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Abstract
Chromosomal DNA is characterized by variation between individuals at the level of entire
chromosomes (e.g. aneuploidy in which the chromosome copy number is altered), segmental changes
(including insertions, deletions, inversions, and translocations), and changes to small genomic
regions (including single nucleotide polymorphisms). A variety of alterations that occur in
chromosomal DNA, many of which can be detected using high density single nucleotide
polymorphism (SNP) microarrays, are linked to normal variation as well as disease and therefore of
particular interest. These include changes in copy number (deletions and duplications) and genotype
(e.g. the occurrence of regions of homozygosity). Hidden Markov models (HMM) are particularly
useful for detecting such alterations, modeling the spatial dependence between neighboring SNPs.
Here, we improve previous approaches that utilize HMM frameworks for inference in high
throughput SNP arrays by integrating copy number, genotype calls, and the corresponding measures
of uncertainty when available. Using simulated and experimental data, we in particular demonstrate
how confidence scores control smoothing in a probabilistic framework. Software for fitting HMMs
to SNP array data is available in the R package vanillaICE.

1 Introduction
Chromosomal DNA is characterized by variation between individuals at the level of entire
chromosomes (e.g. aneuploidy in which the chromosome copy number is altered), segmental
changes (including insertions, deletions, inversions, and translocations), and changes to small
genomic regions (including single nucleotide polymorphisms). A variety of alterations that
occur in chromosomal DNA, many of which can be detected using high density single
nucleotide polymorphism (SNP) microarrays, are linked to normal variation as well as disease
and therefore of particular interest (Shaw-Smith et al., 2004; Aguirre et al., 2004; Aggarwal et
al., 2005; Dutt and Beroukhim, 2007; Sebat et al., 2007; Szatmari et al., 2007). These include
changes in copy number (deletions and duplications) and genotype (e.g. the occurrence of
regions of homozygosity).

Copy number variations can arise through somatic and germline events. While naturally
occurring and often (but not always) benign, germline copy number variations are more
abundant than previously thought (Freeman et al. (2006); Redon et al. (2006); Eichler et al.
(2007)). On the other hand, somatic copy number changes such as gene amplifications and
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deletions frequently contribute to tumorigenesis (or might be the consequence of it). Regions
of homozygosity (i.e. long stretches of homozygous SNPs) can also occur through somatic and
germline events. A hemizygous deletion of one chromosomal allele results in only one DNA
copy, and therefore SNPs in that region will appear as homozygous (given current genotyping
technologies that generate only biallelic calls). The definition of loss of heterozygosity (LOH)
refers to such a somatic event: for example, comparing a tumor and normal sample from the
same person, any heterozygous SNPs in the normal sample appear as homozygous SNPs in
the tumor sample, in any region where an allele was lost. As already noted, regions of
homozygosity can also occur through germline events. While chromosomal DNA is typically
inherited from both parents, under some circumstances an individual inherits two copies of a
chromosome from one parent. The inheritance of both homologues of a pair of chromosomes
from only one parent can be due to autozygosity (homozygosity in which alleles are identical
by descent) or to uniparental disomy (UPD, Robinson (2000); Engel (2006)). Autozygosity
and UPD do not involve an aneuploidy (change in chromosomal copy number), and the region
of homozygosity may extend over an entire chromosome or segmentally across a subregion of
a chromosome. The condition is termed uniparental isodisomy (iUPD) if the two copies
inherited from one parent are identical, and results in stretches of homozygous SNPs. (If the
two inherited copies are different homologues, the result is uniparental heterodisomy, hUPD,
but does not result in stretches of homozygous SNPs.) In some cases, UPD is thought to be
benign, but can also be associated with disease (Prader-Willi syndrome, Angelman syndrome,
Beckwith-Wiedemann syndrome, see for example Altug-Teber et al. (2005)). UPD can disrupt
genomic imprinting, such that imprinted genes (expressed preferentially from the paternal or
maternal alleles) fail to be expressed. UPD can also cause homozygosity for autosomal
recessive traits such as cystic fibrosis (Zlotogora, 2004).

A variety of technologies have been applied for the assessment of chromosomal abnormalities
including conventional karyotyping (e.g. Giemsa staining of metaphase chromosomes) and
fluorescence in situ hybridization (FISH). While the former only allows for the genome-wide
detection of major chromosomal amplifications and deletions, the latter allows for the
verification of suspected microdeletions as well as translocations and some duplications. Array
comparative genome hybridization (aCGH) permits a genome-wide measurement of copy
number variation using bacterial artificial chromosome (BAC) clones deposited on a
microarray. This is a high throughput technique but the resolution is limited to tens or hundreds
of thousands of base pairs and no genotype data are obtained.

SNP microarray technology permits the genome-wide search for chromosomal abnormalities,
providing genotype and copy number estimates for hundreds of thousands of SNPs in genomic
DNA isolated from a biological sample. Statistical tools for the analysis of such SNP chip data
are typically employed to assess where the chromosomal changes have occurred, and whether
or not these changes are associated with disease. Regions of interest are typically aneuploidies,
i. e. regions where copy number changes (deletions and amplifications) have occurred, or
regions with unusually long stretches of homozygous genotypes (either naturally occurring,
for example through evolutionary pressure on a DNA segment, or through loss of
heterozygosity, LOH).

