
Lymphoid tissue inducer cells: architects of CD4 immune responses
in mice and mencei_3932 20..26

M.-Y. Kim,* K.-S. Kim,† F. McConnell‡

and P. Lane‡

*Department of Bioinformatics and Life Science,

The College of Natural Science, Soongsil

University, †Department of Otorhinolaryngology,

Gangnam Severance Hospital Yonsei University

College of Medicine, Seoul, Korea, and ‡MRC

Centre for Immune Regulation, Institute for

Biomedical Research, Birmingham Medical

School, Birmingham, UK

Summary

In this review, we summarize the current understanding of the multiple func-
tions of the mouse lymphoid tissue inducer (LTi) cells in: (i) the development
of organized lymphoid tissue, (ii) the generation and maintenance of CD4-
dependent immunity in adult lymphoid tissues; and (iii) the regulation of
central tolerance in thymus. By contrast with mouse LTi cells, which have
been well described, the human equivalent is only just beginning to be
characterized. Human LTi-like cells expressing interleukin (IL)-22 have been
identified recently and found to differentiate into natural killer (NK) cells.
The relationship of LTi cells to NK cells is discussed in the light of several
studies reporting a close relationship in the mouse between LTi cells and
transcription factor retinoid-related orphan receptor g t-dependent IL-22 pro-
ducing NK cells in the gut. We also outline our data suggesting that these cells
are present in adult human lymphoid tissues.
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Introduction

CD4 T cells are central to our protection from both intrac-
ellular and extracellular pathogens. However, they cannot
work alone and are effective only in the context of the help
that they provide to other cells. Over the last decade, increas-
ing attention has been paid to the role of lymphoid tissue
inducer (LTi) cells, both in fostering the development of the
microenvironments within which CD4 T cells initially
provide help to other cells [1–6] and also in sustaining CD4
memory, which is essential for our long-term protection
[7–10]. Here, we outline the evidence implicating LTi cells in
the development of organized lymphoid structures and, in
addition, characterize the presence and location of these cells
in adult lymphoid tissues. These identify sites where CD4 T
cells provide help to B cells, both during priming and for
memory T cell-dependent antibody responses. Furthermore,
more recent data suggest that these cells also provide signals
for other forms of CD4 memory to both intracellular and
extracellular pathogens [9].

Memory and lymphoid tissue organization, both LTi cell
functions, are relatively recent acquisitions for the vertebrate
adaptive immune system [11]. We suppose that an LTi ances-
tor could have provided relatively primitive functions.
Analysis of genes and proteins expressed in both adult and
embryonic LTi cells suggests a possible role in innate
immunity. They express many surface proteins found on

natural killer (NK) cells and produce substantial amounts of
the T helper 17 (Th17) cytokine interleukin (IL)-22 and also
IL-17 if stimulated with IL-23 [12]. Although they express
many NK markers, they do not have cytotoxic function and
are associated with the organized white pulp areas of second-
ary lymphoid tissues [8,13]. Here, we speculate that LTi cells
could represent a primitive innate precursor of both NK and
CD4 T cells that evolved new functions over time, including
the support of the microenvironments for CD4 immune
responses.

Finally, we summarize recent data identifying LTi-like cells
in humans in both embryonic and adult tissues.

Fetal LTi cells in lymphoid tissue development
in mouse

As mouse LTi cells were first identified in fetal lymphoid
tissues [2], many groups have focused on the function of LTi
cells in lymphoid tissue development [1,4–6,14–16]. The
critical function of fetal LTi cells is to induce the develop-
ment of lymphoid tissues, including lymph nodes and
Peyer’s patches, by their surface expression of many relevant
molecules. The first of these is the tumour necrosis factor
superfamily (TNF-SF) member lymphotoxin-alpha (LTa);
mice deficient in LTa completely lack lymph nodes and
Peyer’s patches and also display disrupted splenic architec-
ture [17,18]. A membrane-bound heterotrimer with LTb
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(LTa1b2) on LTi cells signals through the LTb-receptor
(LTbR) on stromal cells [4,19–21]. The importance of these
signals has been demonstrated in mice deficient in LTbR,
which also lack lymph nodes and Peyer’s patches [22].
Stromal cells activated through LTbR ligation up-regulate
adhesion molecules, leading to tight interaction with LTi
cells, and subsequently produce the lymphoid chemokines
CXCL13, CCL19 and CCL21 [23,24]. CXCL13, the B zone
chemokine, then recruits circulating B cells to what becomes
the B cell area of lymphoid tissues, and the T zone chemok-
ines, CCL19 and CCL21, attract T and dendritic cells to
shape the T cell area [25,26].

