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unique proteins. A subset of 25 proteins was identified that 
had previously been reported as upregulated in pancreatic 
cancer. Immunohistochemical analysis for two of these, de-
leted in malignant brain tumors 1 (DMBT1) and tissue trans-
glutaminase 2 (TGM2), confirmed their overexpression in 
IPMNs.  Conclusion:  Global proteomics analysis using the 
Liquid Tissue workflow is a feasible approach for unbiased 
biomarker discovery in limited archival material, particularly 
applicable to precursor lesions of cancer. 

 Copyright © 2008 S. Karger AG, Basel and IAP 

 Introduction 

 Pancreatic cancer is the fourth most common cause of 
cancer-related mortality in the United States, accounting 
for 32,000 deaths annually  [1] . The overwhelming major-
ity of patients present with advanced metastatic disease, 
rendering their tumors inoperable. Diagnosis of pancre-
atic cancer at an early stage provides the best option for 
successfully treating and improving the dire prognosis of 
this malignancy. It is now well established that pancre-
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 Abstract 

  Background:  Pancreatic cancer is an almost uniformly fatal 
disease, and early detection is a critical determinant of im-
proved survival. A variety of noninvasive precursor lesions of 
pancreatic adenocarcinoma have been identified, which 
provide a unique opportunity for intervention prior to onset 
of invasive cancer. Biomarker discovery in precursor lesions 
has been hampered by the ready availability of fresh speci-
mens, and limited yields of proteins suitable for large scale 
screening.  Methods:  We utilized Liquid Tissue � , a novel 
technique for protein extraction from archival formalin-
fixed material, and mass spectrometry to conduct a global 
proteomic analysis of an intraductal papillary mucinous 
neoplasm (IPMN). Tissue microarrays comprised of 38 IPMNs 
were used for validation of candidate proteins.  Results:  The 
proteomic analysis of the IPMN Liquid Tissue lysate resulted 
in identification of 1,534 peptides corresponding to 523 
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atic adenocarcinomas do not arise de novo, but rather 
progress through a series of histologically distinct non-
invasive precursor lesions  [2, 3] . The three most common 
subtypes of pancreatic cancer precursors include pancre-
atic intraepithelial neoplasia (PanIN), intraductal papil-
lary mucinous neoplasm (IPMN), and mucinous cystic 
neoplasm (MCN). Surgical resection of noninvasive cys-
tic precursors (IPMN and MCNs) is typically curative, 
while the presence of any invasive component confers an 
adverse prognosis on outcome  [4, 5] . The identification of 
biomarkers of pancreatic cancer precursors has the po-
tential to yield diagnostic candidates that will facilitate 
the early detection of these lesions in at-risk individuals 
 [6] . 

  Global proteomic analysis has emerged as a promising 
strategy to elucidate potential biomarkers in various can-
cer subtypes  [7–10] . Unfortunately, these analyses typi-
cally mandate the use of snap-frozen or fresh cancer tis-
sues, or the use of cancer cell lines, precluding the direct 
analysis of smaller, precursor lesions. The ability to per-
form global proteomic analyses from microscopic pre-
cursor lesions in archival tissues would greatly expand 
the repertoire of specimens for cancer biomarker discov-
ery. Standard formalin-fixed, paraffin-embedded (FFPE) 
samples are abundant in surgical pathology archives and 
permit the accurate histological designation of precursor 
lesions in these cases, without the presence of contami-
nating cancer cells. Several approaches have recently 
been described for mass spectrometric analysis of pep-
tides from FFPE specimens, including cancer  [11–13] , as 

well as non-cancerous tissues  [14, 15] . The Liquid Tissue �  
platform is a technology that permits facile global pro-
teomic analysis of archival material by mass spectrome-
try  [16]  and has been utilized for identifying candidate 
biomarkers of prostate cancer from microdissected, for-
malin-fixed radical prostatectomy specimens  [17] , and 
most recently, from archival sections of head and neck 
squamous cell carcinomas (HNSCCs)  [18] . Notably, these 
reports confirm that formalin fixation does not signifi-
cantly alter the ability to generate tryptic peptides for 
subsequent global proteomic analysis by mass spectrom-
etry.

  The objectives of this pilot study were twofold. The 
first goal was to establish that global proteomic approach-
es are not limited to cancer cells, but can also be extend-
ed to the archival precursor lesions, using the Liquid Tis-
sue platform. The second goal was toward elucidation of 
specific proteins whose dysregulation is associated with 
an early stage in the multistep progression of pancreatic 
cancer, by performing this analysis on a noninvasive 
IPMN. Two significant candidate marker proteins for 
IPMN were identified by mass spectrometry, deleted in 
malignant brain tumors 1 (DMBT1) and tissue transglu-
taminase 2 (TGM2). The expression levels of these pro-
teins were validated in a larger series of IPMNs by immu-
nohistochemistry on tissue microarrays (TMAs). These 
results confirm that global proteomic analysis of archival 
precursor lesions is feasible, and can facilitate the identi-
fication of candidate biomarkers applicable in subsequent 
translational research.