For the analysis of SNP chip data in general, three different tiers of estimation problems arise.
1) By SNP: how can we use the low-level data (such as the fluorescence measurements in
Affymetrix SNP chips) to optimally estimate the genotype and DNA copy number for each
SNP in the array? 2) By sample: how can we borrow strength between neighbouring SNPs,
and infer regions of LOH and copy number changes in the genome of the subject studied? 3)
Between samples: how can we compare the genotype of many subjects, infer common regions
of abnormality, and for example assess differences between affected subjects and normal
controls? This manuscript revolves around methods for tier 2, the assessment of chromosomal
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abnormalities in one particular sample. However, information derived from tier 1, in particular
uncertainty estimates of copy number and genotype estimates, can be critically important and
will be incorporated in the analysis. In particular for the Affymetrix platform, originally
described as a high-throughput assay for calling genotypes at thousands of SNPs (Kennedy et
al., 2003), there have been several algorithms proposed for the appropriate adjustment and pre-
processing of probe-level data, and the estimation of SNP-level summaries of probe-level data
for genotype (DM, Di et al. (2005), RLMM, Rabbee and Speed (2006), BRLMM, Affymetrix
(2006), CRLMM, Carvalho et al. (2006), SNiPer-HD, Hua et al. (2007)) and copy number
(CNAG, Nannya et al. (2005), CARAT, Huang et al. (2006), PLASQ, Laframboise et al.
(2006), CN-RLMM, Wang et al. (2006)). Notably, Laframboise et al. (2006) and Wang et al.
(2006) provide allele-specific estimates of copy number.

We caution that, as with gene expression technologies, pre-processing of probe-level data is
an important consideration. For instance, several recent papers have described fragment-length
and sequence effects that may be introduced by the polymerase chain reaction (PCR) used to
amplify the DNA (Nannya et al., 2005; Carvalho et al., 2006). We assume that SNP-level
summaries for each interrogated SNP have been adjusted for probe-specific biases to the extent
possible. Statistical models such as CRLMM that use Hapmap data for training have been
shown to provide better genotype calls when the centers of the bivariate scatterplots for the A
and B allele intensities are less well-defined (Carvalho et al., 2006). Genotype calls for most
genotyping algorithms are concordant for over 99.9% of the measured SNPs in the Affymetrix
100k and 500k chips when performance is compared on apparently normal individuals
represented in the HapMap study.

Statistical methods that provide an indication of the uncertainty of the genotype call (for
example based on the single to noise ratio (SNR) and log likelihood ratio (LLR) defined by
CRLMM) can be particularly useful for statistical algorithms devised to infer chromosomal
abnormalities. Specifically, statistical models that borrow strength from neighboring SNPs to
infer loss or retention of heterozygosity should incorporate the uncertainty of the genotype call
estimate, giving less weight to genotype calls that are measured with high uncertainty and more
weight to well-estimated genotypes. To our knowledge, this manuscript is the first one to
address this issue. Figure 1 illustrates why the uncertainty in genotype calls can differ
substantially. Similarly, probe-specific biases for copy number estimates have been described
before, see for example Wang et al. (2006).

Before high-throughput SNP chips were widely available, array comparative genomic
hybridization (aCGH) was the most commonly used method to assess DNA copy numbers,
and assess regions in the genome where deletions or amplifications occurred in a particular
sample. Thus, many statisticians have proposed approaches for aCGH based copy number
estimation, and some of these proposed methods are also relevant for SNP chip based copy
number analysis. Approaches for aCGH data include hidden Markov models (Fridlyand et al.
(2004); Guha et al. (2006)), segmentation algorithms (Olshen et al. (2004), Picard et al.
(2005), Venkatraman and Olshen (2007)), wavelets (Hsu et al. (2005)), smoothing (Hupe et
al. (2004), Eilers and de Menezes (2005)) regression (Houseman et al. (2006), Huang et al.
(2005)), clustering (Wang et al. (2005)), and resampling (Lai and Zhao (2005)). The manuscript
by Lai et al. (2005) and Willenbrock and Fridlyand (2005) contain reviews and comparisons
of the performances of several of these proposed methods. In addition, many useful extensions
or alternative approaches for the above listed methods are being proposed. Some recent
publications have confirmed that naturally occurring DNA copy number variations are more
abundant than previously thought (Freeman et al. (2006); Redon et al. (2006)), which can
produce outliers in the aCGH data. Integrating these known copy number variations as
permissible outliers into a hidden Markov model to assess where abnormal copy number
alterations have occurred has been proposed by Shah et al. (2006).
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For the statistical analysis, SNP chip data differ from array CGH data in two important ways:
a) SNP chips also provide information for the genotype, i. e. give homozygous/heterozygous
SNP calls, and b) provide a much denser coverage, currently generating genotype information
and copy number estimates at locations in excess of 500,000 SNPs. The correlation structure
between those estimates has to be an essential part of any statistical modeling approach. The
most promising methods currently available are based on hidden Markov models. In particular,
to infer LOH regions and to estimate copy numbers changes, the dChip software and methods
are among the most widely used in the scientific literature for the analysis of SNP chip data.
The dChip methods are based on separate hidden Markov Models for genotype analysis (Lin
et al. (2004); Beroukhim et al. (2006)) and copy number (Zhao et al. (2004)). The original
dChipSNP HMM (Lin et al. (2004)) was devised to assess loss of heterozygosity regions (a
region with an allelic loss, where heterozygote SNPs in a normal sample appear as homozygote
SNPs in a tumor sample). This required paired tumor and normal samples from the same
subject. As these are often not available, an extension of this model was proposed by Beroukhim
et al. (2006) to allow for LOH assessment without paired samples (e. g. tumor only). Note that
such an approach using unpaired data would also be required in settings that do not involve
abnormal tissue, for example when subjects with mental retardation and apparently normal
controls are investigated to assess possible differences in the karyotypes. The dChipSNP
hidden Markov Model for copy number assessment (Zhao et al. (2004)) is somewhat similar
in nature to the one used for LOH analysis, see Zhao et al. (2004).

