LIP neurons selective for a saccadic response was modulated by a representation of
the outcome value, which was defined behaviorally as a leaky integration of past rewards on
that target (Sugrue et al., 2004). Interestingly, the monkey’s choice behavior is fit well by a
softmax function of the difference in the two incomes (Corrado et al., 2005) (Figure 5C). These
behavioral and neurophysiological observations were reproduced in the neural circuit model
of decision making endowed with reward-dependent plasticity (Soltani and Wang, 2006)
(Figures 5D–5G). It turns out that, in the model, the synaptic strengths (cA and cB) are
proportional to the returns (the average reward per choice) rather than the incomes (the average
reward per trial) of the two targets (Figure 5D). Note that matching implies that the two returns
are equalized, thus encoding reward values in terms of returns is especially suited for matching
computation. Moreover, because synapses are potentiated or weakened stochastically over
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time, they are forgetful and behave like a leaky integrator of past choice outcomes, with a time
constant determined by the learning rate as well as the reward statistics in the environment
(Soltani and Wang, 2006). Hence, the decision behavior is influenced by past rewards harvested
locally in time, in agreement with the observed monkey’s behavior (Sugrue et al., 2004; Lau
and Glimcher, 2005). As observed in LIP, in the model, neurons are modulated by the values
of the response options (Figure 5E), even though they are not directly responsible for valuation
itself. The model reproduces the matching behavior: as the reward rate λA/λB varies from one
block of trials to the next block, the model’s behavior changes quickly, so that the probability
of choosing A versus B matches approximately λA/λB (Figure 5F). Further, the model also
accounts for the observation that, in the monkey experiment, matching is not perfect, and the
relative probability of choosing the more rewarding option is slightly smaller than the relative
reward rate (“undermatching”) (Figure 5G). A model analysis showed that undermatching is
a natural consequence of fluctuating network dynamics (Soltani and Wang, 2006). Without
neural variability, decision behavior tends to get stuck with the more rewarding alternative;
stochastic spiking activity renders the network more exploratory and produces undermatching
as a consequence.

The same type of model is also applicable to competitive games, where several decision makers
interact according to a payoff matrix. Specifically, model simulations have been carried out
for the experiment of Barraclough et al. (2004), in which monkeys played matching pennies
with a computer opponent. The model reproduced salient behavioral observations (Soltani et
al., 2006). Similar to monkey’s behavior, when the opponent is fully interactive according to
the rules of matching pennies, the model behavior becomes quasirandom. For instance, if
initially cA is larger than cB, and the system chooses target A more frequently, it would be
exploited by the opponent, and the unrewarded outcomes from choosing A induce depression
of the synapses to the neural pool A, so that the difference cA − cB decreases over time, and
the system gradually chooses B more frequently (Soltani et al., 2006; Lee and Wang, 2008).

Therefore, although activity of decision neurons depends on values of response options,
valuation may occur elsewhere, perhaps at the synaptic level. It remains to be seen how such
a learning rule works when the outcome (reward or not) is revealed only long after the
behavioral response, by incorporating either persistent neural activity that bridges the temporal
gap between the two events or an “eligibility trace” in the synapses (Sutton and Barto, 1998;
Seung, 2003; Izhikevich, 2007). Virtually nothing is known empirically on this important issue,
and new experiments in this direction would be highly desirable. Another key factor is cost
(punishment, loss, and effort), the flip side of reward, which is poorly understood at the neural
level. Furthermore, for the sake of simplicity, most biophysically based models have so far
been limited to considerations of a local network and remain agnostic about the actual site of
synaptic plasticity underlying valuation. Candidate loci include the cortico-striatal connections
in the basal ganglia or synaptic pathways within the orbitofrontal cortex, which have been
explored in connectionist neural network models (Cohen et al., 1996; Frank and Claus, 2006)
and reinforcement learning models (Samejima and Doya, 2007). Thus, it is likely that reward-
dependent synaptic plasticity occurs in specific brain areas (or subpopulations of neurons in
those areas) dedicated to signaling action values, whereas others are more directly involved
with the generation of behavioral choice (Samejima and Doya, 2007; Rushworth and Behrens,
2008). Elucidation of the inner working of such large-scale decision circuits represents a major
challenge in the field.

