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Abstract
Porous Si exhibits a number of properties that make it an attractive material for controlled drug
delivery applications: The electrochemical synthesis allows construction of tailored pore sizes and
volumes that are controllable from the scale of microns to nanometers; a number of convenient
chemistries exist for the modification of porous Si surfaces that can be used to control the amount,
identity, and in vivo release rate of drug payloads and the resorption rate of the porous host matrix;
the material can be used as a template for organic and biopolymers, to prepare composites with a
designed nanostructure; and finally, the optical properties of photonic structures prepared from this
material provide a self-reporting feature that can be monitored in vivo. This paper reviews the
preparation, chemistry, and properties of electrochemically prepared porous Si or SiO2 hosts relevant
to drug delivery applications.
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1. Introduction
Porous Si has been investigated for applications in microelectronics, optoelectronics, [1–4]
chemical [5,6] and biological [7–10] sensors, and biomedical devices [11]. The in vivo use of
porous Si was first promoted by Leigh Canham, who demonstrated its resorbability and
biocompatibility in the mid 1990s [12–15]. Subsequently, porous Si or porous SiO2 (prepared
from porous Si by oxidation) host matrices have been employed to demonstrate in vitro release
of the steroid dexamethasone [16], ibuprofen [17], cis-platin [18], doxorubicin [19], and many
other drugs [20]. The first report of drug delivery from porous Si across a cellular barrier was
performed with insulin, delivered across monolayers of Caco-2 cells [21]. An excellent review
of the potential for use of porous Si in various drug delivery applications has recently appeared
[20].

An emerging theme in porous Si as applied to medicine has been the construction of
microparticles (“mother ships”) with sizes on the order of 1–100 µm that can carry a molecular
or nanosized payload, typically a drug.With a free volume that can be in excess of 80%, porous
Si can carry cargo such as proteins, enzymes [22–29], drugs [16–20,30,31], or genes. It can
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also carry nanoparticles, which can be equipped with additional homing devices, sensors, or
cargoes. In addition, the optical properties of nanocrystalline silicon can be recruited to perform
various therapeutic or diagnostic tasks—for example, quantum confined silicon nanostructures
can act as photosensitizers to produce singlet oxygen as a photodynamic therapy [32–35]. A
long-term goal is to harness the optical, electronic, and chemical properties of porous Si that
can allow the particles to home to diseased tissues such as tumors and then perform various
tasks in vivo. These tasks include detecting, identifying, imaging, and delivering therapies to
the tissue of interest. In this work we review the chemistry of porous Si that allows the
incorporation of drug pay-loads, homing devices, optical features for imaging, and sensors for
detection of various physical changes.

2. Preparation of porous Si
2.1. Electrochemical etching

Porous Si is a product of an electrochemical anodization of single crystalline Si wafers in a
hydrofluoric acid electrolyte solution. Pore morphology and pore size can be varied by
controlling the current density, the type and concentration of dopant, the crystalline orientation
of the wafer, and the electrolyte concentration in order to form macro-, meso-, and micropores
[36]. Pore sizes ranging from 1 nmto a few microns can be prepared.

The mechanism of pore formation is not generally agreed upon, but it is thought to involve a
combination of electronic and chemical factors [37]. The type of dopant in the original silicon
wafer is important because it determines the availability of valence band holes that are the key
oxidizing equivalents in the reaction shown in Fig. 1. In general the relationships of dopant to
morphology can be segregated into four groups based on the type and concentration of the
dopant: n-type, p-type, highly doped n-type, and highly doped p-type. By “highly doped,” we
mean dopant levels at which the conductivity behavior of the material is more metallic than
semiconducting. For n-type silicon wafers with a relatively moderate doping level, exclusion
of valence band holes from the space charge region determines the pore diameter. Quantum
confinement effects are thought to limit pore size in moderately p-doped material. For both
dopant types the reaction is crystal face selective, with the pores propagating primarily in the
<100> direction of the single crystal. A simplified mechanism for the chemical reaction is
shown in Fig. 2 [38,39]. The electrochemically driven reaction requires an electrolyte
containing hydrofluoric acid. Application of anodic current oxidizes a surface silicon atom,
which is then attacked by fluoride. The net process is a 4 electron oxidation, but only two
equivalents are supplied by the current source. The other two equivalents come from reduction
of protons in the solution by surface SiF2 species. Pore formation occurs as Si atoms are
removed in the form of SiF4, which reacts with two equivalents of F− in solution to form

The porosity of a growing porous Si layer is proportional to the current density being applied,
and it typically ranges between 40 and 80%. Pores form only at the Si/porous Si interface, and
once formed, the morphology of the pores does not change significantly for the remainder of
the etching process. However, the porosity of a growing layer can be altered by changing the
applied current. The film will continue to grow with this new porosity until the current changes.
This feature allows the construction of layered nanostructures simply by modulating the applied
current during an etch. For example, one-dimensional photonic crystals consisting of a stack
of layers with alternating refractive index can be prepared by periodically modulating the
current during an etch [40–42].