Copy number estimates and genotype calls however can provide complementary information.
For example, without copy number information, genotype calls alone would not allow for a
distinction of LOH due to deletion or uniparental isodisomy (iUPD), which occurs when a
subject inherits the same copy of a chromosome (or parts thereof) twice from one parent. While
this has been recognized and concurrent analyses have been reported (see for example Zhou
et al. (2004, 2005) and Ninomiya et al. (2006)), these analyses were carried out separately for
genotype calls and copy number estimates, and the results visually compared. Not until very
recently has the need for an integrated analysis of copy number and genotype been addressed
for the first time. Colella et al. (2007) propose a Bayesian hidden Markov model approach
(QuantiSNP), using both genotype and copy number estimates to infer underlying states
(deletions, amplifications, copy neutral regions of homozygosity, etc) of interest. We caution
though that data derived from cancer samples might create substantial problems for HMM
based methods like QuantiSNP and our approach: DNA copy numbers larger than three are
quite possible in such settings, and thus, the number of possible states expands dramatically.
Further, non-integer copy numbers do make sense in tumors due to the mix of normal and
abnormal cells in the sample (i.e. mosaicism, see Ting et al. (2006) for an example). In these
settings, copy number based segmentation approaches might be more promising (Olshen et al.
(2004), Picard et al. (2005), Venkatraman and Olshen (2007)), in particular as the definition
of a “genotype” is unclear. In this manuscript, we propose a hidden Markov model for the
integrated analysis of copy number and genotype estimates, most applicable for abnormalities
as a consequence of germline events. We also develop the methodology to integrate genotype
and copy number estimate uncertainty measures, and illustrate how integrating such confidence
scores of the SNP-level summaries in the HMM can improve inference for the underlying
hidden states using simulated and experimental data. These ideas are implemented in the R
package vanillaICE.

2 Methods
In this section we describe three HMMs, dependent on whether genotype estimates
(abbreviated ), copy number estimates (abbreviated ), or both  and  are available
as defined by three classes of objects for SNP array data (Scharpf et al., 2007).
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2.1 Genotype calls
Most algorithms that provide SNP-level summaries of genotype assume a copy number of two,
and report the genotype estimates as such. We therefore assume throughout this paper that the

 are of the generic form AA or BB and AB corresponding to  and , respectively.
The vanilla HMM with hidden states retention (◐) and loss (○) of heterozygosity require
specification of the initial state probability distribution, the emission probabilities (denoted by
β below), and the transition probabilities (denoted by τ below) between the true states.
Commonly employed in the literature for the transition probability is the “instability-selection”
model for LOH analysis (Newton et al., 1998; Beroukhim et al., 2006) that describes the
dependencies between the underlying states of adjacent SNPs as a function of distance. For
any two adjacent SNPs, θ is defined as the probability that the state of the first marker is not
informative (denoted by Ic) for the state of the second marker. As the distance between SNPs
affects this probability, it is modeled as θ(d) = 1 − e−2d, where d is a genetic or physical distance
(for example 100Mb units, see Beroukhim et al. (2006)) between adjacent SNPs. We assume
that with probability 1 − θ(d), SNP(i) is informative (denoted by I) for SNP(i+1) and that no
change in state occurs between the adjacent SNPs. For example, this leads to

(2.1)

as the probability that the state of SNP(i+1) is ○, given that the state of SNP(i) with distance d
was ○. Also,

(2.2)

P(◐) and P(○) refer to the initial probabilities for ◐ and ○, respectively. These initial
probabilities can be set as fixed constants using knowledge from previous experiments, or
alternatively, learned via the EM algorithm (Dempster et al., 1977).

Emission probabilities for states ○ and ◐ are estimated as

(2.3)

where p is the probability of a homozygous genotype call. We use the above probabilities as
defaults to reflect values typically seen in experimental data. In a region of retention ◐, about
70% of SNPs on average are homozygous, while in a region of loss ○ all SNPs are homozygous,
but genotyping errors do occur. Alternatively, as these probabilities are affected by the quality
of the assay, they can also be learned via the EM algorithm. In practice, we find that our
approaches are rather insensitive to changes in these parameters. It is certainly also possible
to use SNP-specific homozygosity rates here if they are known from a reference population.
Effcient computation of the probability of the observed sequence given the model is carried
out using the forward algorithm as described in (Rabiner, 1989). The most probable state
sequence given the model is calculated via the Viterbi algorithm (Viterbi, 1967; Rabiner,
1989).
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Integrating confidence estimates (ICE)—When confidence estimates are available, the
observed data at a SNP is the genotype call ( ) and the uncertainty measure . The joint
distribution of  and  depends on the underlying state. For example, if the state for a
particular SNP is ○, the emission probability is

(2.4)

Note that the first of the two terms on the right hand side of equation (2.4) is simply the emission
probability when estimates of uncertainty are not available. The second term can be understood
as a weight for the former term that depends on the confidence with which the call is made.
The second term can be approximated using a density estimate of the  where the gold
standard is available. For example, using CRLMM on the 269 HapMap samples, the
distributions of the respective uncertainty measures for all four possible combinations of called
and true genotypes measured on the Affymetrix 100k SNP chips are known. We use kernel
based density estimates to obtain the distributions of the confidence scores, given the true and
called genotype (separately for the Xba and Hind 50k chips):

(2.5)

The first term in (2.5), for example, denotes the density of the scores when the genotype is
correctly called homozygous ( ) and the true genotype is homozygous (HOM). If the
underlying state is ○, then the true genotype is always HOM and we assume that

(2.6)

If the underlying state is ◐, then the true genotype can be HET or HOM. We therefore estimate
the emission probabilities for state ◐ as

(2.7)

The unknown terms in Equation 2.7,  and , are also estimated from
the HapMap samples.

