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SUMMARY
For many diseases, it is difficult or impossible to establish a definitive diagnosis because a perfect
“gold standard” may not exist or may be too costly to obtain. In this paper, we propose a method to
use continuous test results to estimate prevalence of disease in a given population and to estimate
the effects of factors that may influence prevalence. Motivated by a study of human herpesvirus 8
among children with sickle-cell anemia in Uganda, where 2 enzyme immunoassays were used to
assess infection status, we fit 2-component multivariate mixture models. We model the component
densities using parametric densities that include data transformation as well as flexible transformed
models. In addition, we model the mixing proportion, the probability of a latent variable
corresponding to the true unknown infection status, via a logistic regression to incorporate covariates.
This model includes mixtures of multivariate normal densities as a special case and is able to
accommodate unusual shapes and skewness in the data. We assess model performance in simulations
and present results from applying various parameterizations of the model to the Ugandan study.
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1. Introduction
This article was motivated by the problem of estimating prevalence of infection with human
herpesvirus 8 (HHV-8) and quantifying the effects of factors that influence prevalence of
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HHV-8 infection in several African populations. HHV-8, also called Kaposi’s sarcoma (KS)–
associated herpesvirus, is the generally accepted infectious cause of KS (Chang and others,
1994). Prevalence of HHV-8 infection and KS risk shows distinctive geographical variations.
They are highest in sub-Saharan Africa, intermediate in Mediterranean countries, and lowest
in the United States and northern Europe, where most KS cases are AIDS related (Martin,
2003). The modes of HHV-8 transmission are not well understood and appear to differ in high-
and low-HHV-8 incidence regions. In African and Mediterranean countries, HHV-8 infection
occurs during childhood, most likely via nonsexual modes of transmission, but in the United
States and northern Europe, infection is essentially restricted to homosexual men and
associated with sexual exposures (Martin, 2003).

Infection status with HHV-8 can be assessed by several serological assays, but it is impossible
to establish a definitive diagnosis of infection status as a perfect gold standard measure does
not exist. Standard statistical approaches to investigating factors that affect the prevalence of
HHV-8 infection, such as contingency table analyses and logistic regression, employ an
operational definition of “infected”, namely that the optical density (OD) reading of a given
assay exceeds a prespecified cutoff value. Cutoff values are commonly determined based on
previous experimental results and a visual inspection of histograms of the OD readings for the
given study. To avoid having to use predefined cutoff values for an operational definition of
infected, Pfeiffer and others (2000) fitted a 2-component mixture model to the results of
continuous assay readings to estimate the prevalence of infection with Helicobacter pylori,
with the components corresponding to “infected” and “uninfected” subpopulations. Letting y
to denote the OD readings for immunoglobulin G, the model that treats the true infection status
as a latent variable has a density function given by

(1.1)

where f1 is the density function corresponding to the test results for infected and f0 for
uninfected subjects. To assess the x factors that influence infection with H. pylori, Pfeiffer and
others modeled the mixing probability p, the probability of being infected, by a logistic
regression, p = p(x;β) = exp(β'x)/{1 + exp( β'x)}.

We will extend model (1.1) to the multivariate setting to address a second problem, that is,
how to combine the information from several assays that capture different but not necessarily
independent indicators of HHV-8 infection. This is important because a combination of assays
may provide a better diagnostic tool and yield more accurate estimates of prevalence.
Developments in the area of multivariate mixtures are mostly concentrated on mixtures of
multivariate normals because of their computational convenience (McLachlan and others,
2003). However, the fit of multivariate normal densities to the log-transformed assay readings
in our data was poor, leading to unreasonably large estimates of the key parameter of interest
p, the prevalence, in model (1.1). To improve the fit and obtain unbiased estimates of p, we
developed more flexible models to accommodate skewness and heavy tails in the OD readings.
First, we incorporate the parameters of the Box–Cox transformation into the model and
estimation. Second, we use densities from a flexible class introduced by Gallant and Nychka
(1987) as the mixture components. This model includes multivariate normal mixture models
as a special case. Covariates are incorporated into the mixing probability via logistic regression.