The ability to easily tune the pore sizes and volumes during the electrochemical etch is a unique
property of porous Si [37] that is very useful for drug delivery applications. Other porous
materials generally require a more complicated design protocol to control pore size, and even
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then, the available pore sizes tend to span a limited range. With electrochemically prepared
porous Si, control over porosity and pore size is obtained by adjusting the current settings
during the etch. Typically, larger current density produces larger pores. Large pores are
desirable when incorporating sizable molecules or drugs within the pores. Pore size and
porosity is important not only for drug loading; it also determines degradation rates of the
porous Si host matrix [43]. Smaller pores provide more surface area and expose more sites for
attack of aqueous media. The smaller porous filaments within the film yield greater dissolution
rates, providing a convenient means to control degradation rates of the porous Si host.

For in vivo applications, it is often desired to prepare porous Si in the form of particles. The
porous layer can be removed from the Si substrate with a procedure commonly referred to as
“electropolishing” or “lift-off.” The etching electrolyte is replaced with one containing a lower
concentration of HF and a current pulse is applied for several seconds. The lower concentration
of HF results in a diffusion limited situation that removes silicon from the crystalline Si/porous
Si interface faster than pores can propagate. The result is an under-cutting of the porous layer,
releasing it from the Si substrate [37]. The freestanding porous Si film can then be removed
with tweezers or a vigorous rinse. The film can then be converted into microparticles by
ultrasonic fracture. Conventional lithography [44,45] or microdroplet patterning [46,47]
methods can also be used if particles with more uniform shapes are desired.

2.2. Stain etching
Stain etching is an alternative to the electrochemical method for fabrication of porous Si
powders. The term stain etching refers to the brownish or reddish color of the film of porous
Si that is generated on a crystalline silicon material subjected to the process [48]. In the stain
etching procedure, a chemical oxidant (typically nitric acid) replaces the power supply used in
the electrochemically driven reaction. HF is a key ingredient, and various other additives are
used to control the reaction [49]. Stain etching generally is less reproducible than the
electrochemical process, although recent advances have improved the reliability of the process
substantially [50]. Furthermore, stain etching cannot be used to prepare stratified structures
such as double layers or multilayered photonic crystals. However, porous Si powders prepared
by stain etch are now commercially available (http://vestaceramics.net), and a few additional
vendors are poised to enter the market. For the biomedically inclined researcher this eliminates
the need to set up a complicated and hazardous electrochemical etching system, and it should
stimulate the growth of the field.

3. Chemistry of porous Si
3.1. Biocompatibility and reactions of biological relevance

Silicon is an essential trace element that is linked to the health of bone and connective tissues
[51]. The chemical species of relevance to the toxicity of porous Si are silane (SiH4) and
dissolved oxides of silicon; three important chemical reactions of these species are given in
Eq. (1)–(3). The surface of porous Si contains Si–H, SiH2, and SiH3 species that can readily
convert to silane [52,53]. Silane is chemically reactive (Eq. (1)) and toxic, especially upon
inhalation [54,55]. Like silane, the native SiHx species on the porous Si surface readily oxidize
in aqueous media. Silicon itself is thermodynamically unstable towards oxidation, and even
water has sufficient oxidizing potential to make this reaction spontaneous Eq. (2). The
passivating action of SiO2 and Si–H (for samples immersed in HF solutions) make the
spontaneous aqueous dissolution of Si kinetically slow. Because of its highly porous nano-
structure, oxidized porous Si can release relatively large amounts of silicon-containing species
into solution in a short time. The soluble forms of SiO2 exist as various silicic acid compounds
with the ortho-silicate  ion as the basic building block (Eq. (3)), and these oxides can
be toxic in high doses [56–58]. Because the body can handle and eliminate silicic acid, the
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important issue with porous Si-based drug delivery systems is the rate at which they degrade
and resorb [12,14,15,59,60]. The work of Bayliss, Canham, and others established the
relatively low toxicity of porous Si in various cellular and live animal systems [21,61–66]. The
low toxicity, degradation properties, and solubility of the degradation byproducts of porous Si
have generated much interest in its use in controlled drug delivery systems.

There are many conditions that affect the lifetime of biomaterials in vivo. In order to be a
successful candidate, porous Si must be able to perform reproducibly and retain the physical
and chemical properties needed for the particular application under the harsh biological
conditions of the body (salinity, pH, and enzymatic activity). The chemistry of the nanomaterial
is therefore of utmost importance.

(1)

(2)

(3)

Surface chemistry plays a large role in controlling the degradation properties of porous Si in
vivo. Immediately after Si is electrochemically etched, the surface is covered with reactive
hydride species. These chemical functionalities provide a versatile starting point for various
reactions that determine the dissolution rates in aqueous media, allow the attachment of homing
species, and control the release rates of drugs. The two most important modification reactions
are chemical oxidation (Eq. (2)) and grafting of Si–C species.