2.2 Copy number
The hidden states for autosomal copy numbers are hemizygous deletion (↘), two copies (→),
and more than two copies (↗). A typical, and from practical experience, quite reasonable
assumption when only copy number is considered (applied to aCGH and SNP chip data) is that
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the logarithm of the copy number estimate, after normalization, is roughly normally distributed
around the true log copy number (see for example Zhao et al. (2004)), although slightly heavier
tails may also be observed in practice. More important however is the fact that the variability
is not necessarily constant across SNPs, which we will address in the ICE HMM. If the variance
was assumed to be constant (as done in the vanilla HMM), this parameter can be learned via
the EM algorithm (Dempster et al., 1977), or estimated in a robust manner for example using
quantiles from the observed data. In the examples presented here, we obtained a robust estimate
for the standard deviation of copy number estimates using the 16th and 84th percentiles of the
log2 transformed  (corresponding to plus minus one standard deviation from the median).

For a state S, the mean μs and variance  of the Gaussians used to describe the emission
probabilities can be fixed at starting values, or updated by EM. In the vanilla HMM we assume
a constant σ2 and estimate the emission probabilities for state ↘, for instance (on the log2 scale,
not divided by 2) as

(2.8)

The transition probability for the copy number HMM is the same as the one described above.

Integrating confidence estimates (ICE)—The emission probabilities for the HMM
retains the same location parameters for the Gaussian, but with SNP-specific standard errors
for the . For a given SNP, the emission probability for copy number two (→) for example
is

(2.9)

The scalar σ can be estimated from the sample at hand, or set equal to one if  measures the
actual variability of the copy number estimate around the true copy number.

2.3 Copy number and genotype
For the joint analysis of copy number and genotype, we extend the transition probabilities in
Equations 2.1 and 2.2 to the hidden states normal (◒), amplification ( ), LOH (⊖), and deletion
(⦰). For the emission probabilities, we assume conditional independence between the copy
number estimates and the genotype calls:

(2.10)

This equation can be further simplified, as the copy number distribution only depends on the
true copy number, and the genotype distribution only depends on the true underlying state
being ◐ or ○. For example, for the deletion state we have

(2.11)

The terms in Equation 2.11 can be estimated as described above for genotype and and copy
number. Emission probabilities for the other states can be obtained similarly.
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2.4 Simulation
The simulated data are available in the Bioconductor package vanillaICE. The simulation
comprises one subject’s genotype, copy number, and confidences scores for 9165 SNPs on
chromosome 1. A description of the 5 features simulated in chromosome 1, referred to by
regions A–E, and the underlying hidden states in these regions follows.

Genotype calls—With the exception of Regions A, B, and C in Figure 2, we simulated 9165
genotypes (the approximate number of SNPs in the two 50k SNP chips) from a Bernoulli
distribution with probability 0.7 of . Unless otherwise indicated, confidence scores for

 were obtained by random draws of confidence scores in the Hapmap data when the
CRLMM  agreed with the gold-standard as defined by consensus of the HapMap genotyping
centers. The reference distributions were made separately for the Affymetrix 50k Xba and Hind
chips, and hence the confidence score sampled for each SNP were made respective to the chip.

Copy number—The Affymetrix CNAT tool (version 3.0) was used to obtain  for the 9165
SNPs from a presumably normal individual in the HapMap dataset (sample NA06993).
Deletions and amplifications were simulated from Gaussian distributions with location
parameters log2(1) and log2(3), respectively. For the scale parameter, we used a robust estimate
of the log2 transformed copy number standard deviation, denoted by ε. To illustrate how a
confidence score such as a standard error of the copy number estimate could be useful, we
simulated standard errors from a shifted Gamma: Γ(1, 2) + 0.3, where 1 is the shape parameter
and 2 is the rate parameter. To ascertain the effect of qualitatively high confidence scores on
the ICE HMM, we scaled ε by . Similarly, to simulate less precise  we scaled ε by 2.

Regions A–E were simulated as follows:

• Region A contains 200 SNPs spanning a physical distance of approximately 5 Mb.
Two chromosomal segments of 99 homozygous genotypes are separated by a
chromosomal segment of 14 kb containing two heterozygous SNPs. Using a 2-state
hidden Markov model and using only the simulated genotypes as the observed data,
the true underlying states (number of SNPs) are ○ (99), ◐ (2), and ○ (99) for the 3
segments, respectively. We augment the genotype calls with copy number estimates
obtained directly from the CNAT analysis of a normal Hapmap subject’s chromosome
1. Using the 3-state HMM for copy number, the true underlying state is → (200).
Modeled jointly, the true underlying state is ○ (99),◒ (2) and ⊖ (99).

• Region B contains 100 SNPs spanning a physical distance of approximately 2 Mb.
Two chromosomal segments each containing 49 SNPs are both in regions of a
hemizygous deletion. We assigned a homozygous genotype call to all 98 SNPs in the
two hemizygous deletions. The two hemizygous deletions are separated by a
chromosomal segment of 360 basepairs with copy number two. To simulate an
incorrect genotype call (the true genotype is homozygous for the 2 SNPs on the diploid
segment), confidence scores for the two heterozygous SNPs are drawn from the
distribution of confidence scores when the CRLMM genotype call of HET was
incorrect. Copy number estimates and corresponding confidence scores (standard
errors) for the hemizygous deletion were simulated as described above, with the
exception that high confidence scores were assigned to the two SNPs in the
chromosomal segment with normal copy number. The true underlying state for the
genotypes in Region B is ○ (100). The true state for the copy number in region B is
↘ (49), → (2), and ↘ (49). Modeled jointly, the true states are ⦰ (49),◒ (2), and ⦰
(49).
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• Regions C is a segment containing 100 homozygous SNPs spanning < 2 Mb in a
hemizygous deletion. The true underlying states are ○ (100) in the genotype HMM,
◒ (100) in the copy number HMM, and ⦰ (100) in the joint HMM.

• Region D contains two segments with with copy number 3 (< 1 Mb), separated by a
diploid segment containing 2 SNPs (9.8 kb). The two amplified fragments are < 1
Mb. The true underlying states are ◒ (200) in the genotype HMM; ↗ (99), → (2),
and ↗ (99) in the copy number HMM; and  (99),◒ (2), and (99) in the joint HMM.