In Section 2, we define the bivariate logistic mixture models before assessing the performance
of the models in simulations (Section 3). We apply the models to data from a cross-sectional
study of blood-borne transmission of HHV-8 in Ugandan children afflicted with sickle-cell
anemia (Section 4). We compare prevalence estimates from the bivariate mixture model to
prevalence estimates obtained by averaging estimates from univariate mixtures fitted to each
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assay separately. We also compare logistic estimates from the bivariate mixture to those based
on predefined cutoff values for the assays. Section 5 contains concluding remarks.

2. The data and model formulation
Inference is based on cross-sectional data on disease status and covariates at the time of
examination. The data are (Yj,Xj) for j = 1,⋯, n, where Yj = (Yj1,⋯, Yjl) and Yjk denotes the
observed measurement for the kth assay on the jth subject. The p×1 vector Xj contains measured
covariates. In our application, 2 immunoassays were used to determine HHV-8 infection status,
and hence Yj = (Yj1, Yj2). The first component, Yj1, stands for measurements on the K8.1 assay
that detects antibodies expressed during lytic infection, in serum. The second component,
Yj2, corresponds to serological measurements on the orf73 assay that tests for antibodies
expressed during latency (Mbulaiteye and others, 2003).

2.1 Mixture model
There is an extensive literature on mixture models (McLachlan and Peel, 2000; Fraley and
Raftery, 2002) that were developed to analyze the data that arise from 2 or more distinct data-
generation processes. One major problem in mixture models concerns estimation of the number
of component densities. However, in our application, we are confident that there are precisely
2 distinct populations that give rise to the data, an infected and an uninfected population. Thus,
we assume that each person is in one of the 2 latent true infection states, which we label as
state Ij = 1 (infected) and state Ij = 0 (uninfected) with p = pr(Ij = 1) for the jth subject. The
probability of infection can depend on covariates xj, for example, through logistic regression
models pr(Ij = 1|xj) = p(xj;β). Other parameterizations of p have been used in the context of
survival data in Pfeiffer and others (2004). Given xj, the probability density function of Yj is
modeled as

(2.1)

where f(·; α0) is a bivariate parametric density function that corresponds to the OD
measurements of the uninfected subpopulation and f(·; α1) is the density of the OD readings
for the infected subpopulation.

2.2 Choice of component densities
In previous work (Pfeiffer and others, 2000), we log-transformed the positive OD readings to
remove asymmetry in the measurements and used normal densities for the components in
model (2.1). However, the transformation was determined by visual inspection. We now
incorporate the data transformation indexed by an unknown parameter λ into the likelihood.
We choose the Box–Cox power transformation

(2.2)

for the components of y = (y1, y2). In the univariate density setting, coupling the Box–Cox
power transformation to likelihood methods for normal mixtures has been used previously (e.g.
Gutierrez and others, 1995). We use the same transformation for both components of the
mixture for each assay, that is λ0 = λ1. Transformation ignores the scale of the observed data,
and thus for different values of λ, the parameters of the component densities are not directly
comparable (Carroll and Ruppert, 1981). Unlike parameters of the component densities, the
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mixing proportion p(x;β) in (2.1) has a physical meaning independent of the transformed scales,
namely the percentage of the subpopulation with x that is infected.

To allow for more flexible shapes compared to normal densities, we choose the component
densities in model (2.1) from a general class introduced by Gallant and Nychka (1987), called
the semi-nonparametric densities. These densities have been studied, for example, by Zhang
and Davidian (2001) and are defined as follows. Let φ(y, μ, Σ) be the bivariate normal density
with mean vector μ, covariance matrix Σ, and argument y = (y1, y2). Then, the semi-
nonparametric density is

(2.3)