3.2. Oxidation of porous Si
With its high surface area, porous Si is particularly susceptible to air or water oxidation. Once
oxidized, nanophase SiO2 readily dissolves in aqueous media [10], and surfactants or
nucleophiles accelerate the process [67,68]. Si–O bonds are easy to prepare on porous Si by
oxidation, and a variety of chemical or electrochemical oxidants can be used. Thermal
oxidation in air tends to produce a relatively stable oxide [69], in particular if the reaction is
performed at >600°C [70]. Ozone oxidation, usually performed at room temperature, forms a
more hydrated oxide that dissolves quickly in aqueous media [10]. Milder chemical oxidants,
such as dimethyl sulfoxide (DMSO, Eq. (4)) [71] benzoquenone [72], or pyridine [73] can also
be used for this reaction. Mild oxidants are sometimes preferred because they can improve the
mechanical stability of highly porous Si films, which are typically quite fragile.

The mechanical instability of porous Si is directly related to the strain that is induced in the
film as it is produced in the electro-chemical etching process [74], and the volume expansion
that accompanies thermal oxidation can also introduce strain. Mild chemical oxidants
presumably attack porous Si preferentially at Si–Si bonds that are the most strained, and hence
most reactive [16]. As an alternative, nitrate is a stronger oxidant, and nitric acid solutions are
used extensively in the preparation of porous Si particles from silicon powders by chemical
stain etching [75].
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(4)

Slow oxidation of the porous Si surface by dimethyl sulfoxide (DMSO), when coupled with
dissolution of the newly formed oxide by HF, is a mild means to enlarge the pores in porous
Si films [16]. Aqueous solutions of bases such as KOH can also be used to enlarge the pores
after etching [76]. Electrochemical oxidation, in which a porous Si sample is anodized in the
presence of a mineral acid such as H2SO4, yields a fairly stable oxide [77]. Oxidation imparts
hydrophilicity to the porous structure, enabling the incorporation and adsorption of hydrophilic
drugs or biomolecules within the pores. Aqueous oxidation in the presence of various ions
including Ca2+ generates a calicified form of porous Si [12,15] that has been shown to be
bioactive and is of particular interest for in vivo applications. Calcification can be enhanced
by application of a DC electric current [14].

3.3. Hydrosilylation to produce Si–C bonds
Carbon directly bonded to silicon yields a very stable surface species. First recognized by
Chidsey and coworkers [78], Si–C bonded species possess greater kinetic stability relative to
Si–O due to the low electronegativity of carbon. Silicon can readily form 5- and 6-coordinate
intermediates, and an electronegative element such as oxygen enhances the tendency of silicon
to be attacked by nucleophiles. Si–C bonds are usually formed on hydride-terminated porous
Si surfaces by hydrosilylation (Eq. (5)), a reaction first demonstrated on porous Si by Buriak
[79–81] and extensively studied by Boukherroub, Chazalviel, Lockwood, and others.[60,82–
88] Hydrosilylation involves reaction of an alkene (usually terminal) or alkyne with a Si–H
bond. On porous Si, the reaction can be thermal [85], photochemical [89,90], or Lewis acid
catalyzed [80,81].

(5)

Thermal hydrosilylation provides a means to place a wide variety of organic functional groups
on a crystalline Si or porous Si surface [80]. The main requirement of the reaction is that the
silicon surface contains Si–H species so they can react with a terminal alkene on the organic
fragment. Thus it is important to use freshly etched porous Si and to exclude oxygen and water
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from the reaction mixture. Conventional Schlenk or vacuum line techniques should be
employed [91].

3.4. Chemical or electrochemical grafting of Si–C bonds
As an alternative to hydrosilylation, covalently attached layers can be formed on porous Si
surfaces using Grignard and alkyl- or aryllithium reagents [78,92–98]. Electrochemical
oxidation of methyl-Grignards [99] on porous Si and electrochemical reduction of
phenyldiazonium salts [100] on single crystal Si have been shown to yield dense monolayers
of methyl and phenyl groups, respectively. Electrochemical reduction of organohalides (Eq.
(6)) has also been demonstrated as an effective grafting technique [101]. The electro-chemical
approach allows the attachment of a methyl group to the Si surface, which is not possible with
the hydrosilylation route. Because of their ease of application and dramatic improvements in
stability, hydrosilylation and electrochemical grafting of alkyl halides are useful reactions for
the preparation of biointerfaces.

(6)

It is important to note that porous Si modification reactions do not provide 100% surface
coverage; they merely decorate the surface with the functional group. Thus infrared spectra
show a large amount of surface Si–H groups remaining after hydrosilylation or electrochemical
grafting reaction. The electrochemical method allows one to minimize residual Si–H species
by “endcapping” the surface with small methyl groups following modification with a functional
species (Eq. (7)) [102]. The endcapping reaction can also be performed on a hydrosilylated
porous Si surface. The doubly modified (methyl endcapped) surfaces exhibit the greatest
stability in aqueous media [102]. It is still an open question as to why the modification reactions
impart such stability to the material; for example Buriak's hydrosilylation reaction makes
porous Si stable to hydroxide solutions of pH>10 [81]. Unmodified (exclusively H-terminated)
porous Si dissolves rapidly under such conditions. The stability probably derives from a
combination of two factors: the Si–C bond is kinetically inert due to the low electronegativity
of carbon and the attached organic species (typically a hydrocarbon chain 8 or more carbons
long) is sufficiently hydrophobic that aqueous nucleophiles are excluded from the vicinity of
their Si atom target.