Uncertainty and Stochastic Neural Dynamics
Decisions are often fraught with risk because the sensory world and choice outcomes, as well
as intentions of interactive decision agents, are known only with varying levels of probability.
This is illustrated by the aforementioned monkey experiments: sensory information is meager
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and conflicting in a near-threshold discrimination task; whereas in a foraging task, the possible
outcomes of response options are given by reward probabilities that change unpredictably over
time. And in a matching pennies game task, agents must decide without knowing each other’s
intended actions, but the outcome depends on all the agents’ choices. Uncertainty is considered
a key factor for explaining economic choice behavior (Kahneman, 2002), and decision making
under risk represents a central point of converging interest for economists and neuroscientists.
Recently, human studies using a combination of gambling tasks and functional neuroimaging
and neurophysiological studies with behaving animals have been carried out to examine neural
representations of uncertainty. Some studies aimed at identifying distinct brain systems that
are recruited by different types of uncertainty (Yu and Dayan, 2005; Hsu et al., 2005; Huettel
et al., 2006; Behrens et al., 2007). Other studies quantified uncertainty-correlated neural signals
in terms of probabilities (Fiorillo et al., 2003) or the variance of a probability distribution
(Tobler et al., 2007). Yet others examined estimation of confidence about a probabilistic
decision (Grinband et al., 2006; Kepecs et al., 2008).

The origin of randomness in decision making has been an issue pertaining to the debate on
whether the same core mechanisms could underlie perceptual decisions and valued-based
choice behavior (Glimcher, 2005; Gold and Shadlen, 2007). Gold and Shadlen (2007)
described decision making as a process in which “the decision variable (DV) represents the
accrual of all sources of priors, evidence, and value into a quantity that is interpreted by the
decision rule to produces a choice.” Thus, in accumulator models of perceptual decision,
randomness originates from noise in the external input, so the DV is stochastic but the decision
rule (the bound) is fixed. The computational benefit of time integration is understood in terms
of the signal-to-noise ratio, which increases over time (~√t in the diffusion model). On the
other hand, in reinforcement models for reward-dependent choice (Barraclough et al., 2004;
Sugrue et al., 2004, 2005; Lau and Glimcher, 2005), the DV is defined by values of response
options which are deterministically updated according to past rewards, whereas the choice is
generated by a probabilistic decision rule (e.g., a softmax criterion) based on the DV. The
source of stochasticity is thus interpreted as internal. Glimcher (2005) argued that intrinsic
indeterminacy may be essential for unpredictable behavior. For example, in interactive games
like matching pennies or rock-paper-scissors, any trend that deviates from random choice by
an agent could be exploited to his or her opponent’s advantage.

The recurrent neural circuit model offers a way to reconcile these two seemingly contrasting
views. In this model, there is no fundamental distinction between the DV and the decision rule,
insofar as the same recurrent neural dynamics instantiate the accrual process as well as
categorical choice. We interpret neural activity in a putative decision network as the DV in
both reward-based choice tasks and perceptual tasks. Reward or value signals modulate neural
firing through synaptic inputs, just like sensory stimuli, in consonance with the view of Gold
and Shadlen (2007). The neural dynamics give rise to stochastic decisions, with the aggregate
behavior characterized by a softmax function of the difference ΔI in the inputs to the competing
decision neurons. This softmax is simply a description of behavioral statistics, not the decision
criterion used to produce individual choices in single trials. The smaller is the absolute value
of ΔI, the more random is the network behavior. In a foraging task, the serial responses and
outcomes lead to changes in the synaptic strengths so that ΔI reflects the difference in the values
of the choice options. When the amount of reward uncertainty is varied, ΔI is adjusted through
synaptic plasticity so that the system behaves more, or less, randomly in compliance with the
matching law (Soltani and Wang, 2006). In a competitive game, the interplay with the opponent
induces reward-dependent synaptic plasticity that forces ΔI to be close to zero, resulting in
random behavior. Therefore, a decision maker does not have a goal to play randomly, but
simply tries to play at its best, given the environment or other decision agents in an interactive
game (Soltani et al., 2006; Lee and Wang, 2008). This conclusion is consistent with behavioral
studies demonstrating an indispensible role of feedback in producing random patterns of
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responses (Rapoport and Budescu, 1992; Camerer, 2003; Glimcher, 2005). In this view, a
decision circuit produces random-choice behavior, not necessarily because the system relies
on a “random number generator,” but because the trial-to-trial interplay between a decision
maker with a volatile environment or with other decision makers leads to adaptive and
seemingly random decision patterns.