• Region E contains a microdeletion spanning 5 SNPs (94 kb) and a microamplification
containing 3 SNPs (294 kb). We assigned high confidence scores to the copy number
estimates in both regions. The true underlying state are ○ (5) and ◒ (3) in the genotype
HMM, ↘ (5) and ↗ (3) in the copy number HMM and ⦰ (5) and  (3) in the joint
HMM.

3 Results
This section describes results obtained from fitting HMMs to simulated and experimental data.
The HMMs are written in the statistical language R (http://www.r-project.org) using S4 classes
and methods (Chambers, 1998). In particular, the HMM is dependent on whether genotype
estimates (abbreviated ), copy number estimates (abbreviated ), or both  and  are
available as defined by three classes of objects for SNP array data (Scharpf et al., 2007).
Organizing the statistical methods in this way allows more flexibility to users interested only
in characterizing chromosomal abnormalities in genotype (loss of heterozygosity, LOH) or
copy number (deletion or amplification) respectively. When both  and  are available, the
HMM will distinguish between copy-neutral LOH and deletion-induced LOH. We use the term
LOH in this context as an unusually long stretch of homozygous SNPs, though these regions
can be completely naturally occurring, for example due to evolutionary pressure on
chromosomal segments. For the simulation, we simulate  and  as described in Section
2.4, analyzing the  and  separately and then jointly. For the experimental data, we use a
HapMap sample with a previously identified region of uniparental isodisomy, a mechanism
for copy neutral LOH. Both the simulation and experimental data are based on 100k Affymetrix
SNP chips (comprised of the Xba and Hind 50k chips). All figures shown are also available in
color as supplementary material at http://biostat.jhsph.edu/~iruczins/publications/sm/

3.1 Simulated data
SNP-level summaries were obtained using a combination of real (experimental) and simulated
data for 1965 SNPs measured on chromosome 1 of the 50k Hind and Xba Affymetrix SNP
chips, as described in Section 2.4 for additional details. Because the states of the HMM are
determined by whether genotype estimates( ), copy number estimates( ), or both  and

 are available, we organize the results accordingly. For each example, we plot both the
predictions of a HMM that uses only the observed SNP-level summaries as input (vanilla), and
a HMM that integrates confidence estimates (ICE) for the SNP-level summaries.

Genotype HMM—The hidden states for the genotype HMM are retention (◐) and loss (○)
of heterozy-gosity. In the upper panel of Figure 2 the simulated  are plotted with uniform
noise added to reduce overplotting. The predicted states from the vanilla and ICE HMMs are
also shown. The predictions from the vanilla HMM are the same as the predictions of the ICE
HMM shown, with the exception of the region (A) magnified in the lower panel of Figure 2,
where the ICE HMM correctly identifies the ◐ segment. Both approaches miss the 5 SNP
spanning microdeletion in region E, but otherwise correctly predict the true underlying states
(see Section 2.4 for details). In general, for both the vanilla and ICE HMMs, the Viterbi
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algorithm (conditional on other parameters of the HMM model) chooses an optimal sequence
of states that maximizes the likelihood of the observed genotype calls. The predicted states
reflect a trade-off between the likelihood of the observed genotypes given the underlying states,
and the transition probabilities. Unlike the vanilla HMM, emission probabilities in the ICE
HMM are a function of the confidence scores (as described in Section 2), and factor into the
likelihood. Intuitively, a high confidence score at a particular SNP has the effect of giving more
weight to the emission probability and less weight to the state of the neighboring SNPs when
determining the optimal sequence of states in the Viterbi algorithm. Hence, the sequence of
states that maximizes the likelihood of the observed genotype calls differ in the ICE and vanilla
HMMs when the confidence scores shifts the balance between the opposing forces of the
emission and transition probabilities. In particular, the high confidence scores at the two
heterozygous SNPs in region A favor the emission probability for ◒, causing two breakpoints
in this region of ○ and, hence, a more local smoothing of the HMM. Although the emission
probability for state ◒ is greater than for state ○ at these two SNPs in the vanilla HMM, the
probability of having two breakpoints in a region of ○ for SNPs that are physically close is
small as reflected in the transition probability. Therefore, the vanilla HMM provides a
smoothing that is less localized, corresponding to a sequence of ○ predictions in region A
without transitions to the normal state.

Copy number HMM—The hidden states for autosomal copy numbers are hemizygous
deletion (↘), normal (two) copies (→), and more than two copies (↗). Figure 3 (upper panel)
shows the  of the simulated dataset. In our simulation, chromosome 1 contains three
amplifications ↗ (two segments in D separated by a segment with normal copy number, and
one in E), and four deletions ↘ (two segments in B separated by a segment with normal copy
number, and one segment each in regions C and E). Also shown are the predicted states from
the vanilla and ICE HMMs, respectively. The predictions from the two HMMs differ in regions
B, D, and E magnified in the lower panel. Without confidence estimates for the copy number,
the transition probabilities dominate the likelihood as specified by the emission probabilities,
and the vanilla HMM smoothes over the two SNPs with copy number 2 in region B and D, and
the amplification in region E. The high confidence scores used in this simulation for the copy
number estimates in these regions makes the transition between states more favorable, and
thus, the ICE HMM makes the transition back to the normal state for regions B and D, and
detects the amplification in region E. Note that when the confidences scores for the  are
low, as for the 2 SNPs with copy number near two in the hemizygous deletion in region C, the
predictions with ICE and vanilla are identical. Also, the vanilla HMM detects a spurious
deletion to the left of region A. As the confidence scores for those copy number estimates were
low, the likelihood specified in the ICE HMM does not favor a transition to a non-normal state.