(7)
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Reaction of porous Si with gas phase acetylene generates highly carbonized porous Si that is
possibly the most stable form of Si–C modified porous Si [103–105]. This material is referred
to as thermally carbonized porous Si, or TCPSi [30]. It has been extensively investigated by
Salonen and coworkers, with many publications of relevance to drug loading and delivery
[20,30,31,106–109].

3.5. Conjugation of biomolecules to modified porous Si
Carbon grafting stabilizes porous Si against dissolution in aqueous media, but the surface must
still avoid the non-specific binding of proteins and other species that can lead to opsonization
or encapsulation. Reactions that place a polyethylene glycol (PEG) linker on a porous Si surface
have been employed to this end (Fig. 3) [110,111]. A short-chain PEG linker yields a
hydrophilic surface that is capable of passing biomolecules into or out of the pores without
binding them strongly [112]. The distal end of the PEG linker can be modified to allow coupling
of other species, such as drugs, cleavable linkers, or targeting moieties, to the material [110,
112].

The oxides of porous Si are easy to functionalize using conventional silanol chemistries [76,
110,113]. When small pores are present (as with p-type samples), monoalkoxydimethylsilanes
(RO–Si(Me)2–R′) can be more effective than trialkoxysilanes ((RO)3Si–R′) as surface linkers
[113]. This is because trialkoxysilanes oligomerize and clog smaller pore openings, especially
when the reagent is used at higher concentrations.

Whereas Si–C chemistries are robust and versatile, chemistries involving Si–O bonds represent
an attractive alternative two reasons. First, the timescale in which highly porous SiO2 is stable
in aqueous media is consistent with many short-term drug delivery applications— typically 20
min to a few hours. Second, a porous SiO2 sample that contains no additional stabilizing
chemistries is less likely to produce toxic or antigenic side effects. If it is desired that the porous
Si material be stable in vivo for long periods (for example, an extended release formulation or
an in vivo biosensor), Si–C chemistries such as hydrosilylation with endcapping [102] or
thermal carbonization with acetylene [30] is preferred. If a longer-lived oxide matrix is desired,
silicon oxides formed at higher temperatures (>700 °C) are significantly more stable in aqueous
media than those formed at lower temperatures or by ozone oxidation [114].

4. Loading and controlled release of drugs with porous Si
Providing a controlled and localized release of therapeutics within the body are key objectives
for increasing efficacy and reducing the risks of potential side effects [115–119]. The low
toxicity of porous Si and porous SiO2, the high porosity, and the relatively convenient surface
chemistry has spurred interest in the use of this system as a host, or “mother ship” for
therapeutics, diagnostics, or other types of payloads. Various approaches to load a molecular
payload into a porous Si host have been explored, and they can be grouped into the following
general categories: covalent attachment, physical trapping, and adsorption.

4.1. Incorporating a payload within the porous nanostructure by covalent attachment
Covalent attachment provides a convenient means to link a biomolecular capture probe to the
inner pore walls of porous Si for biosensor applications [85,110], and this approach can also
be used to attach drug molecules. As was pointed out in the previous section, linking a
biomolecule via Si–C bonds tends to be a more stable route than using Si–O bonds due to the
susceptibility of the Si–O species to nucleophilic attack.

The versatility of the hydrosilylation reaction for preparing functional porous Si surfaces was
recognized early in the history of porous Si surface chemistry [80]. One of the more common
approaches is to graft an organic molecule that contains a carboxyl species on the distal end
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of a terminal alkene as was presented above in Fig. 3 [85]. The alkene end participates in the
hydrosilylation reaction, bonding to the Si surface and leaving the carboxy-terminus free for
further chemical modification. A favorite linker molecule is undecylenic acid, which provides
a hydrophobic 10 carbon aliphatic chain to insulate the linker from the porous Si surface [85,
120]. The drug payload can be attached directly to the carboxy group of the alkene, or it can
be further separated from the surface with a PEG linker as shown in Fig. 3 [110]. Due to the
stability of the Si–C bond, hydrosilylation is one of the most robust means of attaching a
payload to porous Si. The payload is only released when the covalent bonds are broken [112]
or the supporting porous Si matrix is degraded. For drug delivery this introduces a complication
in that the drug may not release from the linker, resulting in a modified version of the drug
being introduced into the body. In addition, a drug may be susceptible to attack by silane
generated during the degradation of the porous Si scaffolding [52] or by residual reactive
species on the porous Si material itself [31]. Any studies involving porous Si (or with
nanomaterials in general) need to incorporate activity assays to ensure that the released drug
has not become inactivated.

