
Comparative Medicine
Copyright 2008
by the American Association for Laboratory Animal Science

Vol 58, No  6
December 2008
Pages 560–567

560

Dwarfism is caused by both endocrinologic and nonendocrino-
logic defects. Most instances of dwarfism, including normal vari-
ants, are nonendocrinologic, and subjects retain growth hormone 
secretion. Although spontaneous rodent models of dwarfism with 
confirmed mutations have been reported—Snell dwarf mice with 
Pou1f1 (Pit1) mutation,14 Ames dwarf mice with Prop1 mutation,22 
little mice with Ghrhr mutation,15 pygmy mice (also known as 
mini-mice) with Hmga2 (HMGI-C) mutation,26 spontaneous dwarf 
rats with Gh mutation,23 and rdw rats with Tg mutation9,11—most 
of these are models of endocrinologic dwarfism. A few models of 
nonendocrinologic dwarfism have been produced by gene ma-
nipulation techniques, such as transgenic and knockout strate-
gies, and include Col2a1-transgenic mice,7,24 Col10a1-transgenic 
mice,10 and Fgfr3-knock-in mice.13

A novel spontaneous dwarf mutation, miniature rat Ishikawa 
(mri), was discovered in a closed colony of Wistar rats at Ishikawa 
Animal Laboratory (Saitama, Japan) and has been maintained on 

the genetic background of Wistar rats. This mutant strain, previ-
ously termed Miniature Rat Ishikawa (MRI), has recently been 
established as a segregating inbred strain on the Wistar genetic 
background, designated Komeda Miniature rat Ishikawa (KMI). 
The breeding record suggested that the mutation was inherited 
in an autosomal recessive mode. KMI rats show no abnormality 
in the basal amounts or distribution of several hormones, includ-
ing growth hormone, luteinizing hormone, follicle-stimulating 
hormone, prolactin, thyroid-stimulating hormone, and adreno-
corticotropic hormone, but growth hormone response to growth 
hormone releasing hormone is decreased.21

Using positional candidate cloning of mri, we recently identi-
fied a deletion mutation in Prkg2, which encodes cGMP-depen-
dent protein kinase type II (cGKII), and clarified a role of cGKII 
as a molecular switch that couples cessation of proliferation and 
the start of hypertrophic differentiation of chondrocytes.2 Longi-
tudinal skeletal growth is achieved by endochondral ossification 
in the growth plate, in which chondrocyte hypertrophic differ-
entiation is an important step. Due to the impaired coupling of 
proliferation and hypertrophic differentiation in the growth plate 
chondrocytes, homozygous mutant (mri/mri) animals show lon-
gitudinal growth retardation.

In this study, we further characterize the phenotype of the KMI 
strain, including body length, body weight, organ weight, and 
craniofacial measurements. Furthermore, we describe phenotyp-
ic characteristics of the progeny produced from the (BN×KMI-
mri/mri)F1×KMI-mri/mri backcross and provide updated genetic, 
physical, and comparative maps of the mri region.
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markers in the backcrossed progeny were analyzed with the Map 
Manager program.16

Physical and comparative mapping. The physical map of rat 
chromosome 14 and rat–mouse–human comparative map was 
constructed based on data obtained in this study and information 
from the NCBI Map Viewer (http://www.ncbi.nlm.nih.gov/) 
and Rat Genome Database (http://rgd.mcw.edu/).

Statistical analysis. Data are shown as mean ± SD. Two-tailed 
Student t tests were used to compare means between homozy-
gous (mri/mri) and heterozygous (mri/+) animals and between 
animals of the KMI phenotype (mri/mri) and those of wild-type 
phenotype (mri/+) in the backcrossed progeny. Differences for 
which the P value was less than 0.05 were regarded as signifi-
cant.

Results
Phenotypic characterization of the mri mutation. Because the 

KMI strain has been maintained by brother–sister mating between 
heterozygous (mri/+) females and homozygous mutant (mri/mri) 
males, we obtained homozygous mutant (mri/mri) and heterozy-
gous (mri/+) animals at each generation. Growth of homozygous 
mutant (mri/mri) animals was retarded to 70% to 80% of that of 
heterozygous (mri/+) animals (Figures 1 and 2). There was no 
obvious difference in growth between heterozygous (mri/+) and 
wild-type (+/+) animals (data not shown).