In addition to LTa and LTb, many other molecules
expressed by LTi cells are involved in lymph node and Peyer’s
patch development, including CD127 (IL-7Ra), Ikaros,
retinoid-related orphan receptor gamma (RORg), Id2
(helix-loop-helix protein), Janus kinase 3 and CD132
(common cytokine receptor g chain). Mice deficient in any
of these molecules show lack of Peyer’s patches and impaired
lymph node development [1,4,14,15,27–29]. Although
mice deficient in TNF-related activation-induced cytokine
(TRANCE, TNF-SF11) or receptor activator of nuclear
factor kappa B (RANK, TNF-RSF11A), which are also
expressed on LTi cells, have normal Peyer’s patches, they have
certain defects in lymph node development, suggesting
an important role for signals from LTi cells through these
molecules [5,30].

Taken together, the previous studies on the developing
immune system have proved that fetal LTi cells are crucial for
lymphoid tissue development.

Adult LTi cells in memory responses in mouse

Our group has identified the adult equivalent of fetal LTi
cells in mouse secondary lymphoid tissues including spleen
and lymph nodes, implicating them in multiple functions in
the immune system [7,31–33]. The phenotypic difference
between adult and fetal LTi cells is the expression of OX40-
ligand (L) (TNF-SF4) and CD30L (TNF-SF8), which is criti-
cal for memory CD4 T cell generation [34]. The evidence for
this is provided by mice deficient in both OX40 and CD30,
which have impaired CD4 T cell-dependent memory anti-
body responses in spleen and gut [9,10,32]. Recently, we also
showed that the maintenance of CD4 Th1 memory against
bacterial infection depends on OX40 and CD30 signals [9].
The lack of expression of OX40L and CD30L on fetal LTi
cells could explain the phenomenon of tolerance rather than
immunity to foreign antigens in the periphery that occurs in
neonatal mammals [34].

Adult LTi cells in spleen are located mainly in white pulp,
particularly at the junction of B- and T-zones and in the
follicle. LTi cells also occur in the T cell area, where they
interact tightly with stromal cells, providing LTa1b2 signals
to them [7,8,26]. The engagement of LTbR on stromal
cells stimulates their production of CXCL13, CCL19 and

CCL21, maintaining the segregation of B and T cell areas
[8].

The importance of cross-talk between LTi cells and
stromal cells in white pulp structures has been also been
demonstrated in mice deficient in CD30 [13]. Although
these mice have normal expression of CCL19 and CCL21,
their splenic architecture shows impaired B- and T-zone
segregation. This is due to lack of CD30-signalling to stromal
cells from LTi cells and failure to express podoplanin (gp38),
a mucin-type transmembrane protein.

This body of data implicates adult LTi cells convincingly in
both the maintenance of segregated B- and T-zones in sec-
ondary lymphoid tissues and the provision of survival
signals for T helper memory cells. Because disorganized lym-
phoid architecture supports neither high-affinity antibody
responses nor memory generation [35], these two LTi func-
tions are linked.

Thymic LTi cells in central tolerance in mouse

In addition to their functions in the secondary lymphoid
tissues, LTi cells have been shown to be required for a vital
part of the education of developing T cells in the thymus
[33]. Although phenotypically the same as lymphoid LTi
cells, thymic LTi cells have a distinct role, defined by their
expression of TRANCE. TRANCE on thymic LTi cells inter-
acts with its ligand RANK on the medullary epithelial cells
that promote the expression of Aire. Up-regulation of Aire
controls the expression of self-tissue-restricted antigens on
thymic medullary epithelial cells. This is the heart of the
negative selection process in the thymus, which is crucially
important in providing central tolerance to self-antigens
[33].