In (2.3), K = 0 reduces to the bivariate normal density. For K ≥ 1, the polynomial part of the
density has d = (K + 1)(K + 2)/2 distinct terms. Using the standard normal density and z =
Σ−1/2(y – μ) in (2.3), Zhang and Davidian (2001) showed that ∫ f(y)dy = 1 can be guaranteed
by imposing the condition a'Aa = 1 on the coefficients a = (aij) of (2.3), where A is a matrix

with (i,j)th element  for 2 standard normal variables U1 and U2 and the
superscripts correspond to ai and aj. Because A is a positive definite matrix, there exists a matrix
B such that A = B2, and letting c = Ba, the constraint a'Aa = 1 reduces to c'c = 1. They represent
c in terms of polar coordinates as c1 = sin(ϕ1),c2 = cos(ϕ1) sin(ϕ2), ⋯, cd = cos(ϕ1) cos(ϕ2) ⋯
cos(ϕd−1), for –π/2 ≤ ϕ < π/2. Note that the dimension of ϕ = (ϕ1, ⋯, ϕd-1) is now d − 1. The
constraints are automatically satisfied, and standard unconstrained optimization techniques can
be used to find the maximum likelihood estimates of the parameters.

Combining (2.2) and (2.3), the semi-nonparametric mixtures (model I) are

(2.4)

where  is the Jacobian of the transformation y→ y(λ) and θ = (β,λ,μ0, Σ0,ϕ0,
μ1, Σ1,(ϕ1). Following the recommendations by Zhang and Davidian (2001), we limit the model
to K ≤ 2. This model contains the mixture of multivariate normal densities as a special case.
Two other special cases of interest are the situation of model I, K = 0, that results in a model
that combines the Box–Cox transformation with multivariate normal densities, and a model
that fits the mixture (2.4) with K ≥ 1 to untransformed data (model II):

(2.5)

For a fixed number of mixing components, models (2.4) with increasing K are nested, and thus
formal likelihood-ratio tests can be applied to assess goodness of fit. Testing models of
increasing complexity allows one to choose a parsimonious but well-fitting model within the
class. While model (2.5) is also nested within the more general model (2.4) for the same K,
model I, K = 0, and (2.5) are not nested within each other, and we thus also use the Akaike
information criterion (AIC) for model comparison.

2.3 Estimation
The log-likelihood for n individuals based on model (2.4) is given by
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We maximized L (θ) directly with respect to θ using a dual quasi-Newton method (NLPQN in
PROC IML, SAS 8.2), subject to the constraints det(Σi) > 0, i = 0,1. We also implemented an
Expectation and Maximization (EM) algorithm (supplemental material available at
Biostatistics online). In every case we tested, the EM and quasi-Newton method agreed. To
obtain convergence to a global maximum, we choose 100, 600, and 1000 starting values for
the optimization for model I, K = 0,1, and 2, respectively. For model II, 200 (K = 1) and 300
(K = 2) starting values were used.

For independent and identically distributed (Yj,Xj), the maximum likelihood estimate θ ̂

satisfies  → Normal (0̱ Q−1, where θ denotes the true parameters and Q = - E[∂2log
{g(y|x;θ)}/ (∂θi∂θj)]. The expectation is taken with respect to the joint distribution of (Y, X).

We estimate Q by , where Hi denotes the negative Hessian of log{g(yi|xi,θ)}
obtained through numerical differentiation at θ ̂.

Local identifiability of model I (2.4) can be shown to hold at a given point in the inside of the
parameter space as the information matrix at any point is nonsingular under the correctly
specified model (Rothenberg, 1971). However, issues relating to global identifiability and
stability of the models can still arise. For K = 2, a single semi-nonparametric density can
accommodate heavy tails and skewness as well as multiple modes. This very flexibility can
lead to identifiability problems, for example, when multiple modes are present in the data. For
a specific realization, either component density, the one corresponding to the infected and the
one corresponding to the uninfected population, can capture modes located roughly in the
center, which would greatly affect estimates of the mixing proportion. A second related issue
is that a single density alone may provide an excellent fit to the data. To our knowledge, there
are no published references that address what general shapes the semi-nonparametric densities
can accommodate. We aimed to address identifiability of model (2.4) in several numerical
experiments based on simulated data (supplemental material available at Biostatistics online)
and the real data (Section 4).