The growth retardation of homozygous mutant (mri/mri) ani-
mals became obvious at about 5 wk of age (Figure 2). At this age, 
the total length (mean ± SD) of homozygous mutant (mri/mri) 
animals (male [n = 5], 246.7 ± 8.6 mm; female [n = 5], 233.5 ± 5.6 
mm) was significantly less than that of heterozygous (mri/+) ani-
mals (male [n = 5], 288.8 ± 6.9 mm; female [n = 5], 277.5 ± 3.9 mm; 
P < 0.001 for both comparisons). In addition, the body weight of 
homozygous mutant (mri/mri) animals (male [n = 5], 104.0 ± 8.9 
g; female [n = 5], 90.8 ± 3.2 g) was significantly lower than that of 
heterozygous (mri/+) animals (male [n = 5], 126.4 ± 4.9 g; female 
[n = 5], 103.6 ± 5.0 g; P < 0.01 for both comparisons). The differ-
ences in body size became more pronounced with age (Figure 
2). At 8 wk, the total length of homozygous mutant (mri/mri) 
animals (male [n = 5], 300.8 ± 11.6 mm; female [n = 5], 269.3 ± 5.9 
mm) was markedly smaller than that of heterozygous (mri/+) 
animals (male [n = 5], 371.7 ± 8.1 mm; female [n = 5], 338.6 ± 8.3 
mm; P < 0.001 for both comparisons). Body weight at 8 wk of age 
of homozygous mutant (mri/mri) animals (male [n = 5], 196.8 ± 
11.2 g; female [n = 5], 136.6 ± 6.0 g) was much lower than that of 
heterozygous (mri/+) animals (male [n = 5], 252.8 ± 5.6 g; female 
[n=5], 173.0 ± 5.2 g; P < 0.001 for both comparisons).

Previous histopathologic examinations of pituitary, thyroid, 
adrenal, pancreas, cerebrum, cerebellum, thymus, heart, spleen, 
kidney, ovary, uterus, testis, and prostate revealed no significant 
differences between homozygous mutant (mri/mri) and heterozy-
gous (mri/+) animals in KMI strain.21 In addition, there were no 
significant differences between homozygous mutant (mri/mri) 
and heterozygous (mri/+) animals in blood biochemistry, he-
matology (including blood coagulation analysis), and urinalysis 
(data not shown). To investigate the effects of the mri mutation 
on organ and tissue weights, we compared homozygous mu-
tant (mri/mri) and heterozygous (mri/+) animals at 10 wk of 
age. Overall weights of most organs and tissues evaluated were 
markedly lower in homozygous mutant (mri/mri) animals than 
heterozygous (mri/+) rats (data not shown), suggesting a pro-

Materials and Methods
Animals. The KMI rat strain has been maintained at the Animal 

Research Center, Tokyo Medical University, since 1989. Although 
homozygous mutant (mri/mri) animals of both sexes have repro-
ductive ability, the strain has been maintained by brother–sister 
mating between heterozygous (mri/+) females and homozygous 
(mri/mri) males, resulting in a segregating inbred strain. The KMI 
strain has been deposited into and is available from the National 
Bio-Resource Project of Rat in Japan (http://www.anim.med.kyo-
to-u.ac.jp/nbr/). Brown Norway (BN/Sea) rats were purchased 
from Seiwa Experimental Animals (Fukuoka, Japan).

Animal husbandry. All animals were maintained at the Animal 
Research Center, Tokyo Medical University under specific-patho-
gen-free conditions, as described previously.18 Briefly, the animals 
were monitored and were maintained free of the following mi-
croorganisms: Salmonella typhimurium, Corynebacterium kutscheri, 
Clostridium piliforme, Mycoplasma pulmonis, Hantaan virus, Kilham 
rat virus, lymphocytic choriomeningitis virus, mouse adenovirus 
FL/K87, mouse pneumonia virus, mouse polio virus, Sendai vi-
rus, and Toolan H1 virus. The health status of the rats was evalu-
ated by a commercial laboratory (Diagnostics Services, Charles 
River Laboratories, Wilmington, MA) according to their protocol. 
All rats were housed in a room maintained at 23 ± 2 °C and 55% 
± 10% relative humidity, with a 12:12-h light:dark cycle, and were 
provided a commercial diet (FR1, Funabashi Farm, Chiba, Japan), 
and water ad libitum. All animal care and procedures were ap-
proved by the Steering Committee of Research-Related Labora-
tory Animals of Tokyo Medical University.

Phenotypic characterization. From 3 to 8 wk of age, total lengths 
(from head to tail) and body weights of homozygous (mri/mri) 
and heterozygous (mri/+) animals were recorded weekly. In 
addition, craniofacial measurements of 8-wk-old rats (n = 5 for 
each group) were recorded. Total lengths, head-to-anus lengths, 
tail lengths, body weights, and organ weights of homozygous 
(mri/mri) and heterozygous (mri/+) rats were recorded at 10 wk 
of age (n = 10 for each group).

