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A fundamental question in ecology is how many species occur
within a given area. Despite the complexity and diversity of
different ecosystems, there exists a surprisingly simple, approxi-
mate answer: the number of species is proportional to the size of
the area raised to some exponent. The exponent often turns out to
be roughly 1y4. This power law can be derived from assumptions
about the relative abundances of species or from notions of
self-similarity. Here we analyze the largest existing data set of
location-mapped species: over one million, individually identified
trees from five tropical forests on three continents. Although the
power law is a reasonable, zeroth-order approximation of our
data, we find consistent deviations from it on all spatial scales.
Furthermore, tropical forests are not self-similar at areas <50
hectares. We develop an extended model of the species-area
relationship, which enables us to predict large-scale species diver-
sity from small-scale data samples more accurately than any other
available method.

A primary motivation for modern ecological research is the
effort to save as many species as possible from the sixth

great mass extinction that currently threatens them (1, 2). How
does habitat loss and destruction of tropical forests relate to
species extinction? How many tree species must remain in an
exploited forest if primate species are to survive in it? What is
the best possible design of a natural reserve that maximizes the
number or genetic diversity of surviving species? All of these
questions underscore the necessity to understand the relation-
ship between species diversity and sampled area (3–8)—a long-
standing and controversial subject in ecology (9–11).

The earliest model of the species–area relationship (SAR) was
introduced by Arrhenius in 1921 and posits a power law: the
number of species, S, found in a census area, A, is given by

S . cAz, [1]

where c and z are constants (12). Empirical observations
suggest that z is about 1y4 for many ecosystems (13). The
power law is a cornerstone for theories of biogeography
(14–16). In 1975 May (17) derived the power law by assuming
that species’ abundances follow a lognormal distribution. The
canonical lognormal distribution implies that S . cN1/4, where
N is the total number of individuals and c is a constant.
Assuming that N is proportional to the area A, we immediately
obtain Eq. 1 with z 5 1y4.

More recently, Harte et al. (18) have shown that the power law
is equivalent to self-similarity. If the fraction of species in an area
A that are also found in one-half of that area is independent
of A, then the spatial distribution of species is self-similar. Let
Ai 5 A0y2i denote the area of a rectangular patch obtained after
i bisections of the total sampled area A0. Denote by Si the average

number of species found in a patch Ai. If the ratio ai 5 SiySi21

does not depend on i then the assemblage is self-similar (18).
Self-similarity is equivalent to Si 5 cAi

z with z 5 2log2a. Unlike
the canonical lognormal, self-similarity does not provide an a
priori estimate of the exponent z.

Tropical Forest Data
To test the basic principles of SARs—with an aim toward
generalizing the power law—we have analyzed five 50-hectare
(ha) plots of tropical forests across the globe. Although tropical
forests cover only 7% of the Earth’s land surface, they contain
more than half of the world’s species (6). Tropical forests are well
known as the most genetically diverse, terrestrial communities
on Earth (19). Moreover, animal diversity in tropical forests
depends crucially on the diversity of plants (20).

Each of the 50-ha plots that we analyze is part of a long-term
research program coordinated by the Smithsonian’s Center
for Tropical Forest Science. The plots are located in the
following forests: Huai Kha Khaeng (HKK) Wildlife Sanctu-
ary, Thailand (first census); Lambir Hills National Park,
Sarawak, Malaysia (third census); Pasoh Forest Reserve,
Peninsular Malaysia (third census); Barro Colorado Island
(BCI), Panama (first census); and Mudumalai Wildlife Sanc-
tuary, India (second census). For each of our plots, every
free-standing, woody stem over 1 cm in diameter has been
identified to species. We include all such stems in our analyses.
(Our qualitative results are unchanged if we include, instead,
stems over 5 cm in diameter.) The number of such stems, and
the number of species among them, varies greatly from plot to
plot (Fig. 1).