3. Simulations
To assess the performance of the various models and numerical issues, we fit the models (2.4)
and (2.5) to data from several simulated scenarios. One hundred data sets with 1000 or 2000
data points were generated for 3 sets of simulations presented in this section (further
simulations are in the supplemental material available at Biostatistics online). The tables show
mean estimates of λ and p over the simulations that converged.

In Table 1, we study the performance for estimating p based on data that arose from a mixture
of bivariate normal distributions with constant mixing proportion, p = 0.25, and to assess the
robustness of the models to small p, p = 0.05. This case corresponds to a linear Box-Cox
transformation, that is, λ1 = λ2 = 1. The means of the normal components were μ0 = (10,10)
and μ1 = (11,11) and the covariance matrices were Σ0 = [0.25 0.1; 0.1 0.25] and Σ1 = [0.25
0.05; 0.05 0.5], where Σ = [(Σ)11 (Σ)12; (Σ)12 (Σ)22]. For these 2 settings, we also compared
the coverage of a 95% confidence interval for p based on asymptotic normality of the estimate
to likelihood-ratio test-based confidence intervals.
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For the simulations with p = 0.25, the corresponding mean estimates of p (with empirical
standard errors in parenthesis) were 0.25(0.06), 0.25(0.06), and 0.27(0.11) for models I, K =
0,1,2, and 0.25(0.07) and 0.10(0.14) for models II, K = 1 and K = 2, respectively. While all
models yielded unbiased estimates of p, the standard error of p for model I, K = 2, was nearly
twice as large as the standard error of the simpler models I, K = 0 and K = 1. The coverage of
the confidence intervals was close to the nominal 95% level for models I, K = 0 and K = 1 and
for model II, K = 1, for which p was well estimated, but it was low for model I, K = 2, and
model II, K = 2, ranging from 71% to 75% (Table 1). This illustrates the need to choose a
parsimonious but well-fitting model. Based on the likelihood-ratio test, in 85/100 simulations,
both models I, K = 1 and K = 2, did not fit the data statistically significantly better than the
simpler model I, K = 0. Similarly, model II, K = 2, did not provide a better fit than model II,
K = 1. Not surprisingly, as the data were generated from a mixture of normals, the simplest
model provided unbiased estimates of p with smaller variance and the best fit in most of the
runs, as is also reflected by the mean log-likelihood values for each model (Table 1).

For the simulations with p = 0.05, the estimates of p were 0.06(0.06), 0.06(0.05), and 0.10
(0.11) for models I, K = 0, 1, 2, and 0.08(0.10) and 0.08(0.17) for models II, K = 1 and K = 2,
respectively. The estimates of the parameters of the component densities were nearly unbiased
for all models (data not shown). Based on the likelihood-ratio test, for 83/100 simulations, the
more complex models did not provide a better fit than the simplest model I, K = 0. While the
models estimated the small mixing probabilities without bias, the coverage of all confidence
intervals was below the nominal 95% level, with the likelihood-ratio-based confidence
intervals yielding slightly better coverage for models I, K = 0 and K = 2. We attribute the lower-
than-nominal coverage to the fact that p was close to the boundary zero of the parameter space.
The asymptotic normal confidence intervals for model II, K = 2, are not shown as 90/100 runs
resulted in singular Hessian matrices.

For the second set of simulations (Table 2), we generated data from the same bivariate normal
distributions as Table 1, but with mixing probability p = exp(β0 + β1 X)/{1 + exp(β0 + β1X)},
with β0 = −2, β1 = 1, and a Bernoulli covariate X∈ {0,1} with probability 0.5. For these
parameters, E(p) = 0.19.