This perspective, emphasizing intrinsic stochastic neural dynamics, also applies to perceptual
decisions, where ΔI measures the relative input strength (such as the coherence of an RDM
stimulus). To appreciate this point, it is worth noting that even determinant choices are
associated with some behavioral variability, notably the trial-to-trial variability of response
times. Consider the simple act of saccading (a ballistic eye movement) to a suddenly appearing
visual target. There is no sensory uncertainty, and the behavioral response is always the same.
However, saccade response time (the time between target onset and saccadic eye movement)
fluctuates considerably from trial to trial (Carpenter, 1981). In monkey physiological
experiments, Hanes and Schall found that a saccade was initiated when the firing activity
reached a threshold level of movement neurons in the FEF (Hanes and Schall, 1996; Schall,
2001). Trial-to-trial variability of saccade response time was shown to be inversely correlated
with the slope of the buildup activity of movement-related neurons, whereas the threshold level
remained constant independent of the response time (Hanes and Schall, 1996). There is also
evidence for a trial-to-trial correlation between the response latency and the preparatory activity
of cortical movement neurons, before the target onset, in saccade and other sensory-motor tasks
(Dorris et al., 1997; Churchland et al., 2006; Nakahara et al., 2006). In situations when there
is a conflict, for instance when the subject has to inhibit a planned saccade by a stop signal
introduced with a short delay after the target onset, the behavior becomes probabilistic (the
saccade is suppressed on some trials, but not on other trials) (Logan and Cowan, 1984; Boucher
et al., 2007). Therefore, in some sense, the stochasticity inherent in a neural system reveals
itself by external uncertainty.

The signal-detection theory of perception explains behavioral indeterminacy in terms of noisy
input (Green and Swets, 1966). However, precious little is known physiologically about the
identities and relative weights of various sources that contribute to randomness in a decision
process. In a monkey RDM discrimination experiment, there are at least three components of
noise that influence a decision circuit like LIP: the stochastic spatio-temporal dot pattern
presented in a trial, the trial-to-trial stimulus variation, and fluctuating dynamics intrinsic in
the nervous system. Interestingly, it was found that the trial-to-trial stimulus variation had no
discernible effect on the trial-to-trial variance of firing activity in MT neurons (Britten et al.,
1993), nor on the relationship between MT neural responses and behavioral choice (Britten et
al., 1996). Similarly, in the recurrent neural circuit model, the probabilistic decision behavior,
measured by the psychometric function and the variability of response time, was found to be
the same in simulations when the external inputs varied from trial to trial or remained fixed
across trials, suggesting that the main source of variability may not be the sensory stimulus but
within the neural system itself (Wang, 2002). In addition, Deco et al. applied this model to the
monkey somatosensory discrimination experiment and showed that the intrinsically stochastic
decision circuit dynamics could account for Weber’s law, which states that the ratio of just-
noticeable input difference to absolute input intensity is constant (Deco and Rolls, 2006; Deco
et al., 2007b). These examples illustrate the potential of how statistical behavioral laws can
ultimately be explained in neuronal terms.

Both for models of perceptual decisions and value-based choice behavior, intrinsic
stochasticity arises from highly irregular neural firing (Amit and Brunel, 1997; Brunel and
Wang, 2001), a characteristic of cortical neuronal firing (Softky and Koch, 1993; Shadlen and
Newsome, 1994). Evidence suggests that this randomness is inherent within cortical circuits.
For instance, Poisson-like statistics is a characteristic of delay-period persistent activity of
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prefrontal neurons recorded from behaving monkeys, even in the absence of external stimulus
during working memory (Compte et al., 2003). Theoretically proposed mechanisms for highly
irregular neural activity in the cortex posit recurrent cortical circuit dynamics endowed with
balanced synaptic excitation and inhibition (van Vreeswijk and Sompolinsky, 1996; Amit and
Brunel, 1997; Mattia and Del Giudice, 2004; Renart et al., 2007; Barbieri and Brunel, 2008).
Unlike the diffusion model in which the input is given and integrated by the DV, in a recurrent
circuit a substantial component of the synaptic input comes “from within” and builds up over
time in parallel with the spiking activity. Therefore, time integration is over the total (external
and recurrent) input, rather than sensory stimulus alone. If neurons in a putative decision circuit
like LIP exhibit Poisson statistics through a ramping time course, then the signal-to-noise ratio
improves over time simply as a consequence of the increased mean firing rate (true for any
Poisson process), rather than because noise in the external stimulus is averaged out.
Furthermore, it is not a foregone conclusion that the signal-to-noise ratio indeed decays over
time for decision neurons, because a neural accumulator, due to its lack of a significant leak,
is expected to display unusual fluctuations, e.g., the Fano factor of spike trains (the ratio of the
variance over the mean of the spike count) may actually grow over time (Miller and Wang,
2006b).