Genotype and copy number HMM—We plot both the  and  in the upper panel of
Figure 4. By modeling  and  simultaneously, we expand the state space of the HMM to
include deletion-induced LOH (⦰), copy neutral LOH (⊖), normal (◒), and amplification
( ). The predicted states from the vanilla and ICE HMMs are also shown, and differences in
predictions are indicated in the lower panel. As before, ICE correctly classifies all SNPs into
the respective states, while the vanilla HMM, in the absence of uncertainty estimates, smoothes
over some loci (regions A, B, D), and fails to detect the amplification (with high confidence
scores) in region E. In contrast, the vanilla HMM does detect the microdeletion in region E.
The ability of the vanilla HMM to detect the microdeletion in this example even in the absence
of confidence scores is attributable to the additional information that the genotype provides:
SNPs in deleted regions all appear as homozygous, in contrast to amplifications, where
homozygous and heterozygous SNPs occur. Additionally, the extra genotype information may
reduce the occurrence of predicted deletions that are spurious. For instance, in the absence of
information on genotype calls in Figure 3, the vanilla HMM predicts a small deletion to the
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left of region A. As heterozygous genotype estimates in this region are incompatible with a
deletion, the vanilla HMM no longer predicts this region to be a deletion in Figure 4.

3.2 Experimental data
To illustrate the HMM approaches on experimental data, we used a HapMap sample with a
previously identified (but not experimentally confirmed) UPD in chromosome 2. The
Affymetrix tool CNAT (version 3.0) and the R software CRLMM were used to obtain SNP-
level summaries of copy number and genotype respectively. We caution that at this point in
time the  obtained using CRLMM (or the Affymetrix tools) implicitly assume that the copy
number is two - ideally, allele specific estimates should be used, and methods are under
development (Rafael Irizarry, personal communication). Also, software to obtain confidence
scores for  based on probe-level variability and signal-to-noise ratio on the chip (such as
described in Wang et al. (2006)) is not yet available. However, differences in the SNP-specific
standard deviations of the  across a reference set of 90 HapMap samples have previously
been reported (see for example Zhao et al. (2004)), and can be used in a straightforward manner
as measures of uncertainty (specifically, using those deviations as the  in Equation 2.9, and
estimating the scalar σ from the autosomal SNP copy number estimates in the sample).

The upper panel in Figure 5 shows  on the vertical axis against physical position on
chromosome 2. The region of predominantly called homozygous SNPs at 190 – 200 Mb is a
previously identified UPD (Ting et al., 2006). Also shown are the predictions from the vanilla
and ICE HMMs. The confirmed UPD between 190 and 200 Mb is detected by both HMMs,
though the vanilla HMM incorrectly predicts a small deletion of 3 SNPs in the middle of this
region, whereas the ICE HMM provides a more global (and correct) smoothing of the copy
number estimates. Also, the vanilla HMM finds a spurious amplification at about 210 Mb. The
lower panel on the left provides a magnified view of the region between 135 and 155 Mb,
where the vanilla and ICE HMMs differ. Only the middle region (at about 143 Mb) is identified
by both HMMs as LOH (we again stress that we use the term LOH here as copy neutral stretches
of homozygous SNPs, naturally occurring possibly due to evolutionary pressure on this
chromosomal segment). The chromosomal segment at about 140 Mb contains the two
heterozygous SNPs (confirmed in the HapMap data, and called as such by CRLMM), and thus
is not a region of LOH, as predicted by the vanilla HMM. The lower panel on the right further
zooms in on the vanilla and ICE predictions in the region around 150 Mb. The two SNPs with
heterozygous genotype calls at about 151 Mb are truly heterozygous SNPs, and therefore the
ICE HMM correctly identifies the chromosomal segment containing these two heterozygous
SNPs as normal. Due to the abundance of markers in the segment around 151.25 Mb exclusively
called homozygous, the ICE HMM still indicates an LOH segment. Several studies have
recognized the abundance of short, copy-neutral, entirely homozygous regions (see for example
Beroukhim et al. (2006)). To illustrate the prevalence of short, homozygous sequences, we fit
the vanilla and ICE HMMs to the chromosome 2 data of the 30 CEPH trio parents available
from HapMap (60 independent samples), and highlight these copy-neutral, all homozygous
regions in Figure 6. Clearly visible is the abundance of these regions, and the enriched locations
along chromosome 2 (possibly explained by evolutionary pressure).

3.3 A vanilla/ICE comparison
We performed additional simulations to contrast the performances of the vanilla and ICE
HMMs. Since large deletions and amplifications can easily be picked up by both approaches,
we focused on small deletions and amplifications, spanning between 2 and 10 consecutive
SNPs. Since the results were as expected, we only describe the effects of the copy number
variability and confidence scores on the detection of small deletions in detail.
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The experimental data consisted of genotype calls and copy number as described in Section
2.4. Copy number confidence scores were obtained by weighting the robust estimate of the
within-chip log2 copy number standard deviation by the standardized SNP specific standard
deviation derived from a reference set of 90 HapMap samples (e. g., this weight for one
particular SNP was the ratio of the across sample standard deviation for the SNP and the median
of all those numbers across all SNPs). Simulated in these data were 450 sets of copy number
estimates and confidence scores for deletions ranging from two to ten consecutive SNPs (50
data sets for each deletion size). The locations of the deletions were randomly selected on
chromosome 1 for each data set. The copy numbers in the deletions were simulated from a log-
normal distribution with mean zero (indicating a true DNA copy number equal to one), and a
standard deviation equal to a scaled version of the SNP specific variability described above.
The scalar K controlled whether more (K < 1) or less (K > 1) precise copy number data than
average were encountered in the deletion. For both vanilla and ICE, we calculated for each
simulated data set the difference in log likelihoods between making a transition to the state for
deletion (⦰) from the normal state (◒) for the range of the simulated deletion (and back after
the deletion), versus staying in the normal state throughout. In other words, we calculated the
difference of the log likelihood of the true state sequence minus the log likelihood of assigning
the normal state ◒ to all SNPs.