4.2. Trapping a payload by oxidation
If the species to be trapped is relatively robust, it can be locked into place by oxidation of the
porous Si host matrix. The locking procedure takes advantage of the fact that when porous Si
is oxidized to SiO2 there is a volume expansion to accommodate the extra oxygen atoms, Fig.
4. This volume expansion serves to shrink the pores, trapping anything that happens to be in
them at the time. Iron oxide (Fe3O4) nanoparticles have been loaded and locked into the porous
nanostructure in this fashion, using aqueous ammonia to induce oxidation [121]. The high pH
and nucleophilic nature of ammonia enhance oxidation of freshly etched porous Si in aqueous
solutions [122]. Similar oxidation can be induced by vapor phase pyridine [123]. Nucleophilic
groups present on drug payloads may also participate in this reaction [20], as can oxidizing
species such as quinones [72].

The silicic acid generated during dissolution Eq. (3) can participate in sol–gel type reactions
—essentially reprecipitation of the silicic acid, but in the form of various inorganic silicates.
Common ions such as Ca2+ and Mg2+ in solution can participate in silicate precipitation
reactions Eq. (8), and these types of precipitates are known to be bioactive [125–127].

(8)

Once formed, mild thermal treatments can be used to dehydrate the oxide or silicate matrix.
Heating tends to densify and rigidify the structure by forming strong Si–O–Si linkages (Eq.
(9)).

(9)
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4.3. Concentrating a payload by spontaneous adsorption
As-formed porous Si has a hydride-terminated surface that is very hydrophobic. Oxidized
porous Si is hydrophilic, and chemically modified porous Si surfaces can be hydrophobic,
hydrophilic, or both (amphiphilic), depending on the specific functional group(s) attached. The
nature of the surface plays a critical role in determining the amount of drug that can be loaded
and the rate at which it is released. Silicon oxide surfaces tend to present a negative surface
charge to an aqueous solution due to the low pKa of SiO2 [128]. Often referred to as
“electrostatic adsorption,” attractive coulombic forces from this negative surface provide a
means to extract positively charged ions from solution and concentrate them at the interface.
Whereas covalent attachment and oxidative trapping approaches described above tend to trap
their payloads fairly irreversibly, electrostatic adsorption represents essentially an ion
exchange mechanism that holds molecules more weakly. Electrostatics is a useful means to
effect more rapid drug delivery, as opposed to covalent or physical trapping approaches that
release drug over a period of days, weeks, or months [43,60].

The affinity of a porous Si particle for a particular molecule can be controlled with surface
chemistry. The surface of oxidized porous Si has a point of zero charge at a pH of around 2
[128,129], and so it presents a negatively charged surface to most aqueous solutions of interest,
as depicted in Fig. 5. At the appropriate pH, porous SiO2 spontaneously adsorbs positively
charged proteins such as serum albumin [130,131], fibrinogen [132], protein A [70,114,133],
immunoglobulin G (IgG) [134], or horseradish peroxidase [25], concentrating them in the
process. For example, a 0.125 mg/mL solution of the monoclonal antibody bevacizumab (trade
name Avastin, an anti-cancer drug) spontaneously concentrates in suitably prepared porous
SiO2 by a factor of >100 (unpublished results).

Porous Si can also be made hydrophobic, and hydrophobic molecules such as the steroid
dexamethasone or serum albumin can be loaded into these nanostructures [16,135].
Hydrophilic molecules can also be loaded into such materials with the aid of the appropriate
surfactant [21]. The native hydride surface of porous Si is hydrophobic. Though it is not
particularly stable in aqueous media, it has been used for short-term loading and release studies
[21,31]. Because water is excluded from these hydrophobic surfaces, aqueous degradation and
leaching reactions tend to be slow. The grafting of alkanes to the surface by hydrosilylation is
commonly used to prepare materials that are stable in biological media; this stability derives
in large part from the ability of the hydrophobic moieties to locally exclude water or dissolved
nucleophiles, as was discussed above in the chemistry section [43,60].

5. Composites of porous Si and polymers
Hybrid materials, in which the payload consists of an organic polymer or a biopolymer, forms
an additional class of host/payload systems. Composites are attractive candidates for drug
delivery devices because they can display a combination of advantageous chemical and
physical characteristics not exhibited by the individual constituents. Advances in polymer
[136] and materials [137] chemistries have greatly expanded the design options for
nanomaterial composites in the past few years, and synthesis of materials using nanostructured
templates has emerged as a versatile technique to generate ordered nanostructures [138].
Templates consisting of microor mesoporous membranes [139,140], zeolites [141], and
crystalline colloidal arrays [142–144] have been used, and many elaborate electronic,
mechanical, or optical structures have resulted.

5.1. Porous Si as a template
Porous Si is an attractive candidate for use as a template because of the tunability of the porosity
and average pore size. Additionally, elaborate 1, 2, and 2.5-dimensional photonic crystals are
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readily prepared in porous Si [145]. Porous Si composites show great promise for improving
the mechanical stability and control over release rates of a delivery system. Polymers that have
been incorporated into porous Si include polylactide [146], polydimethylsiloxane [147],
polyethylene [146], polystyrene [146], polycaprolactone [148], zein (a biopolymer derived
from maize) [149], and poly(N-isopropylacrylamide) [150]. Either the composite itself or a
nanostructure derived from the composite by removal of the porous Si template can be used
(Fig. 6) [146]. Porous Si combined with a biocompatible polymer has been shown to yield
improved control over drug release kinetics and improved stability in aqueous media [146],
and the use of biopolymers that are selectively cleaved by specific proteases [112,149] provides
the possibility of tissue-specific action.