The phase-plane analysis (Figure 3D) offers a new look at the issue of signal-to-noise ratio. At
any given time, define signal as the distance d(t) between the current network state (given by
the two neural pool firing rates rA and rB) and the boundary that separates the basins of attraction
of the two choice attractors. Noise can be quantified by the trial-to-trial standard deviation [σ
(t)] of the network state. The signal-to-noise ratio is d(t)/σ(t). At the onset of a RDM stimulus,
the initial signal d(t = 0) depends on the motion strength c′; it is zero if c′ = 0, but is positive
for nonzero c′ because the network already starts inside the basin of the correct choice attractor
(cf. Figure 3D). However, the network remains “undecided” as long as d(t)/σ(t) is small. As
the network evolves further into one of the basins of attraction, both d(t) and σ(t) may increase
over time, but the ratio d(t)/σ(t) grows, therefore it becomes increasingly unlikely that noise
can “bring back” the network across the boundary to the other, alternative, attraction basin. In
this sense, one may say that a categorical choice is reached when d(t) becomes much larger
than σ(t), even though the network may be still far away from the actual attractor state or neither
of the two firing rates have reached a prescribed decision threshold. According to this state
dynamics perspective on signal-to-noise ratio, there is no need to separately treat external noisy
stimulus and internal neuronal stochasticity. The computational benefit of time integration is
understood through the network dynamics in an attractor landscape, rather than in terms of a
traditional time domain analysis. Note that the network does not directly “see” the motion
coherence c′, only the RDM stimulus, but the decision-space landscape is sensitive to the mean
input that reflects c′. For a higher c′ (Figure 3D, c′ = 51.2% versus 6.4%), the network starts
out deeper in the territory of the correct choice attractor, d is larger at the stimulus onset, and
the time point of a categorical choice is earlier. With a sufficiently large c′, the performance is
100% because, as soon as the stimulus is presented, d(t)/σ(t) is already so large that switching
to the alternative choice attractor (an error) is impossible. One can say that the system has
already “made up its mind” at the stimulus onset, even though it takes sometime for neural
activity to reach a threshold level. Note that each state-based depiction corresponds to a
(sufficiently long) stationary input. It does not mean that the decision is irreversible; a change
in the external input (e.g., reversing the direction of the motion stimulus) can radically alter
the attractor landscape, leading to a different choice.

It has been proposed that in a single trial, neural population activity patterns explicitly represent
probability density functions (Ma et al., 2006). Applied to the RDM discrimination experiment,
ramping spiking activity of LIP neurons has been interpreted as a temporal summation of the
logarithm of the likelihood ratio (Gold and Shadlen, 2001; Jazayeri and Movshon, 2006), or
of the posteriors (that combine evidence with prior information) (Ma et al., 2006; Jazayeri and
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Movshon, 2006), about the two alternatives. Such models require a Bayesian decoder that uses
a nonlinear process to readout the categorical choice. The recurrent neural circuit model offers
a different perspective in which the same decision circuit performs both temporal integration
of data and categorical choice by attractor dynamics. Furthermore, decision making in single
trials is based on random sampling of fluctuating neural network activity; probabilistic
distributions appear only in the aggregated statistics across trials. Future research will help us
to understand these different modes of operation, possibly deployed differentially in distinct
brain regions.