Genetic linkage mapping. For genetic analysis of mri, female 
BN rats were crossed with homozygous mutant (mri/mri) male 
KMI to produce F1 animals. Female F1 animals (mri/+) were 
crossed with homozygous mutant (mri/mri) male rats to obtain 
backcrossed progeny: (BN×KMI-mri/mri)F1×KMI-mri/mri. Total 
length (from head to tail), head-to-anus length, tail length, body 
weight, and retroperitoneal fat weight of the backcrossed progeny 
were recorded at 50 d of age, and animals showing small body 
size were defined as those with the KMI phenotype (mri/mri). Ge-
nomic DNA was extracted from the spleen, and the DNA pooling 
method1 was used to detect initial linkage of SSLP markers with 
the mutation. Fifty SSLP markers spanning all the autosomes 
were genotyped in 2 pooled DNA samples, each consisting of 25 
animals of the KMI (mri/mri) or wild-type (mri/+) phenotype. 
Fine mapping then was performed by genotyping of 241 animals 
showing the KMI phenotype (mri/mri) on 31 rat chromosome 
14-specific SSLP markers. SSLP markers used in this study have 
been described elsewhere (RATMAP, available at http://ratmap.
gen.gu.se/; Rat Genome Database, available at http://rgd.mcw.
edu/). PCR and electrophoresis techniques have been described 
previously,18,27 except for D14Wox27 (Bmp3). PCR products of 
D14Wox27 (Bmp3) were resolved by automated sequencing (ABI 
PRISM 3100 Genetic Analyzer with GeneScan software; Applied 
Biosystems, Foster City, CA). The segregation patterns of the 
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of the calvarium (for example, Figure 3B), which depend on endo-
chondral ossification, were significantly smaller in homozygous 
mutant (mri/mri) animals than in heterozygous (mri/+) animals 
(mri/mri male, 37.2 ± 0.8 mm; mri/+ male, 41.1 ± 0.5 mm; mri/mri 
female, 35.1 ± 0.9 mm; mri/+ female, 40.0 ± 0.1 mm; P < 0.001 for 
both comparisons; n = 5 for all groups). These findings indicate 
that endochondral ossification, but not membranous ossification, 
is impaired in homozygous mutant (mri/mri) animals.

Phenotypic characteristics of (BN×KMI)F1×KMI progeny and de-
tailed genetic, physical, and comparative maps of the mri region. 
We recently reported a genetic linkage map of rat chromosome 14 
in the vicinity of mri.2 We here describe phenotypic characteristics 
of the progeny produced from the (BN×KMI-mri/mri)F1×KMI-
mri/mri backcross and provide updated versions of the genetic, 
physical, and comparative maps of the mri region. Of 475 prog-
eny produced from the backcross, we obtained 114 male and 127 
female animals showing the KMI phenotype (that is, small body 
size; Table 2). At 50 d of age, the rats showing the KMI phenotype 
(mri/mri) were distinguished easily from those showing the wild-
type phenotype (mri/+; for example, total length: mri/mri male, 
273.8 ± 7.4 mm; mri/+ male, 342.4 ± 8.9 mm; mri/mri female, 257.1 
± 6.3 mm; mri/+ female, 317.1 ± 10.9 mm; P < 0.001 for both com-
parisons). In addition, the body weight and retroperitoneal fat 
weight of animals showing the KMI phenotype (mri/mri) were 
greatly lower than those of rats showing the wild-type pheno-
type. The proportion of animals showing the KMI phenotype 
(50.7%, 241 of 475 rats) indicates that the mri mutation acts in an 
autosomal recessive manner. Genotyping of chromosome 14-spe-
cific SSLP markers and a haplotype analysis of the homozygous 
mutant (mri/mri) animals placed the mri locus in a genomic seg-
ment of 1.2 cM between D14Rat5 and D14Rat80, in the vicinity of 
the Bmp3 locus4 (Figure 4). All of the animals exhibiting the KMI 
phenotype were homozygous for the KMI allele at the mri region 
(Figure 4 A), suggesting strongly that mri acts in a completely 
recessive manner. Information from the physical genomic map of 
the rat (NCBI Map Viewer, available at http://www.ncbi.nlm.nih.
gov/) clarified the position of the mri locus in a genomic segment 
of 2.2 Mb harboring Prkg2 (Figure 5). Cosegregating markers—
D14Wox27 (Bmp3), D14Rat75, and D14Rat76— also were located 
in this segment, further supporting the results of genetic analysis. 
A comparative map of the mri regions on the rat, mouse, and hu-
man chromosomes indicates that more than 10 Mb of the genomic 
segment including mri (Prkg2) is highly conserved among these 
species (Figure 5).

