Skip to main content
. Author manuscript; available in PMC: 2009 Jul 15.
Published in final edited form as: Biostatistics. 2007 Jun 12;9(1):137–151. doi: 10.1093/biostatistics/kxm018

Table 1.

Mean estimates of p and λ for models I and II over 100 simulations for N = 1000 observations simulated from “a mixture of 2 bivariate normal distributions with constant p.” μ0 = (10,10), μ1 = (11, 11), Σ0 = [0.25 0.1; 0.1 0.25], and Σ1 = [0.25 0.05; 0.05 0.50]. Empirical standard errors are given in parenthesis

Model λ1 = 1 λ2 = l p = 0.25 Coverage for p Coverage for p Log-likelihood
I, K = 0 1.00 (0.03) 1.00 (0.02) 0.25 (0.06) 0.93 0.94 −2010.71 (32.9)
I, K= 1 1.00 (0.02) 1.02 (0.01) 0.25 (0.06) 0.91 0.93 −2009.69 (32.7)
I, K= 2 1.00 (0.02) 1.00 (0.02) 0.27 (0.11) 0.72 0.71 −2006.68 (32.8)
II, K= 1 0.25 (0.07) 0.93 0.90 −2009.50 (32.6)
II, K= 2 0.10 (0.14) 0.71 0.75 −2007.83 (30.9)

Model λ1 = 1 λ2 = l p = 0.25 Coverage for p Coverage for p Log-likelihood

I, K = 0 1.00 (0.02) 1.00 (0.02) 0.06 (0.06) 0.78 0.89 −1865.70 (31.0)
I, K = 1 1.00 (0.02) 1.02 (0.02) 0.06 (0.05) 0.85 0.84 −1864.69 (30.9)
I, K = 2 1.00 (0.02) 1.00 (0.02) 0.08 (0.10) 0.64 0.68 −1860.14 (31.2)
II, K = 1 0.08 (0.10) 0.54 0.50 −1860.14 (31.2)
II, K = 2 0.08 (0.17) NA 0.35 −1862.83 (31.3)

Coverage of confidence intervals based on the asymptotic normality of p^.

Coverage of likelihood-ratio test-based confidence intervals.