Skip to main content
. Author manuscript; available in PMC: 2009 Jul 15.
Published in final edited form as: Biostatistics. 2007 Jun 12;9(1):137–151. doi: 10.1093/biostatistics/kxm018

Table 3.

Mean estimates ofp and λ for models I and II over 100 simulations for N = 1000 observations simulated from “a mixture of 2 chi-square distributions, constant p”: y01χ12,y02χ12,y11χ32, and y12χ32. Empirical standard errors are given in parenthesis

Model λ1 λ2 p = 0.5 Coverage for p Log-likelihood
I, K= 0 0.20 (0.02) 0.20 (0.02) 0.51 (0.05) 0.94 −3152.49 (66.9)
I, K= 1 0.20 (0.02) 0.20 (0.02) 0.51 (0.05) 0.94 −3152.47 (66.9)
I, K= 2 0.19 (0.03) 0.18 (0.03) 0.48 (0.12) 0.74 −3138.60 (67.8)
II, K= 1 0.44 (0.06) 0.39 −3893.36 (56.6)
II, K= 2 0.44 (0.06) 0.38 −3862.35 (69.3)

Model λ1 λ2 p = 0.5 Coverage for p Log-likelihood

I, K= 0 0.31 (0.03) 0.30 (0.03) 0.04 (0.05) 0.77 −4061.50 (39.3)
I, K= 1 0.30 (0.03) 0.30 (0.03) 0.05 (0.07) 0.67 −4061.64 (40.3)
I, K= 2 0.28 (0.06) 0.27 (0.06) 0.08 (0.09) 0.66 −4054.07 (40.7)
II, K= 1 0.60 (0.05) 0.00 −4327.55 (40.5)
II, K= 2 0.59 (0.06) 0.00 −4253.37 (40.6)

Coverage for likelihood-ratio-based confidence intervals.