Discussion
In this study, we phenotypically characterized a novel spon-

taneous dwarf mutant rat strain, KMI, and found that the ho-
mozygous mutant (mri/mri) animals showed growth retardation 
in body length, body weight, and naso-occipital lengths of the 
calvarium and greatly reduced retroperitoneal fat weight. We 
also describe phenotypic characteristics of the (BN×KMI-mri/mri)
F1×KMI-mri/mri backcrossed progeny and provide detailed ge-
netic, physical, and comparative maps of the mri region. These 
data support previous findings2 and further clarify the phenotype 
of the KMI strain.

The reductions in all of the naso-occipital length measure-
ments of the calvarium in homozygous mutant (mri/mri) animals 
supports the previous finding that endochondral ossification is 
impaired in these animals.2 We here described organ and tissue 

portional decrease in homozygous mutant (mri/mri) animals. To 
further clarify this hypothesis, we compared relative organ and 
tissue weights (mg/100 g body weight; Table 1). Relative weights 
of lung, pancreas, and uterus did not differ between genotypes. 
Relative weights of brain, heart, kidney, spleen, adrenal, thymus, 
salivary gland, thyroid gland, pituitary, ovary, testis, seminal ves-
icle, and prostate in homozygous mutant (mri/mri) animals were 
somewhat higher than those in heterozygous (mri/+) animals. In 
contrast, the relative weight of retroperitoneal fat of homozygous 
mutant (mri/mri) animals (male [n = 7], 231.7 ± 64.6 mg/100 g 
body weight; female [n = 7], 246.9 ± 52.4 mg/100 g body weight) 
was greatly reduced compared with that of heterozygous (mri/+) 
animals (male [n = 7], 526.9 ± 73.0 mg/100 g body weight; female, 
547.2 ± 58.1 mg/100 g body weight; P < 0.001 for both compari-
sons).

We previously reported that the longitudinal lengths of femora, 
tibiae, and vertebrae were significantly shorter in homozygous 
mutant (mri/mri) animals than in heterozygous (mri/+) animals.2 
We here have characterized craniofacial morphology at 8 wk of 
age (Figure 3). Interparietal width measurements of the calvarium 
(Figure 3 H, I), which depend on membranous ossification, did not 
differ between groups. In contrast, naso-occipital measurements 

Figure 1. The KMI rat strain at 8 wk of age. The homozygous mutant 
(mri/mri) animals and heterozygous (mri/+) littermates of both sexes 
are shown.
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embryonic and fetal development and exhibit dwarfism with a 
defect in endochondral ossification at the growth plates.20 cGKII 
also is expressed in nonosseous tissues including intestinal mu-
cosa, juxtaglomerular cells of kidney, and lung, and exerts diverse 
physiologic functions.6,25 For example, cGKII is highly concen-
trated in intestinal mucosa and mediates the intestinal secretion 
of water and electrolytes induced by E. coli toxin STa, an entero-
toxin that increases cellular cGMP concentrations and intestinal 
fluid secretion, resulting in diarrhea.5,17 Consistent with this role 
of cGKII, Prkg2-deficient mice showed no accumulation of fluid 
in the intestine after treatment with STa20 and thus are resistant 
to this toxin.

weights of homozygous mutant (mri/mri) animals. Although rel-
ative weights (mg/100 g body weight) of most organs and tissues 
in homozygous mutant (mri/mri) animals were comparable with 
or somewhat higher than those in heterozygous (mri/+) animals, 
the relative weight of retroperitoneal fat was greatly reduced in 
homozygous mutant (mri/mri) animals. The mechanism under-
lying this reduction in the fat mass of the homozygous mutant 
(mri/mri) animals remains unclear at present, but the finding 
suggests the involvement of cGKII in fat metabolism and deposi-
tion.

Similar to homozygous mutant (mri/mri) animals in the KMI 
strain, Prkg2-deficient mice are fertile with no impairment in 

Figure 2. Growth curves for (A and B) total lengths and (C and D) body weights of the KMI strain. Values shown are mean ± SD (n = 5). Open circles, 
heterozygous (mri/+) animals; filled circles, homozygous mutant (mri/mri) animals. *, P < 0.05; +, P < 0.01; †P < 0.001 versus values for heterozygous 
animals.
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Tokyo Medical University) with which MN and MF were affiliated 
formerly.
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