Fig. 2a shows the species-area relationship for the five tropical
forests compared with the best-fit power law. The average slope
for the forests is z.0.25. As suggested by May, the power law
tends to overestimate the slope at large areas and underestimate
the slope at small areas (17). But the extent to which the power
law fails is often poorly recognized in the ecological literature (3,
18, 21). Previous research has uncovered the power law’s failure
for small areas, but has downplayed its deviations for areas larger
than 2 ha (22). Fig. 2b shows the dependence of the parameter
ai 5 SiySi21 on area. The ratio ai describes the average fraction
of species that persist upon the ith bisection; therefore we call ai

the spatial persistence parameter. Self-similarity would require
that this parameter be independent of area (18). As the figure
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shows, however, ai is not constant for any range of areas between
1 m2 and 50 ha. Hence, tropical forests are conclusively not
self-similar at these scales. The empirical form of the spatial
persistence curve, and its departure from self-similarity, may
result in part from aggregation of conspecifics—a possibility that
we explore in detail elsewhere (29).

A Differential Equation Approach
Instead of self-similarity we find a consistent functional rela-
tionship between ai and the area, A, in all five forests (Fig. 2b).
This observation is striking in light of the forests’ disparate
geographic locations, climates, and overall species diversities.
We now introduce the spatial persistence function, a(A), as a
continuous extension of ai. In the appendix, we use the persis-
tence values of our data to derive a canonical, two-parameter
model of a(A). Once this function has been derived, we obtain
the SAR by solving the differential equation

2log2@a~A!# 5
A
S

z
dS
dA

. [2]

Using the diversity measured in a small area as the initial
condition in Eq. 2, we may predict the diversity of a much larger
area, if we know a(A).

In the appendix, we derive Eq. 2 and find a general solution
of the form S 5 cAzexp[P(A)], where P(A) is an infinite
polynomial in A. We can truncate after the first n terms to obtain
an approximate solution. Truncating after the first term leads to
the expression

S . cAze2kA. [3]

Here c, z, and k are constants determined by a(A). This
approximate solution is less accurate than the complete solution
to Eq. 2, and it is only valid for a limited range of areas.
Nevertheless, the approximation has the obvious advantage of
simplicity. If we let n 3 `, then we recover the full solution to

Eq. 2; if we let n 3 0, then we reduce to the power law. Hence
the power law is a zeroth-order, special case of our general model
for the SAR.

Eq. 2 accurately predicts diversity given only a small amount
of data. Because the persistence curves are similar across the five
plots (Fig. 2b), we may use the canonical form of a(A) fit at one
plot to predict diversity for another plot. For example, using
BCI’s persistence curve to determine a(A) and using the diver-
sity in a single ha of Pasoh as the initial condition, we can predict
the 50-ha diversity of Pasoh within 3% on average (Fig. 3).
Conversely, Pasoh’s persistence function predicts BCI’s total
diversity with 4% average error, and Lambir’s diversity with 9%
error, from a single ha of data.

Fig. 3 illustrates the extrapolative ability of Eq. 2 as compared
with the classical models of the SAR. The precision of our
method—namely, the ability to predict 50-ha diversity within 5%
at Pasoh and BCI and 10% at Lambir—is an improvement over
other previous methods. It is 1- to 7-fold more precise than
Fisher’s alpha (23), and 5- to 10-fold more precise than the power
law. On the one hand, the increased precision of our method is
not surprising; we have used two parameters to describe a(A), as
opposed to the classical models, which generally require one
parameter. On the other hand, given the interplot similarity of
persistence curves, in practice we need only measure one pa-
rameter—the diversity of a single ha—to extrapolate diversity
via Eq. 2.

Implications and Conclusions
We have analyzed the largest existing data set of location-
mapped trees in tropical forests. We find that the SAR shows
consistent deviations from the power law on all spatial scales that
were studied, ranging from 1 m2 to 50 ha. Hence, self-similarity
does not hold over this range of areas. (There is the possibility
that tropical forests are self-similar over scales greater than 50
ha, but in the absence of further data this remains speculative.)