For the logistic mixture, all models estimated the parameters β of the mixing proportion as
close to (−2.0, 1.0), with similar standard errors for N = 1000, with the exception of model II,
K = 2. For N = 2000 data points, the estimates of β were virtually unbiased with comparable
standard errors for all models. Models I, K = 0, K = 1, and K = 2, also resulted in similar
parameter estimates of λ. The estimated mean vectors and covariance matrices were also nearly
unbiased for all models. The asymptotic normal confidence intervals had approximately 95%
coverage for all models with the exception of model I, K = 2, where the coverage for β1 was
only 75% for N = 1000. For N = 2000, however, all models but model II, K = 2, had nominal
coverage. For model II, K = 2, again nearly all runs resulted in singular Hessian matrices. Based
on likelihood-ratio test, model I, K = 0, was preferable to the more complex models in nearly
all simulations.

The last set of simulations (Table 3) assessed the performance of the models for highly skewed
data with constant mixing proportions p = 0.5 and p = 0.05. The components y01 and y02 of the
first subpopulation were independent  variables, and the components of the second
subpopulation y11 and y12 were independent  variables. For the data simulated with p = 0.5,
the mean estimated mixing proportions were 0.51(0.05), 0.51(0.05), and 0.48(0.12) for models
I with K = 0, K = 1, and K = 2, respectively, with the standard error for K = 2 being more than
twice as large as for the simpler models. The estimates of p for model II, K = 2, and model II,
K = 1, yielded a lower average estimate of p of 0.44(0.06). Models I, K = 0 and K = 1, resulted
in very similar parameter estimates, and the estimates of the polynomial coefficients of models
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I, K = 1 and K = 2, did not provide evidence for a statistically significant polynomial component.
The likelihood-ratio-based confidence intervals for models I, K = 0 and K = 1, had 94%
coverage, while it was only 74% for model I, K = 2. For both models II, the coverage was much
lower, 39% and 38% for K = 1 and K = 2, respectively. Again, these models did not fit the data
as well as model I, K = 0, which has fewer parameters but allows for a Box-Cox transformation.
All models correctly estimated the correlation terms in the mixing densities close to zero. All
runs converged for models I, K = 0 and K = 1, and 97/100 runs converged for K = 2. For model
II, 91/100 simulations converged for K = 1 and 89/100 for K = 2. The simulations with p =
0.05 illustrate well that a lack of fit of the mixing components can lead to severe bias in the
estimates of p. The mean estimates of p were 0.04(0.05), 0.05(0.07), and 0.08(0.09) for models
I with K = 0, K = 1, and K = 2, respectively, and, highly biased, 0.60(0.05) and 0.59(0.06) for
models II, K = 1 and K = 2, respectively. The coverage of likelihood-ratio-based confidence
intervals, however, was below the 95% nominal level for all models. For model I, 99/100 runs
converged for K = 0, 95/100 for K = 1, and 94/100 for K = 2. For model II, all runs converged
for K = 1 and 99/100 for K = 2. As indicated by the log-likelihood-ratio test, model I, K = 2,
fits the data better than model I, K = 0 or K = 1, for p = 0.5, but not for p = 0.05. For all values
of K, however, model I fits the data significantly better than model II.

4. Application to the Ugandan HHV-8 study
We applied the bivariate mixture models (2.4) and (2.5) to data collected from 599 children
aged 0–16 years, at Mulago Hospital, Kampala, from November 2001 to April 2002.
Interviewers obtained a blood sample from each child for the K8.1 and the orf73 immunoassays.
The main predictors of infection status were age (younger than 5 years, 5 ≤ age < 10, older
than 10 years), transfusion status (ever/never transfused), and water source (tap water versus
surface water). Details about the study and related HHV-8 epidemiology are in Mbulaiteye
and others(2003).