Concluding Remarks
Decision making has recently attracted increasing attention not only in the neurobiological
studies of cognition but also in psychiatry with the recognition that impaired decision making
is prominently associated with various mental disorders (Fellows, 2004; Sachdev and Malhi,
2005). In this review, I have marshaled experimental findings on the basis of which a recurrent
neural circuit theory for decision making has been developed. As it has now become possible
to investigate decision making across species, from flies, rats, and monkeys to human subjects,
the time is ripe to investigate the underlying mechanisms in terms of the biophysics of single
neurons (Llinás, 1988; Magee et al., 1998), the dynamics of synaptic connections (Abbott and
Regehr, 2004), and the microcircuit wiring connectivity (Somogyi et al., 1998; Douglas and
Martin, 2004). An insight from a nonlinear dynamical systems perspective is that quantitative
differences give rise to qualitatively different functions. Thus, while the posterior parietal and
prefrontal cortex may have qualitatively the same architecture layout as sensory cortices,
sufficiently strong synaptic recurrence (provided that it is slow) can naturally lead to the
generation of persistent activity and ramping activity suitable for subserving cognitive-type
computations (Wang, 2006a). Conversely, relatively modest reductions of recurrent excitation
and inhibition could produce marked impairments of cognitive functions (Wang, 2006b;
Durstewitz and Seamans, 2008; Rolls et al., 2008).

A key neural computation in both working memory and decision making can be conceptualized
as the time integral of inputs: working memory relies on neurons that convert a transient input
pulse into a self-sustained persistent activity, whereas decision making involves quasilinear
ramping activity in response to a constant input for accumulation of information. Perceptual
discrimination (Pasternak and Greenlee, 2005) and action selection (Tanji and Hoshi, 2008)
tasks often also depend working memory, in order to retain information useful for a future
decision or to remember a choice made previously. However, it is still unclear whether the
underlying circuit mechanism is necessarily the same for stimulus-selective persistent activity
in working memory and accumulation of evidence in a decision process. In RDM
discrimination experiments, recorded LIP neurons were preselected using the criterion that
they displayed directionally tuned mnemonic activity in a delayed oculomotor response task
(Shadlen and Newsome, 1996, 2001; Roitman and Shadlen, 2002; Huk and Shadlen, 2005). It
would be interesting to examine whether other neurons that do not show persistent activity also
display slow ramping activity in the RDM discrimination task. Furthermore, the cellular and
synaptic mechanisms of neural ramping activity remain to be elucidated experimentally.
Whether LIP indeed acts as an attractor network has also been questioned on the ground that
certain aspects of neural responses in LIP during selective attention have not been reproduced
by existing attractor models (Ganguli et al., 2008).

Choice behavior is commonly formulated in terms of value-based optimization. One challenge
is thusto elucidate how various dimensions of valuation are represented in the brain (Sugrue
et al., 2005; Rushworth and Behrens, 2008). Another is to understand the neural metrics of
uncertainty and risk and how it influences decision making. In an uncertain world,
reinforcement sometimes needs to be counterbalanced by exploratory decisions. It will be
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interesting to study how, according to behavioral demands, the brain can exploit a known
environment or explore optimal options in a volatile world (Daw et al., 2006; Behrens et al.,
2007).