Fig. 1. The locations of five tropical forest plots across the globe. Each census encompasses 50 ha of forest within which every woody stem greater than 1 cm
in diameter has been identified to species, measured for girth, and spatially mapped to ,1-m accuracy. The name, country, number of trees, and number of
species is indicated for each plot. The forests vary widely in species diversity and environment. Pasoh and Lambir (Malaysia) are evergreen, dipterocarp rainforests;
BCI (Panama) is a lowland, moist forest, with a 4-month dry season; HKK (Thailand) and Mudumalai (India) are the only forests that are regularly subject to fires.
For a complete list of references, consult the Center for Tropical Forest Science web site at http:yywww.stri.org.
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These results might have some bearing on the longstanding
controversy surrounding SARs. Previous research has focused
on why the SAR has different slopes in different ecosystems (11),
but in our extensive data the SAR does not possess a constant
slope whatsoever.

Instead of self-similarity we propose a model of the SAR,
based on the spatial persistence function, which generalizes the
power law. This framework allows us to predict 50-ha diversity
from small-scale samples with greater accuracy than ever before.
Candidate logging protocols often are assayed at the 50- to
100-ha scale, and they are evaluated on the proportion of
diversity that regenerates, as estimated from a small census (24).
Hence, an accurate method to extrapolate 50-ha diversity from
a small census will greatly benefit in the formulation of protocols
for sustainable forestry and for biodiversity surveys (25). Fur-
thermore, our methods may be extended to estimate landscape-
scale diversity (see Appendix). These advances may induce
ecologists to focus on the persistence curve itself as a unifying
concept. The search for a biological mechanism that explains the
observed persistence patterns offers an important challenge to
ecology. In the meantime, our theory provides a valuable tool for
conservation planning and a practical method for estimating
diversity in the field.

Appendix
In this appendix we provide the details behind the derivation of
Eq. 2, its solution, and its application to extrapolating diversity.

Derivation of Eq. 2. Given the definition of the spatial persistence
parameter, ai 5 SiySi21, we start by deriving its relationship to
the slope of the SAR. All logarithms are henceforth taken base
two:

2log~ai! 5 2 logS Si

Si 2 1
D

5
log~Si 2 1!2 log~Si!

log2

5
log~Si 2 1!2 log~Si!

log~Ai 2 1!2 log~Ai!
. [4]

The last equality follows because Ai21yAi 5 2. The final quantity
in Eq. 4 measures the slope of a small chord on the log-log SAR
to the right of log(Ai). We conclude that

2 log~ai! .
d log S
d log A

U log~Ai!
, [5]

where i is now a continuous variable. To be more precise, the
chord to the right of log(Ai) is an estimate of the derivative at
log(A(i1(i21))/2). Note that Eq. 5 clearly illustrates the equiva-
lence between self-similarity (constant a) and the power law
(constant dlogSydlogA).

Eq. 2 follows easily from Eq. 5, using the fact that dlogSy
dlogA 5 AyS z dSydA. Note that Eq. 2 is a strict generalization
of self-similarity: if a(A) is constant, then Eq. 2 reduces to the
power law. If a(A) 5 exp(21ylogA), then Eq. 2 reduces to
S(A)}logA. Hence Eq. 2 also generalizes the logarithmic law
suggested by Gleason (26).

Diversity Extrapolation. Eq. 2 together with the interplot simi-
larity of the persistence curves provide a method for extrap-
olating diversity over many spatial scales. For example, to
extrapolate diversity from a subsample of Pasoh, we use BCI
data to fit a(A), and then we solve Eq. 2 according to the small,
initial condition measured at Pasoh. In effect, this process
translates BCI’s log-log SAR so that it coincides with Pasoh’s
initial condition; nevertheless, the universality between the
forests is described more simply in terms of the persistence
parameter, ai.

We choose to model the persistence values ai with the
simple, two-parameter family of curves 1⁄4F[(a 2 i)yb] 1 3⁄4.
(Other choices, such as a cubic model, are also possible and
produce accurate predictions at these scales and beyond. See
below.) Here F(x) is the ‘‘error function’’ given by the cumu-
lative distribution of the Gaussian: F(x) 5 (2y=p)z*0

xe2t2dt.
The parameter a moves the inf lection point of the persistence
curve horizontally, and b determines the slope at the inf lection
point. Hence b measures the maximal ‘‘acceleration’’ of
diversity with area, and a measures the spatial scale at which
acceleration is maximized. The best-fit at BCI is given by a 5
8.56, b 5 8.08. For Pasoh, a 5 7.73, b 5 7.41; for Mudumalai,
a 5 7.06 and b 5 7.76.