4.1 Analysis using mixture models with constant p
Table 4 shows the estimates of λ, p, and the value of the log-likelihood for models I and II with
constant mixing probability p and for single semi-nonparametric densities. Model I, K = 2, had
a significantly better fit than all other models based on the likelihood-ratio test and also had
the largest AIC value. Model I, K = 1, also fit the data significantly better than model I, K = 0,
and both models II, based on the likelihood-ratio test. Histograms of the K8.1 and orf73 OD
readings on the λ scales for model I and on the original scale for model II, with the
corresponding fits from models I and II for K = 1 and K = 2 superimposed are presented in
Figure 1, respectively. Model parameter estimates are presented in the supplemental material
available at Biostatistics online. The prevalence estimates based on model I were p = 0.19(0.03)
for K = 1 and p = 0.18(0.02) for K = 2, while they were much larger for the models with poor
fit, p = 0.49(0.06) for model I, K = 0, and p = 0.44(0.03) and p = 0.43(0.06) for model II with
K = 1 and K = 2. Models with poorer fit exhibited higher collinearity in parameter estimates.
The correlation of p̂ with the other model parameters was largest for model I, K = 0; for example,
the correlations of p̂ with μ̂00 and μ̂10 were 0.71 and 0.85, respectively, which made the
estimates of p very sensitive to the fit of the mixing components. For model I, K = 2, however,
the largest correlation was 0.35 between p̂ and (Σ̂1)11. Estimates of p were insensitive to the
choice of starting values.

To study the stability and possible identifiability problems of the estimates of p in the Uganda
data set, we sampled 100 data sets with replacement and fit models I, K = 1 and K = 2 with
600 and 1000 starting values, respectively. The mean estimates of p over 100 bootstrap
repetitions (bootstrap standard deviation in parenthesis) were 0.19(0.05) and 0.18(0.03) for
models I, K = 1 and K = 2, respectively. The standard deviations estimated from the bootstrap
were very close to the model-based estimates of the standard deviations (Table 4), indicating
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that the information matrix was well defined and asymptotic theory could be used for inference.
Histogram plots of the bootstrap p̂ (Figure 2) showed a unimodal distribution very narrowly
centered around 0.2 for models I, K = 1 and K = 2.

For all choices of K, and even for K = 0, the 2-component mixture fits the Uganda data better
than a single semi-nonparametric density as assessed by the AIC (Table 4).

We compared the prevalence estimate from the bivariate model to estimates obtained by
averaging prevalence estimates from univariate mixture models that were fitted separately to
the K8.1 and orf73 assays (Table 4). To account for the dependence between the univariate
estimates, we computed the standard errors of the averaged estimates using a bootstrap
procedure, assuming that the weights were known and fixed for the inverse variance–weighted
estimate.

Based on the likelihood-ratio test, model I, K = 2, had a significantly better fit than all other
models and also the largest AIC value. The simple average of the prevalence estimates from
the best fitting models was 0.26(0.08), while the inverse variance–weighted estimate was 0.18
(0.06). The inverse variance–weighted estimate thus agreed with the prevalence estimate from
the bivariate model. However, the bootstrap standard error of this estimate was 3 times larger
than the estimated standard error of p from the bivariate mixture model and twice as large as
the bootstrap estimate of the standard error of p from that model. The bivariate mixture model
thus provided a much more precise estimate of prevalence.

4.2 Analysis with logistic mixture models
We then modeled the mixing component p by a logistic function that included age in 2
categories, transfusion status, and water source as covariates. We could incorporate covariates
by regressing the means of the component densities on covariates, but in our problem, the
covariates considered were thought to influence the chance of being infected, but not the
antibody distributions conditional on infection status. To verify this, we first fit the constant
p models to data stratified on the categories of age, transfusion status, and water source. The
stratified component density estimates were very similar, and thus the more general model was
not needed in our data.

The estimates for the parameters in the logistic component and the values of the likelihood and
AIC are given in Table 5. Again, the fit of model I, K = 2, was significantly better than the fits
of the other models based on the likelihood-ratio test. Model I, K = 2, also had the largest AIC
value. The parameters of the mixing components for model I, K = 0, and model II did not
change much compared to the model with constant p. For models I, K = 1 and K = 2, the
parameters of the mixing components, however, were more affected. For example, for K = 1,
λ changed from (0.24, 0.24) for constant p to λ = (0.41, 0.33) for the logistic mixture. The
parameters of the logistic mixing probability were similar: age and surface water source were
associated with significantly elevated risk of infection for all models and transfusion status
was not significantly associated. Model I, K = 2, resulted in slightly larger estimates for the
log-odds parameters than the other models. Model I, K = 2, also provided the best univariate
fits when applied separately to the K8.1 and orf73 OD readings (data not shown).