Although the present article is centered on simple behavioral tasks, elemental building blocks
of decision computation and their neural mechanisms are likely to be relevant to more complex
cognitive processes as well. Even in spoken-language processing, there is evidence that a
spoken word elicits multiple lexical representations, and spoken-word recognition proceeds
from real-time integration of information sources to categorical choice among phonological
competitors (Spivey et al., 2005). It is thus hoped that understanding higher-level decisions
can benefit from detailed neurophysiological studies of simpler perceptual and economic
decisions.
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Figure 1. Neural Mechanism of a Decision in a Monkey Random-Dot Motion Direction
Discrimination Experiment
(A) Reaction time (RT) version of the task. The subject views a patch of dynamic random dots
and decides the net direction of motion. The decision is indicated by an eye movement to one
of two peripheral targets (representing the two forced choices). In the RT task, the subject
controls the viewing duration by terminating each trial with an eye movement whenever ready.
The gray patch shows the location of the response field (RF) of an LIP neuron.
(B) Monkey’s performance (top) and mean RT (bottom) as a function of the motion strength.
(C) Response of a single LIP neuron. Only correct choices at two motion strengths (6.4% and
51.2%) are shown. Spike rasters and response histograms are aligned to the beginning of the
monkey’s eye movement response (vertical line). Carets denote the onset of random-dot
motion. Trial rasters are sorted by RT.
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(D) Average response of LIP neurons during decision formation, for three levels of difficulty.
Responses are grouped by motion strength and direction of choice, as indicated. (Left) The
responses are aligned to onset of random-dot motion. Averages are shown during decision
formation (curves truncated at the median RT or 100 ms before the eye movement). Shaded
insert shows average responses from direction-selective neurons in area MT to motion in the
preferred and antipreferred directions. After a transient, MT responds at a nearly constant rate.
(Right) The LIP neural responses are aligned to the eye movement.
(A), (B), and (D) are reproduced with permission from Gold and Shadlen (2007) (insert from
online database used in Britten et al. [1992]); (C) is reproduced from Roitman and Shadlen
(2002).
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Figure 2. Delayed Vibrotactile Discrimination Task and Neuronal Responses in the Prefrontal
Cortex
(A) Schematic diagram of the task, where two mechanical vibration stimuli with frequencies
f1 and f2 are applied sequentially (separately by a delay) to the tip of a monkey’s finger, and
the subject has to decide whether f1 is larger than f2.
(B) Typical stimulus set used in the neurophysiological studies. Each colored box indicates a
(f 1, f2) stimulus pair. For each pair, monkeys made the correct response more than 91% of the
time.
(C and D) Neuronal responses. The rainbow color code at the upper left indicates the f1 value
applied during each type of trial. Y/N color code indicates the push button pressed by the
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monkey at the end of each trial. (C) and (D) show smoothed firing rates of two different PFC
neurons recorded over many trials. (C) shows a positively monotonic (plus) neuron and (D)
shows a negatively monotonic (minus) neuron.
(E) One-dimensional dynamical algorithm for two-stimulus interval discrimination. Abcissa:
The state variable (e.g., the difference in the firing rates of the plus and minus neurons shown
in [C] and [D]). Ordinate: A computational energy function (with minima corresponding to
stable attractor states). During the loading period, the first stimulus creates a unique attractor
state located at a point along the horizontal axis that encodes the f1 value. The energy landscape
is flat during the delay period, so the memory of f1 is maintained internally in the form of
parametric persistent activity. During the comparison period, the system is again
reconfigurated, the second stimulus f2 in interplay with the internal memory state gives rise to
a categorical decision f1 > f2 or f1 < f2. Reproduced with permission from Machens et al.
(2005).
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Figure 3. A Cortical Circuit Model of Spiking Neurons for Two-Alternative Forced-Choice Tasks
(A) Model scheme. There are two (purple and green) pyramidal cell subpopulations, selective
to the two directions (A or B), respectively, of random moving dots in a visual motion
discrimination experiment. A third (orange) neural subpopulation represents inhibitory
interneurons. Each of the three subpopulations consists of a few hundreds of spiking neurons.
The circuit is endowed with strong recurrent excitation (mediated by AMPA and NMDA
receptors) among pyramidal cells within each selective subpopulation and competitive
inhibition (mediated by GABAA receptors) through shared feedback inhibition. The motion
coherence is expressed as c′ = (IA − IB)/(IA + IB), where IA and IB are the mean inputs. For
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nonzero c′, one of the choices is correct, the other is erroneous, the resulting outcome may lead
to reward-dependent plastic changes of some input synapses.
(B) A sample simulation of the spiking network model with zero coherence. Top to bottom:
Network spiking raster, population firing rates rA and rB, stochastic inputs. Note the initial
slow ramping (time integration) and eventual divergence of rA and rB (categorical choice).
(C) Trial-averaged neural activity for different motion strengths, with the inclusion of target
inputs. Solid curves: Winning neural population. Dashed curves: Losing neural population.
Note the transient dip at the onset of the RDM stimulus.
(D) Phase-plane plot for the two selective neural populations in a fixed-duration version of the