Removal of the porous Si or porous SiO2 template from a polymer or biopolymer imprint can
sometimes be achieved by chemical dissolution using aqueous KOH or HF, respectively,
providing a freestanding porous polymer film with the optical characteristics of the master.
Whether or not the process replicates the nanostructure of the master is highly dependant on
the processing conditions and the type of polymer used. Also, the ability of the polymer to
release from the master is highly dependant on the interfacal chemistry and tortuosity of the
pore network.

The concept of placing a polymeric material within a porous Si matrix was first demonstrated
in the early 1990s [151]. Two synthetic approaches have emerged: either the polymer is
synthesized within the porous matrix [151–154], or a pre-formed polymer is infused into the
matrix by melt- or solution-casting [46,47,146,147,155]. For drug delivery applications, it is
important to use a biocompatible polymer, and hydrogels are of particular interest [29,150].
Hydrogels are commonly used in ophthalmologic devices, biosensors, biomembranes, and
controlled drug delivery [156].Water-swollen, crosslinked polymeric networks can undergo
volume phase transitions in response to environmental changes such as pH [157,158], ionic
strength [159], temperature [160], or electric fields [161]. Materials responsive to pH changes
have been investigated extensively because they are applicable to many drug delivery and
biosensing schemes.

5.2. Locking the polymer in a porous Si template
Since porous Si consists of a delicate matrix of nanocrystalline domains, its mechanical stability
is an issue, especially for applications in which the material is thermally cycled or subjected
to mechanical stresses. Chemical crosslinking of a porous Si template can be achieved with
the correct choice of polymerization conditions. First demonstrated in 2003 [152], such
methods take advantage of the reactivity of the hydride-terminated porous Si surface. For
example, porous Si treated with a ruthenium ring-opening metathesis polymerization catalyst
followed by norbornene produces a flexible, stable composite in which poly(norbornene) is
covalently attached to the porous Si matrix (Fig. 7). The method follows the procedure of Lewis
and Grubbs to graft polymers onto crystalline Si surfaces using a ring-opening metathesis
polymerization catalyst [162,163].

The ring-opening metathesis polymerization (ROMP) reaction acts on rings containing double
bonded carbon, and the C=C double bonds are conserved through the process [162]. A
significant amount of this unsaturated polymer becomes covalently attached by hydrosilylation
with the Si–H species on the porous Si surface. If oxidized porous Si is used in the reaction,
the lack of Si–H surface groups eliminates the possibility of covalent Si–C bond formation
between the polymer and the template. Composites with lower mechanical and chemical
stability result [152]. Thus both the weaving of a soft polymer network into the pores and the
covalent attachment of this polymer to the matrix combine to provide the robust chemical and
mechanical properties. Hydrosilylation can also be induced via a radical mechanism, and the
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radical initiators used to set a hydrogel polymer probably induce similar covalent attachment
reactions between these polymers and their porous Si hosts [150].

6. In vivo monitoring using the optical properties of porous Si
Many material hosts have been developed for drug delivery, but few can ‘self-report’ on the
amount of drug loaded or released. It is important to know these quantities when determining
the efficacy of a treatment to identify when it is time to administer a new dose. The unique
optical properties that can be engineered into porous Si provide a mechanism to perform such
assays in vivo. Incorporation of molecules into a porous Si layer alters its index of refraction,
and the spectrum obtained from a thin film or multilayer structure provides a measure of loading
in the nanostructure. Primarily exploited for molecular binding assays [7,9,10,22,70,149,
164–173], the optical spectrum can be monitored in vivo, allowing it to indicate the quantity
of drug that has diffused out of the film [16] or the degree of degradation of the porous matrix
[10]. The optical spectrum also provides a convenient means to characterize and quantify
various drug loading or release concepts ex vivo. Detailed descriptions of the optical
interference spectra and their interpretation appear elsewhere [6]; a brief summary will be
presented here.

6.1. Principles of optical detection in porous Si films
The reflectivity spectrum of a thin film (Fig. 8) displays Fabry–Pérot interference frin1ges that
correspond to constructive and destructive interference from light reflected at the different
boundaries in the layered structure. The thickness of the layer and the refractive index (RI)
contrast at each interface (air/porous Si and porous Si/crystalline Si) can be extracted from the
fast Fourier transform (FFT) of this spectrum. Theoretically, a layered structure will yield a
single peak in the FFT spectrum. The amplitude of the peak is related to the index contrast at
each of the interfaces, and the position of a peak yields the product of optical thickness, or
nL (where n is refractive index and L is thickness) [113]. Since the refractive index can be
related to the mass loading of a layer by application of the Bruggeman effective medium model
[174], this method can be used to monitor molecular in- or exfiltration. We refer to this method
as RIFTS, for Reflective Interferometric Fourier Transform Spectroscopy [70,114,175].