The upper row of panels in Figure 7 indicate the distributions of the differences in the log
likelihoods for both the vanilla (light grey) and ICE (dark grey) HMMs, shown for the deletions
of different sizes, and using four different scale parameters K. For the first two panels, the
variability in the simulated copy number estimates in the deleted region was less than in the
original data (the standard deviations were reduced to 40% and 70% of the original,
respectively), and for the fourth panel the standard deviation in the simulated copy number
estimates in the deleted region was increased by 30%. The middle row of panels shows the
respective estimated probabilities of the differences in log likelihoods being positive, e. g. the
proportion of instances when the correct model was favored over the incorrect one. The lower
row of panels shows the difference in these probabilities between ICE and vanilla. Quite
obvious is the fact that the ability to detect micro-deletions of a few SNPs depends on precise
data, and the knowledge of that precision. For example, when the standard deviation of the
simulated copy number estimates in the deletion was reduced to 40%, ICE was able to
consistently detect even the smallest deletions, while vanilla was only able to do so for deletions
of size 5 or larger (left panels). Naturally, larger deletions are easier to detect for both methods.
As the quality of the data decreases (simulated here as an increase in the variability of the copy
number estimates in the deletion), the ability of ICE to detect the deletion suffers substantially,
while vanilla is almost agnostic to these changes. When the standard deviation of the simulated
copy number estimates in the deletion was increased by 30%, vanilla picked up the deletion
more often than ICE (right panels). The reason for this is as follows: since the variability in
the copy number estimates is increased, the evidence of a deletion being present decreases, and
ICE acknowledges this fact by incorporating the confidence estimates. Thus, the decrease in
the proportion of instances where ICE favors a deletion over the normal state is a feature of
the algorithm. The price to pay, otherwise, is in the number of false positives (i. e. the number
of incorrectly inferred deletions at other loci). Simulating 200 “synthetic” normal chromosome
1q arms with K=1.3 across all SNPs, vanilla indicated spurious small deletions in 50 of these
artifical chromosomal arms (for a total of 86 incorrect state predictions), while ICE indicated
none.

4 Discussion
Chromosomal DNA varies between individuals at the level of entire chromosomes,
chromosomal segments, and changes in small genomic regions down to one nucleotide
(including single nucleotide polymorphisms, SNPs). Many of these variations appear to be
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completely benign, but some are known or suspected to be associated with disease. Association
studies often use some SNPs (in candidate gene studies) or hundreds of thousands of SNPs (in
genome wide association studies) as potential candidates or markers of genes to investigate
the relationship between genotype and phenotype. However, the abundance of copy number
variations in the human genome and their role in disease have played an increasingly prominent
role. In particular, the “common disease, common variant” paradigm has been challenged for
some diseases (McClellan et al. (2007); see for example Sebat et al. (2007) for a case study on
autistic and apparently normal subjects). Undoubtedly, this change is due in part to the recent
technological advancement, in particular on high density single nucleotide polymorphism
(SNP) microarrays which allow for the detection of these alterations. Besides copy number
variations such as deletions and duplications, copy-neutral stretches of homozygosity can also
be of scientific interest, as uniparental disomy as one such example has been implicated in
disease.

Copy number variations and loss of heterozygosity can arise through somatic and germline
events. In this manuscript, we developed methods most applicable for abnormalities as a
consequence of germline events. Undoubtedly, the stochastic process as defined by our
transition probability could be too rigid for the analysis of data arising from a cancer sample,
where microdeletions as well as a loss of an entire chromosomal arm might be present. Further,
non-integer copy numbers do make sense in such samples due to the mix of normal and
abnormal cells in the sample (i.e. mosaicism, see Ting et al. (2006) for an example), while we
assume the copy numbers to be integers in our approach. While rare, non-integer copy numbers
may occur even in “normal” genomes (this can occur throughout the body or in specific
regions), and thus may pose a problem for our algorithm. In general, even if our method could
be extended to allow for non-integer copy numbers (at least the HMM for copy numbers, since
the definition of “genotype” is unclear in such a setting), the ability to pick up non-integer copy
numbers obviously depended on the quality of the data, the length of the non-normal region,
and the actual value of said copy number. For example, delineating a small mosaic region in
a sample with 95% normal cells and 5% of cells with a hemizygous deletion would likely not
be possible.