task, without external input (left panel), in the presence of a motion stimulus with c′ = 6.4%
(middle panel) or 51.2% (right panel). In the absence of stimulation (left panel), three attractors
coexist (white circles): a spontaneous state (when both rA and rB are low), and two persistent
activity states (with a high rA and a low rB or vice versa). Upon the presentation of a stimulus
(middle panel with c′ = 6.4%), the attractor landscape is altered, and the spontaneous steady
state disappears, so that the system is forced to evolve toward one of the two active states that
represent perceptual decisions (A or B), as shown by the network’s trajectory in two individual
trials (blue and red). After the offset of the stimulus, the system’s configuration reverts back
to that in the left panel. Because a persistently active state is self-sustained, the perceptual
choice (A or B) can be stored in working memory for later use, to guide behavior. Colored
regions correspond to the basins of attraction for the coexisting attractor states. In the absence
of noise, the system starting in one of the basins converges to the corresponding attractor state.
Note that the basin for the correct choice state is much larger at a high (right panel) than a low
(middle panel) motion strength. (A) and (B) were reproduced with permission from Wang
(2002), (C) from Wong et al. (2007), (D) was computed using the model of Wong and Wang
(2006).
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Figure 4. A Multiple-Module Network Mechanism for Two-Alternative Forced-Choice Tasks
(A) Schematic model architecture. Neural pools in the cortical network integrate sensory
information and also compete against each other. They project to both the superior colliculus
(SC) and the caudate nucleus (CD) in the basal ganglia. CD sends inhibitory projection to the
substantia nigra pars reticulata (SNr), which through inhibitory synapses connect with
movement neurons in the SC. Each population consists of noisy spiking neurons.
(B) A single trial simulation of the model, showing spike trains from single cells and population
firing rates of Cxe, SNr and CD, and SCe. A burst of spikes in movement neurons (SCe) is
triggered when their synaptic inputs exceed a threshold level, which results from both direct
excitation by cortical neurons and disinhibition from SNr via the cortico-striatal projection.
Time zero corresponds to stimulus onset.
(C) The ramping slope of Cxe firing rate is inversely related to decision time on a trial-by-trial
basis (each data point corresponds to an individual trial). The red curve is 12,000/(decision
time).
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(D) Performance (percentage of correct choices) and mean response time as a function of the
motion coherence c′. Reproduced with permission from Lo and Wang (2006).
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Figure 5. Neural Basis of Matching Law in Foraging Behavior
(A) Dynamic matching behavior of a monkey during a single experimental session. Continuous
blue curve shows cumulative choices of the red and green targets. Black lines show average
ratio of incomes (red: green) within each block (here, 1:1, 1:3, 3:1, 1:1, 1:6, and 6:1). Matching
predicts that the blue and black curves are parallel.
(B) Block-wise matching behavior. Each data point represents a block of trials with the baiting
probabilities for each target held constant. Reward and choice fractions are shown for the red
target (those for the green target are given by one minus the fraction for the red target). Perfect
matching corresponds to data points along the diagonal line. Deviations (undermatching) are
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apparent, as the choice probability is lower than reward probability when the latter is larger
than 0.5.
(C) In a linear-nonlinear model, past rewards are integrated across previous trials with a filter
time constant of approximately five to ten trials, yielding estimated values for the two targets
νr and νg. Choice probability as a function of νr and νg is modeled as either a softmax rule (left
panel) or a fractional rule (middle panel). Monkey’s behavioral data are fitted better by the
softmax (sigmoid) decision criterion (right panel).
(D) In a recurrent neural circuit model endowed with reward-dependent plasticity (Figure 3A)
applied to the foraging task, the average synaptic strength is a linear function of the return from
each choice (the reward probability per choice on a target). Red and green data points are for
the synaptic strengths cA (for red target) and cB (for green target), respectively.
(E) Graded activity of neurons in the two selective neural populations. The activity of decision
neurons shows a graded pattern if single-trial firing rates are sorted and averaged according to
the choice and the difference between synaptic strengths. Activity is aligned by the onset of
two targets, and it is shown separately for the choice that is the preferred (red) or nonpreferred
(blue) target of the neurons. In addition, trials are subdivided into four groups according to the
difference between the values encoded by the synaptic strength onto the two competing neural
populations (cA − cB = −0.05 to −0.14 [dashed], 0 to −0.05 [thin], 0 to 0.05 [normal], 0.05 to
0.14 [thick]).
(F) For one session of the model simulation of the foraging experiment, the cumulative choice
on target A is plotted versus the cumulative choice on target B (blue). The black straight lines
show the baiting probability ratio in each block. The same baiting probability ratios are used
as in the monkey’s experiment (A).
(G) Each point shows the blockwise choice fraction as a function of the blockwise reward
fraction for a block of trials on which the baiting probabilities are held constant. The model
reproduces the matching behavior as well as the undermatching phenomenon.
(A) is reproduced with permission from Sugrue et al. (2004), (B) and (C) from Corrado et al.
(2005), and (D)–(G) from Soltani and Wang (2006).
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