More complicated structures, such as rugate filters, Bragg stacks, and microcavities can be
prepared, but the basic principle of detection remains the same: a shift in the characteristic
optical reflectivity spectrum corresponds to a change in refractive index of the porous layer,
which is related to its composition. Shifts in the spectrum occur when molecules are transported
into or out of the layer. A shift can also occur when the porous Si film oxidizes. Porous Si has
a refractive index of approximately 2.1, and the index of oxidized porous Si ranges from this
value down to a value of ~ 1.6, depending on the degree of oxidation. In an aqueous system,
molecules removed from the pores are replaced by water. Since water has an index of 1.33 and
most biomolecules have an index of 1.5–1.7, release of molecules from the pores results in a
blue shift in the spectrum. For the same reason, dissolution of the porous Si matrix also results
in a blue shift of the spectrum. The sensitivities of the various optical structures (Fabry–Pérot,
rugate, Bragg stack, microcavity), in terms of spectral shift vs analyte concentration in the
pores, are similar [176].

6.2. Monitoring a porous Si fixture in vivo
The optical interference spectrum used to assess loading can be measured with inexpensive
and portable instrumentation such as a CCD spectrometer or a diode laser interferometer
[177,178]. This is useful, for example, in monitoring porous Si particles in the vitreous of rabbit
eyes for ocular drug delivery (Fig. 9) [146]. Removal of drug or dissolution of the particle
results in a change in the refractive index of the porous film that is observed as a wavelength
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shift in the reflection spectrum. In clinical situations, we have shown that this color change can
be qualitatively followed with the use of a fundus camera or quantitated by spectroscopy in
the living eye. The presence of DNA [9,179], human IgG [10], bovine serum albumin [130],
dexamethasone [16], caffeine [146], and many other molecules has been detected (in ex vivo
systems) using this methodology. The high surface area and optical interferometric means of
detection lead to sensitivities comparable to surface plasmon resonance (SPR) for many of
these systems [173,176].

The optical spectrum of a porous Si photonic crystal can be read through human tissue (up to
1 mm in thickness), demonstrating the feasibility of the in vivo self-reporting system [146].
The optical method is particularly useful for monitoring of intraocular drug release either in
the form of porous Si particles or composite films (Fig.10). The porous Si microparticles
displayed in Fig. 9 demonstrate their potential as self-reporting drug delivery devices for
treatment of diseases such as age-related macular degeneration, where there is an important
need for long acting intraocular drug delivery systems [180].

7. Medical applications of porous Si
The suitability and efficacy of various forms of porous Si are being assessed for medical
applications, and some are currently in clinical trials. The incorporation of anti-cancer
therapeutics [19,181], anti-inflammatory agents [16,31], analgesics [31], and medicinally
relevant proteins and peptides has been demonstrated [21]. The oral administration of porous
Si to provide a dietary supplement of silicon [182] has also been assessed [183]. Porous Si
drug delivery devices have taken the form of particles [25,184,185], films [16], chip implants
[186,187], composite materials [146,150], and microneedles [188,189]. Much work has
focused on microparticle systems [21,25,30,31,106–108,190–193] due to their relative ease of
fabrication, administration, and their compatibility with existing drug delivery concepts.

7.1. Particle formulations
Particles have the potential for percutaneous or intravenous administration depending on their
size. Foraker et al. have demonstrated delivery of insulin across Caco-2 cell monolayers [21],
while Salonen and coworkers have investigated the drug release kinetics from porous Si
microparticles for applications in oral delivery [31]. The latter workers have investigated the
interactions between various drugs with the different porous Si surface chemistries in detail
[20]. The incorporation of superparamagnetic iron oxide nanoparticles, of interest for Magnetic
Resonance Imaging (MRI) has been demonstrated [25,121], and remote RF heating (by Néel
relaxation) of such structures has been reported [185]. The amount of drug that can be loaded
into a porous Si microparticle is large due to its relatively large free volume. For example, a
single cubic particle 10 µm on an edge and with a porosity of 80% yields a maximumfree
volume of 0.8 pL [25]. Because they can concentrate molecules within their nanostructure and
protect them from the body's natural immunological responses, the particles can potentially
carry a much higher dose than could be allowed with a free drug injection. The particles can
also be manufactured with well-defined shapes and dimensions, allowing the reproducible
loading and release of precise quantities [44–46].

7.2. Cancer treatment
Some of the most advanced clinical studies have been performed by pSiMedica, inc. using
porous Si as a brachytherapy device for the treatment of cancer [11,186,187]. In this work,
percutaneous implants of porous Si particles (on the order of 20 µm in size) containing
radioactive 32P provide local radiation to the tumor. The radioactive isotope is synthesized in
the porous Si material by elemental transmutation of Si, induced by exposure to high energy
neutrons emanating from a nuclear reactor. After delivery of the radiation dose, the device
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resorbs into the body as the Si implant hydrolyzes to silicic acid (Eqs. (2) and (3)), thereby
requiring no further surgery to recover the device. Although silicic acid can be cytotoxic
[56–58,64,65], apparently the resorption rate is slow enough under physiologic conditions that
the concentration of free silicic acid does not reach toxic levels.