This result shows that LTi cells in the primary lymphoid
organ, thymus, regulate central tolerance, and in secondary
lymphoid organs, spleen and lymph nodes, control periph-
eral immunity. Ancestral LTi cells are therefore likely to have
functioned in both tolerance and immunity before the adap-
tive immune system was developed.

Origin of LTi cells

Mouse fetal LTi cells were reported initially to be able to
differentiate into antigen-presenting cells (APCs), NK cells
and follicular cells but not T or B cells [2]. Their expression
of CD45 implies that they are derived from haematopoietic
stem cells. When we dissected many organs in mouse, we
found LTi cells in liver, spleen, lymph nodes and thymus
but not bone marrow. LTi cells are detected from mouse
embryonic day 12 (E12) liver, and a report has shown
that IL-7Ra+Sca-1lowCD117low cells in E14 liver give rise
to LTi cells (Fig. 1) [36]. Their development does not
require recombinase-activating genes, indicating their dis-
tinction from T and B cells. Luther et al. showed that
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CD4+CD3-IL-7Ra+ cells are found in neonatal blood,
implying that they circulate [37]. Fetal LTi cells express gut-
homing integrin a4b7 and migrate to the intestine to
induce the Peyer’s patches [2,38–40]. Yoshida et al. showed
that approximately 16% of fetal LTi cells can differentiate
into NK1·1+ cells in the presence of IL-15 and approxi-
mately 17% of the cells into CD11c+ dendritic cells in
stimulation with IL-3, TNF-a and stem cell factor, suggest-
ing that fetal intestinal LTi cells are at an intermediate stage
before NK cells and dendritic cells (Fig. 1) [38].

Our group has detected a4b7-expressing LTi cells in the
earliest identifiable mouse embryonic spleen (E12). When
they were cultured with IL-7, the number of LTi cells was
augmented markedly. In addition, we found not only CD4+

LTi cells but also LTi cells, which shared the same phenotype
but were CD4- [41]. There was no evidence that CD4- LTi
cells acquire CD4 expression or vice versa.

The LTi cells are a unique population which is distinct
from NK cells. They do not express the NK surface marker,
NK1·1 and pan-NK DX5 or the cytokine interferon (IFN)-g
and have not been shown to kill cells in cytotoxicity assays
[42]. In addition, functional LTi cells are found in mice
deficient in NK cells [41,43]. However, our preliminary
data of LTi cells indicate that they have mRNA expression

for NK characteristics, including CD96, CD244 (NK cell
activation-inducing ligand) and CD160 (NK1, NK28). It is
plausible that LTi cells share closer common lymphoid pro-
genitors with NK cells than they do with B or T cells.
Recent studies showed that a subset of RORgt-expressing
NK cells in mouse gut produce high levels of IL-22, which
is a cytokine known previously to be produced by
Th17 cells [44–46]. Luci et al. showed that one-third
of RORgt+ cells in mouse cryptopatch express NKp46
(CD335), which is a receptor expressed on NK cell surface
[44]. By their developmental dependence on RORgt, the
authors proposed that these RORgt+NKp46+ NK cells are a
subset of LTi cells or could be derived from LTi cells. The
same result was reported by Sanos et al., showing
that RORgt+NKp46+ NK cells found in the intestinal
lamina propria do not have cytotoxic function; rather,
they produce large amounts of IL-22 [45]. Although
RORgt+NKp46- LTi-like cells in gut do not produce IL-22,
both results indicate that RORgt+NKp46+ NK cells are
related closely to LTi cells.