We may express all solutions to Eq. 2 in the form S 5
cAzexp[P(A)], where P(A) is a polynomial in A of arbitrary
degree n, with no constant term. Once we specify a and b, we
expand 2log(a(A)) in a Taylor series of order n around the point
A 5 25 ha. The resulting separable equation can always be solved
in closed form, yielding P. For example, using Pasoh’s a and b
to determine a(A), the approximate solution of order n 51 is

Fig. 2. Graphs of the SAR and the spatial persistence parameter for each of
five tropical forests. (a) Log-log graph of the observed species-area data. Each
plot encompasses a total area A0 5 50 ha. We measure the mean species
diversity, Si, found in disjoint patches obtained by repeated bisections of A0.
The log-log species-area data are concave down for all five plots. The SAR is
approximated loosely by the power law, z 5 0.25, whose slope is indicated by
the trapezoid (red). (b) The persistence parameter, ai 5 SiySi21, provides a
sensitive tool for analyzing SARs and testing self-similarity. Self-similarity
would predict constant a . 220.25 . 0.84, shown in red. All five persistence
curves are seen to depart from the power-law model over the entire range of
areas.
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given by S(A) 5 S(1ha)zAzekA, where z 5 0.125 and k 5
25.66z1024. For Mudumalai, z 5 0.161 and k 5 25.41z1024. This
approximation is only valid for A # 50 ha, but its accuracy
compares well with the complete numerical solution: it predicts
50-ha diversity with average error 4% at Pasoh, 9% at BCI, and
16% at Lambir.

In practice, a numerical solution of Eq. 2 yields the most
accurate SAR. We used the Fehlberg-Runge-Kutta method to
generate the prediction shown in Fig. 3. The initial condition
S(1ha) for Fig. 3 was determined by the diversity of a single,
random, 1-ha subplot of Pasoh. The confidence interval was
constructed from 1,000, independently sampled, 1-ha initial
conditions.

We have divided our five plots into two categories: those that
suffer regular disturbance and those that do not. The two
tropical forests subject to regular fires, HKK and Mudumalai,
generally should not be modeled via the persistence curve from
a more stable, moist tropical forest. The values of a1 to a6 are
generally smaller at HKK and Mudumalai than the other three
forests. This reflects the fact that HKK and Mudumalai are
subject to more disturbances, causing greater patchiness. The
persistence curve at Mudumalai can predict HKK and conversely
within 17%, given 1 ha of data. Compared with BCI, Pasoh, and
Lambir, the accuracy of Eq. 2 has been decreased by the
disturbances at Mudumalai and HKK. Nevertheless, 17% error
is still preferable to the 28% error-rate or worse given by Fisher’s

alpha or a power law on these disturbed forests. In practice, when
estimating diversity in a new forest, the ecologist should first
determine the frequency of disturbances (e.g., fires, hurricanes,
or roaming elephants) and choose a model forest, where a and
b are known, accordingly.

Extrapolation Beyond 50 ha. For 50-ha predictions, such as would
be useful to assess logging protocols, F provides a simple,
two-parameter model of the persistence curve. For larger
areas, however, a cubic model (which works as well as F at 50
ha) is often more effective. For example, we can use a cubic
persistence curve calibrated at Pasoh to extrapolate the di-
versity of the entire BCI, which occupies 1,500 ha, from a 1-ha
sample. Using Eq. 2, the predicted diversity for all of BCI is
436 6 32 species (1 SD). This estimate compares favorably with
Croat’s f loral count of 450 tree and shrub species on the island
(27). For even larger areas, the persistence curve should be
parameterized by using multiple, small censuses spread across
the landscape (as in ref. 28), although such techniques require
further development.
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