Anti-cancer therapeutics have been successfully incorporated into porous Si. Delivery of cis-
platin, doped into calcium phosphate/porous Si films has been demonstrated in simulated body
fluid [194], and doxorubicin loaded porous Si films have shown cytotoxic effects towards
human colon adenocarcinoma cell lines [19]. In addition, photoexcitation of quantum confined
silicon nanostructures in aqueous aerated media has been shown to produce singlet oxygen
[32–35]. The ability of the porous Si nanostructure to degrade into relatively harmless silicic
acid byproducts makes porous Si an attractive alternative to molecular (typically porphyrin-
based [195]) sensitizers for photodynamic therapy [196,197].

8. Summary and prospects
Porous Si microparticles offer a number of properties of interest for controlled drug delivery:
First, nanostructured materials based on silicon are promising platforms for pharmaceutical
applications because they provide low toxicity. Their ability to degrade in the body presents
fewer challenges for chronic use than, for example, carbon nanotubes which are not
metabolized and so must be excreted after administration.

Second, the electrochemical means of fabrication allows one to “dial in” the properties of
surface area, free volume, and pore size. Pores can be generated anywhere from a few
nanometers to several hundreds of nanometers in diameter.

Third, the surface of freshly prepared porous Si is easily modified via convenient chemistry
with a large range of organic or biological molecules (drugs, peptides, antibodies, proteins,
etc.), allowing flexibility in the engineering of release profiles.

Fourth, the optical properties of porous Si provide a useful dimension for in vivo sensing or
therapeutics. Porous Si can display fluorescence deriving from Si quantum dot structures that
are produced during the etch [1], and it can be prepared with unique optical reflectivity spectra.
These features allow porous Si to exhibit a signal that is affected in a predictable way when
exposed to environmental changes, presenting possibilities for the development of advanced
functional systems that incorporate sensors for diagnostic or therapeutic functions.

Finally, the ease with which porous Si can be integrated into well-established Si
microelectronics fabrication techniques could also lead to more sophisticated, active devices
for medical applications [65,89,198]. The possibility of placing active electronic circuit
components into the silicon-based particles is another feature of silicon that is yet to be
exploited for in vivo use.
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Fig. 1.
Schematic of the etch cell used to prepare porous Si. The electrochemical half-reactions are
shown, and the equivalent circuit for etching of a p-type Si wafer is shown at right.
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Fig. 2.
Mechanism of Si oxidation during the formation of porous Si (adapted from reference [38]).
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Fig. 3.
Adding a linker to porous Si via hydrosilylation. The short-chain PEG linker yields a
hydrophilic surface that minimizes non-specific binding effects (adapted from reference
[110]).
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Fig. 4.
Building a bottle around a ship. A molecular or nanoparticle payload can be trapped by partial
oxidation of the porous Si host layer. Oxidation produces a volume expansion (Si to SiO2) that
shrinks the pores, locking the payload in place. After [124]
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Fig. 5.
Trapping of a positively charged drug payload in a porous SiO2 layer by ionic adsorption.
Porous SiO2 (oxidized porous Si) has a negative surface charge; molecules with positive
charges will spontaneously adsorb to the inner pore walls and surface. This method is
commonly used to load proteins [70,114,130,132–134]
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Fig. 6.
Fabrication of a nanostructured composite from a porous Si template. A variety of solution- or
melt-processible organic and biopolymers can be solution-cast or injection-molded into a
porous Si or porous SiO2 host. The composite can be used as-formed, or the template can be
removed by chemical dissolution. If the template is removed, the polymer castings often
replicate the nanostructure of the master. Use of these castings as vapor sensors, deformable
and tunable optical filters, and as self-reporting, bioresorbable materials has been demonstrated
[146].
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Fig. 7.
In-situ polymerization and crosslinking of a porous Si template. The catalyzed reaction
generates a composite porous Si/polymer matrix in which the polymer is covalently attached
to porous Si via Si–C bonds. The chemical and mechanical stability of the chemically
crosslinked porous Si matrix is significantly improved relative to the porous Si film alone.
After [152].
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Fig. 8.
Schematic demonstrating the change in a reflectance spectrum from a single layer of porous
Si upon introduction of a molecular species into the porous matrix. The change in refractive
index of the composite film results in a red shift of the Fabry–Pérot interference fringes. The
reverse process can also be monitored, yielding a blue shift in the spectrum.
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Fig. 9.
Photograph of porous Si microparticles in a live rabbit eye. The particles were prepared as
multilayered photonic crystals (rugate filters), and they appear as brightly colored flecks that
can be seen floating the vitreous. The color of the microparticles shifts to the blue as the particles
degrade in vivo, providing a predictive metric to the clinician.
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Fig. 10.
Light microscope image of porous Si microparticles. These particles were prepared as
multilayered photonic crystals (rugate filters) and display various spectral colors depending
on the periodicity of their layered nanostructure. Nominal particle size is 50 µm.
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