The LTi cells in human

Identifying the human equivalent of murine LTi cells has
been a major issue. In 1986, Spencer et al. reported that
CD4+CD3- cells were found in gut-associated lymphoid
tissue in the terminal ileum of human fetal intestine [47].
Mouse LTi cells express CD4, but not CD3 and CD11c.
Therefore, to identify a human equivalent, the focus was
placed on cells phenotyped as CD4+CD3-. However, our
group has identified CD4-CD3- LTi cells in mouse second-
ary lymphoid tissues, indicating that LTi cells are heteroge-
neous [41]. A recent publication by Cupedo et al. showed
that human LTi cells are IL-17- and IL-22-producing
CD4-CD56-IL-7Ra+ retinoic acid receptor-related orphan
receptor C (RORC)+ NK-like cells, negative for CD4, and
found in fetal mesentery [48]. The major phenotypic dif-
ference between mouse and human LTi cells was CD4
expression (Table 1). In comparison with mouse LTi cells,
which are either CD4+ or CD4-, human LTi cells are CD4-

or CD4low, although CD4 is expressed widely in human
cells. In the case of CD7, which is a T and NK cell marker,
50–70% human LTi cells express CD7 and we have detected
CD7 mRNA expression in mouse LTi cells (unpublished
data).

Because human LTi cells express NK cell markers includ-
ing CD7 and CD161, it seems that human LTi cells are related
closely to a subset of IL-7Ra+ NK cells. In support of this
idea, for differentiation into both NK and LTi cells, the Id2
molecule is required [49]. In addition to Id2, another tran-
scription factor, RORC (RORgt in mice), is required for LTi
cell differentiation (Fig. 2) [50].

Caligiuri’s group has characterized four stages of NK cell
development according to their expression of CD56, CD34,
CD117 and CD94 in human lymph nodes and tonsils

IL-7Rα+

CD117low

Sca-1low

T

B

NKDCDC

Fetal

liver

cells

α4β7+

fetal

LTi

Fetal

LTi

Lymph node

LTiLTi

IL-15
IL-3

TNFα

Intestine (Peyer’s patch)
Spleen

CD11c+ NK1.1+

NKNK

DCDC

Fig. 1. Development from interleukin (IL)-7Ra+ CD117low Sca-1low

cells found in the fetal liver to lymphoid tissue inducer (LTi) cells in

mouse. The fetal liver cells give rise to lymphoid cells including T, B,

natural killer (NK) and dendritic cells and integrin a4b7-expressing

LTi cells. Fetal LTi cells migrate to lymph node and spleen anlagen and

intestine. In the intestine, LTi cells induce Peyer’s patch formation. LTi

cells differentiate into CD11c+ dencritic cells (DCs) in the presence of

IL-3, tumour necrosis factor (TNF)-a and stem cell factor and into

NK1·1+ cells in the presence of IL-15.
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(Fig. 2) [51,52]. Human LTi cells are very similar to stage 3
CD56-IL-7Ra+ NK cells, called immature committed NK
cells. Half of these cells differentiate into CD56+IL-7Ra+

cells, which are the intermediate stage between stage 3
(CD56-IL-7Ra+) and stage 4 (CD56+IL-7Ra-) in the pres-
ence of IL-7 or IL-15 but fail to differentiate into T cells or
dendritic cells [48]. Although it has not been proved
whether these human LTi cells can or cannot differentiate
into stage 4 NK cells, which have cytotoxic function, it is
apparent that LTi and NK cells have closely related devel-
opmental lineages.

Human LTi-like cells in postnatal secondary
lymphoid tissue

We have searched for human LTi cells in postnatal
secondary lymphoid tissues and have identified
CD4-CD3-CD11c-CD45low and CD117+ LTi-like cells, which
produce IL-22 in lymph node, spleen, gut and tonsil (unpub-
lished data). The phenotype of these cells is similar to the
intermediate stage between stage 3 and stage 4 NK cells
(Fig. 2). The really interesting feature of these cells was high
levels of OX40L expression. OX40L expression has been
reported in APCs, such as activated monocytes, dendritic
cells, B cells [53–55] and NK cells following the simultaneous

cross-linking of killer cell immunoglobulin-like receptor
DS2 (KIR2DS2) and NKG2D receptors [55]. The latter
showed that up-regulation of OX40L on peripheral blood
NK cells was induced through stimulation with IL-2 with
activation by an NK receptor, but not through IL-2 stimula-
tion alone. In comparison, OX40L expression on LTi-like
cells in tissues showed constitutive expression with no
requirement for any stimulation (unpublished data). A study
by Zingoni et al. showed that OX40L and B7 engagement
with OX40+CD28+ T cells leads to T cell activation and IFN-g
production [55], implicating LTi-like cells in the Th1
response.