The mixture model allows one to calculate the posterior probability of infection, Ij = 1, given
xj and yj. Indeed, from (2.4), we get
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Figure 3 shows histograms of the posterior probabilities of infection computed based on model
I, K = 2, fit to the bivariate data as well as to the marginal K8.1 and orf73 data. To minimize
the overall misclas-sification probability based on the mixture model when discriminating
infected from uninfected subjects, one sets Ij = 1 if pr(Ij = 1|yj, xj) ≥ 0.5 and Ij = 0 otherwise.
For all models, fewer than 5% of the estimates were between 0.3 and 0.7.

4.3 Analysis with infection status assumed to be known
We compared the estimates from the mixing probability of the multivariate mixture models
with several marginal logistic models, based on operational definitions of infected. The
coefficients in this model have a different interpretation than the parameters in the logistic part
of the mixture, however. They are based on the observable events Ti = I(yi ≥ ci),i = 1,2, whereas
the mixture models estimate the probability of the latent, unobservable infection state. To
define infected, we applied the cutoff points used by Mbulaiteye and others (2003), with OD
for the K8.1 ≤0.90 corresponding to uninfected, OD > 1.20 to infected, and, somewhat
arbitrarily, OD reading in the range 0.90–1.20 labeled as “indeterminate”. The prevalence of
infection (excluding 38 indeterminate children) was 117/561= 20.9%. The operational
definition for the orf73 assay was that a child was HHV-8 negative for OD readings ≤0.5,
indeterminate for OD readings in the range 0.5–0.7, and infected if OD ≥0.7. Fifty children
were indeterminate and 127 (23.1%) of the remaining 549 were classified as infected, based
on their orf73 OD readings. These estimated prevalences agree well with the estimates of p̂ for
models I (K = 1,2) in Table 4. Often results from both assays are combined by assuming that
a child that is positive on either one of the 2 assays is infected, T = max(T1, T2). After excluding
3 children who were indeterminate on both assays, the prevalence based on this criterion was
23%. The corresponding prevalence estimate based on the mixture model is the posterior
probability of infection given that the assay readings were not in the indeterminate region, pr
(I = 1\y1 ∉ [0.9, 1.2], y2 ∉ [0.5, 0.7]), estimated to be 0.19 and 0.18 for models I, K = 1 and
K = 2, respectively. The estimates for the models with poor fit were again much higher, 0.48
for model I, K = 0, and 0.43 and 0.42 for models II, K = 1 and K = 2. As only 3 children had
OD readings in the joint indeterminate region, these estimates differed only slightly from p̂ in
Table 4.

Estimates of log-odds ratios based on the various definitions for infected (Table 5) are close
to those obtained from the mixture models, leading us to conclude that the operational
definitions of infected capture the true latent infection status well.

4.4 Estimation and comparison of cutoff points
The multivariate mixture can also be used to find the cutoff values that in some sense best
separate the uninfected from the infected population. To determine optimal cutoff points for
the assays, we minimize the probability of misclassification under the mixture model as a
function of cut-points (c1, c2),