Our paper builds on a modular approach for analyzing SNP chip data, extending the
functionality of statistical algorithms that pre-process probe-level data to produce SNP-level
summaries of genotype and copy number. Noticeably, these approaches have mostly been
developed for the Affymetrix platform (such as CRLMM for improved genotype estimates),
but our ideas are portable to other high throughput platforms such as Illumina. In particular,
the vanilla HMM only relies on genotype ( ) and copy number ( ) estimates without any
confidence scores, which can be exported directly from the Beadstudio software
(http://www.illumina.com/). With one noticeable (and very recent) exception suggested by
Colella et al. (2007), previous approaches using HMMs have considered genotype and copy
number separately, not simultaneously in a single unifying statistical model that allows for the
detection of copy number changes as well as copy neutral stretches of homozygosity in the
genome. In this sense, this manuscript is not the first to propose such a unifying approach,
albeit ours differs in several aspects from the Bayesian HMM of Colella et al. (2007). In
particular, the incorporation of uncertainty estimates can be critical for example in the detection
of microdeletions. The investigation of one particular sample as discussed in this manuscript,
however, does not allow for conclusive statements how the detected alterations are associated
with the phenotype. In particular, it has been well established that copy number variations and
copy neutral stretches of homozygous genotypes are prevalent in many phenotypically normal
individuals. Identifying features that may be associated with a particular phenotype are better
handled by statistical models for between-sample variation in studies with phenotypically
normal and diseased populations. Such models reside in the next tier of our modular approach
to the analysis of SNP chip data and are an extension of the ideas presented here.
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In summary, we developed a HMM for SNP chips using the joint observation sequence of copy
number ( ) and genotype ( ) estimates as input. We demonstrated that a HMM model
that uses both  and  can for example distinguish copy-neutral LOH from deletion-induced
LOH. We also demonstrated how pre-processing algorithms that provide confidence scores of
SNP-level summaries can be integrated into the emission probabilities of the HMM to control
smoothing in a probabilistic framework, and showed that this can lead to much improved
results. Specifically, confidence estimates allow smoothing to be more local or global
depending on the uncertainty of the pointwise estimates. We demonstrated how high
confidence scores helped in identifying a very small amplification otherwise missed (Figure
4, region E), while low confidence scores for  and  had the desirable effect of providing
a more global smoothing (Figure 5). In particular in the experimental data example, this helped
to reduce the number of regions identified as LOH in the vanilla HMM, and eliminated the
(presumably, spurious) indication of a small deletion and a small amplification. We believe
that the ability to detect microdeletions and microamplifications could be of utmost importance
to explain the genetic basis of many diseases. Undoubtedly, this ability will greatly depend on
the number of markers investigated (such as the number of SNPs used on a particular platform)
and the quality of the data produced (i.e. the precision of the genotype and copy number
estimates), but also on how the uncertainty of the estimates is utilized. In this sense, we hope
that our method and software provides a useful tool for the scientific community.
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Figure 1.
HapMap genotype calls (the gold standard) for a bad SNP (left) and a good SNP (right) for
269 samples measured on Affymetrix 100k SNP chips. The HapMap consensus genotype call
(taken to be the gold standard) is indicated by color: AA (medium grey), AB (white), and BB
(dark grey). The separation between genotype clusters is SNP-specific. This figure motivates
an approach that incorporates uncertainty estimates to control smoothing.
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Figure 2.
A simulated chromosome with 9165 SNPs. Top: The simulated  with uniform noise added
to reduce overplotting (vertical axis) plotted against physical position (horizontal axis).
Bottom: A magnification of region A. Two SNPs in region A with high simulated confidence
scores are indicated by the square plotting symbol. Regions A–E are described in more detail
in Section 2.4. In truth, there are 4 different segments in state loss (○, indicated in light grey
above). The predicted hidden states from the vanilla (Van) and ICE HMMs are denoted by
color in the two bars beneath the data points. The ICE HMM detects each of the 4 ○ segments,
whereas the vanilla HMM smoothes over a segment in A containing two heterozygous SNPs
at position 52.8 Mb. Utilizing confidence scores for the genotype predictions, the ICE HMM
may provide more precise locations for ○ breakpoints.
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Figure 3.
Top: Copy number estimates (vertical axis) versus physical position (horizontal axis) for 9165
SNPs on a simulated chromosome. Bottom: A magnification of regions D, B, and E. High
confidence scores for the copy number estimates were simulated for the square points in regions
D, B, and E. The two bars beneath the data points in each figure show the predicted hidden
states from the vanilla (Van) and ICE HMMs. Note that where the predictions differ in regions
D, B, and E, the ICE correctly classified the hidden states. Note that the vanilla HMM also
indicates a (spurious) deletion to the left of region A, not indicated by the ICE HMM due to
high variability in those copy number estimates.
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Figure 4.
Top: The  in Figure 3 are superimposed on the  in Figure 2. We fit HMMs to the joint
observation sequence of  and  without (vanilla) and with (ICE) confidence scores of the
SNP-level summaries. The predictions from these two HMMs are represented by different
shades of grey in the two bars beneath the data points in each panel. We used square plotting
symbols to indicate SNPs for which we assigned high confidence scores to the genotype and
copy number estimates.
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Figure 5.
Top: A confirmed UPD between 190 and 200 Mb is detected by both HMMs in a HapMap
sample from the CEPH dataset. Note that the vanilla HMM incorrectly predicts a small deletion
of 3 SNPs in the middle of this region, whereas the ICE HMM provides a more global
smoothing of the copy number estimates. Bottom left: a magnified view of three possible LOH
regions (not confirmed). Only the middle region (143 Mb) is identified by both HMMs as LOH.
Because the CRLMM genotype calls agree with the HapMap consensus, the chromosomal
segment containing the two heterozygous SNPs at 140 Mb is not a region of LOH, as predicted
by the vanilla HMM. Bottom right: magnification of the vanilla (top) and ICE (bottom)
predictions for the feature at 150 Mb. Again, the true genotype calls are heterozygous, and so
the ICE HMM correctly identifies the chromosomal segment containing the two heterozygous
SNPs as normal.
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Figure 6.
An image of the predictions from the vanilla HMM fit to chromosome 2 of the 60 parental
samples in the CEPH trios dataset (top). The x-and y-coordinates used for the image are
physical position and subject, respectively. Subject NA07056 has a confirmed UPD at 195 Mb.
Also plotted are the frequencies of LOH across the 60 samples (middle) and the cytoband
(bottom).

Scharpf et al. Page 23

Ann Appl Stat. Author manuscript; available in PMC 2009 July 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
Differences between the log likelihoods for the correct and incorrect state sequences for the
vanilla (light grey) and ICE (dark grey) HMMs are indicated in the upper panels. The
differences are shown for deletions of different sizes (horizontal axis), and four different scale
parameters K for the copy number estimate variability in the simulated deletions (0.4, 0.7, 1.0,
1.3, left to right). The data were scaled to fit the panels, and slighty smoothed from the raw
data by exploiting an obvious mean and variance relationship. The middle row of panels shows
the estimated probabilities of the differences in log likelihoods being positive (e. g. the
proportion of instances when the correct model was favored over the incorrect one) assuming
normality of the differences in the log likelihoods. The lower row of panels shows the estimated
differences in these probabilities between ICE and vanilla.
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