Because they have a similar phenotype to NK cells, we
looked for their expression of functional genes related
to cytotoxicity. They expressed low levels of mRNA for
IFN-g, perforin and granzyme B (unpublished data),
although it is unknown whether the expression of these
molecules is up-regulated upon activation or if they are
functional.

The Th17 cells have been identified as a major source of
IL-22 [56–58]. We have also found high levels of expression
of mRNA for IL-22 in adult mouse LTi cells [59], and a
recent study by Takatori et al. showed that splenic adult LTi
cells are the source of the IL-22 contributing to innate
immunity against yeast zymosan [12]. Further support for

Table 1. Similarities and differences between mouse and human lymphoid tissue inducer (LTi) cells.

Mouse Human

Embryo [2,3,41,61,62] Adult [7,41,62] Embryo [48] Adult

Surface expression CD4 +/- +/- - -/low

CD3 - - - -
CD7 low* +* + +
CD11c - - - -
CD45 + + + +
CD45R (B220) - - n.d. -
CD69 - + n.d. +
CD117 + + low +
CD127 (IL-7Ra) + + + +
CD132 (g chain) + + + +

mRNA expression CXCR5 + + + +
RORC + + + +
Id2 + + + +
IL-22 + + + +

TNF-SF LTa (TNF-SF1) + + + +
TNF-a (TNF-SF2) + + n.d. +
LTb (TNF-SF3) + + + +
OX40L (TNF-SF4) - + n.d. +
CD30L (TNF-SF8) - + n.d. -
TRANCE (TNFSF11) + + + +
LIGHT (TNF-SF14) + + n.d. +

TNF-RSF RANK (TNF-RSF11A) + + + +
DR3 (TNF-RSF25) + + n.d. +

*Detected by m RNA expression. LTa, lymphotoxin alpha; n.d., not determined; LTbR, lymphotoxin beta receptor; TNF-SF, tumour necrosis factor

superfamily; OX40L, OX40-ligand; RORC, retinoic acid receptor-related orphan receptor C (RORC); IL, interleukin; Id2, helix-loop-helix protein;

RANK, receptor activator of nuclear factor kappa B; TRANCE, TNF-related activation-induced cytokine.
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the idea that the cells we have identified are LTi cells is their
strong expression of IL-22 in human adult (our personal
observations) and embryo [48].

Potential implications for LTi cell functions in Th17
responses are depicted in Fig. 3. Proinflammatory IL-6
and the immunosuppressive transforming growth factor-b
are required for the differentiation of CD4 T cells towards
Th17 cells, which produce IL-17 and IL-22. Postnatal LTi
cells produce IL-22 without simulation and IL-17 after
stimulation with IL-23 [12,48]. The cytokines IL-17 and
IL-22 induce chemokines to protect against extracellular
bacteria and fungi but are also involved in the pathogenic
process of tissue inflammation leading to organ-specific
autoimmunity [60].

In summary, our work on human LTi-like cells indicates
many more similarities than differences with their murine
equivalents, and it will be extremely interesting to dissect the
contribution of these cells to human diseases, especially
those involving CD4 T cells.

Conclusion

In this paper, we have reviewed the data on embryonic and
adult LTi cells in mice and human beings. The key point to
remember about these cells is that they form the microenvi-
ronments within which CD4 T cells provide help for effector
immune responses and then sustain primed CD4 T cells for
memory responses. In addition, recent data suggest an ances-
tral role in innate immunity through expression of the Th17
cytokine, IL-22. The future lies in dissecting the role of these
cells in human diseases; this will require good markers that
work in conventional paraffin embedded tissues in routine
histopathology laboratories.
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