(4.1)

where the αi, i = 0, 1, and p are replaced by their estimates. Reported on the original OD scale,
minimizing (4.1) for model I, K = 2, yields c1 = 0.79 and c2 = 0.79 with misclassification
probability 0.02. While this would not change the number of children that falls above the cutoff
value for K8.1 compared to the cutoff values which the investigators used previously, 39 more
children would be classified as infected based on the orf73 if c2 = 0.79 was used.
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5. Discussion
In this paper, we present a new class of multivariate mixture models that combines the Box–
Cox transformation with a class of semiparametric densities for the mixing components. This
class contains mixtures of normals as a special case and, for a fixed number of mixing
components, allows for formal testing of models of increasing complexity. Covariates can be
incorporated into the mixing probabilities by logistic regression or other generalized linear
models. The motivation for our work was the desire to combine 2 different assays to assess
infection status with HHV-8 and factors that influence prevalence. Although we are fairly
certain that there are 2 distinct subpopulations in the data, one infected and the other uninfected,
the assay measurements are not always well separated and the data have heavy tails. The main
interest in our applications was the estimation of the parameters relating to the mixing
proportion or prevalence, while the parameters of the mixing components were nuisance
parameters in the model. An attractive feature of our model is that it can accommodate
skewness and multimodality in the data, but this very flexibility can lead to identifiability
problems. To study the identifiability aspects of the models, we examined the behavior and
stability of estimates of p in simulations (supplemental material available at Biostatistics
online), using a bootstrap procedure for the Uganda data. In summary, to avoid identifiability
problems in using our proposed class of models, it is necessary to try numerous starting values
for maximization to ensure convergence to a global maximum and, most importantly, to avoid
overfitting by testing nested models of increasing complexity as recommended for a single
semi-nonparametric density (Liu and Zhang, 1998).

Choosing well-fitting but parsimonious models is also important as the use of more flexible
models for the component densities, while reducing bias, has the potential to increase the
variance of key parameters, such as prevalence. Such a tendency was seen in simulations (Table
1 and Table 2) where all the models, even the simpler ones, fit the data well, but the simpler
models yielded more precise estimates of prevalence. However, in data from the Uganda study,
we found that more complex but better fitting models yielded more precise estimates of
prevalence than a simpler, poorly fitting models (Table 4).

Application of the models to the Uganda data highlights the importance of including both the
Box–Cox transformations and the polynomial components in the densities to provide adequate
fit to the data and thus stable estimates of prevalence. Estimates of HHV-8 prevalence were
insensitive to the choice of starting values for p, and bootstrap replications yielded a tight
distribution of p̂ centered about the original estimate. Bootstrap standard errors were close to
model-based standard errors, indicating that p was well identified in our data and that inference
based on asymptotic theory was valid.

We compared prevalence estimates p from the bivariate mixture model to estimates obtained
by averaging prevalence estimates from univariate mixtures fit to each assay separately. While
the inverse variance–weighted prevalence estimate was identical to p from the bivariate mixture
model, the estimated standard error of the inverse variance–weighted estimate (assuming fixed
and known weights) was 3 times larger than the model-based standard error of p from the
bivariate mixture model and twice as large as its bootstrap standard error. Computing
prevalence by averaging estimates from the marginal models thus resulted in an estimated loss
of efficiency of at least 75% for this data set.

Our work relates to other approaches for evaluating diagnostic tests without gold standards.
Rindskopf and Rindskopf (1986) among others fitted 2-component multivariate mixture
models with the components corresponding to “diseased” and “non-diseased” subjects.
However, the results of the K tests applied to the same person were assumed to be independent
conditional on disease status. We relax the independence assumption by allowing joint
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densities for each component. In our application, 2 immunoassays that detect 2 different types
of antibodies were used to assess infection status. In case of infection, both types of antibodies
can be present, and thus independence likely does not hold.

The mixture model approach has several potential advantages compared to standard
epidemiologic approaches to define infection status. We need not rely on an external definition
of a cutoff value to classify each observation. The continuous nature of the data is used to its
full extent, and we obtain a complete description of the distribution of the OD values (y1, y2)
in the presence of covariates X. This enables us to calculate pr(infected|y1, y2, X), the probability
of being truly infected given the OD readings and covariates X.
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Fig. 1.
Histograms and fits from bivariate mixture densities on λ scale for Uganda HHV-8 study.
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Fig. 2.
Histogram of bootstrap estimates of p for Uganda HHV-8 data.
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Fig. 3.
Posterior probabilities of infection for the Uganda children.
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