  Materials and Methods 

 Tissue Processing and Sample Preparation 
 An FFPE block of a noninvasive IPMN with carcinoma in situ 

was selected for obtaining epithelial cells. A representative hema-
toxylin and eosin stained section was utilized to confirm the 
pathological diagnosis of IPMN by established criteria  [19]  ( fig. 1 ). 
For tissue collection and protein preparation, a single 10- � m-
thick tissue section was cut from the tissue block, placed on a 
standard microscope slide, and heated for 1 h at 60   °   C. Paraffin 
was removed with SubX (Surgipath Medical Industries, Rich-
mond, Ill., USA) followed by tissue rehydration through a series 
of graded ethanol solutions and distilled water. Approximately 
30,000 cells from the relevant region were procured by manual 
(needle) microdissection for processing, as described previously 
 [16–18] . The collected tissue was processed with the Liquid Tissue 
MS Protein Prep Kit according to manufacturer’s recommenda-
tions (Expression Pathology, Gaithersburg, Md., USA). Briefly, 
the tissue was suspended in 20  � l of Liquid Tissue buffer, incu-
bated at 95   °   C for 90 min, then cooled on ice for 2 min, at which 
time 1  � g of sequencing-grade porcine trypsin (Promega, Madi-

  Fig. 1.  Photomicrograph of HE-stained, noninvasive IPMN used 
for microdissection and Liquid Tissue lysate preparation. 
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son, Wisc., USA) was added followed by incubation at 37   °   C for
16 h. Dithiothreitol was added to a final concentration of 10 m M  
and the sample was heated for 5 min at 95   °   C to reduce cysteine 
residues. The protein digest was stored at –20   °   C until MS analy-
sis. Prior to MS analysis, the tryptic digest was desalted using a 
C-18 ZipTip micro-column (Millipore, Billerica, Mass., USA), ly-
ophilized to dryness, and re-suspended in 5  � l of 0.1% trifluoro-
acetic acid.

  Liquid Chromatography-Tandem Mass Spectrometry and 
Bioinformatic Analysis 
 Liquid chromatography (LC) was performed using a Dionex 

Ultimate 3000 nanoflow LC system (Dionex Corporation, Sunny-
vale, Calif., USA) coupled on-line to a linear ion trap (LIT) mass 
spectrometer (MS) (LTQ; ThermoFisher Scientific Inc., San Jose, 
Calif., USA). Separation of the sample was performed using a 75-
 � m inner diameter  ! 360 outer diameter  ! 10 cm-long fused sil-
ica capillary column (Polymicro Technologies, Phoenix, Ariz., 
USA) packed in house with 5  � m, 300 Å pore size Jupiter C-18 
stationary phase (Phenomenex, Torrance, Calif., USA). After in-
jecting 250 ng of the global protein digest, the column was washed 
with 98% mobile phase A (0.1% formic acid in water) for 30 min 
and peptides were eluted by development of a linear gradient of 
2% mobile phase B (0.1% formic acid in acetonitrile) to 42% mo-
bile phase B in 140 min, then to 98% B in an additional 20 min, 
all at a constant flow rate of 250 nl/min. The LIT-MS was oper-
ated in a data-dependent MS/MS mode in which each full MS scan 
(precursor ion selection scan range of m/z 350–1,800) was fol-
lowed by seven MS/MS scans where the seven most abundant pep-
tide molecular ions dynamically determined from the MS scan 
were selected for tandem MS using a relative collision-induced 
dissociation (CID) energy of 35%. Dynamic exclusion was uti-
lized to minimize redundant selection of peptides for CID. Tan-
dem mass spectra were searched against the UniProt  Homo sapi-
ens  proteome database (http://www.expasy.org) using SEQUEST 
(ThermoFisher Scientific, Inc.). Peptides were considered legiti-
mately identified if they achieved specific charge state and pro-
teolytic cleavage-dependent cross-correlation (Xcorr) scores of 
1.9 for [M+H] 1+ , 2.2 for [M+2H] 2+ , and 3.1 for [M+3H] 3+ , and a 
minimum delta correlation score ( � Cn) of 0.08. Further manual 
annotation of the identified proteins was performed using pub-
licly available internet-accessible tools, including the NCBI CGAP 
‘Batch Gene Finder’ (http://cgap.nci.nih.gov/Genes/BatchGene-
Finder). Gene ontology (GO) annotation was performed using a 
full-featured version of the Expression Analysis Systematic Ex-
plorer (EASE, version 2.0 for Windows operating systems) avail-
able at http://david.abcc.ncifcrf.gov  [20, 21] . 

  Immunohistochemistry 
 TMAs comprising tissue cores from 38 IPMNs were used for 

immunohistochemistry as previously described  [22, 23] . The ar-
chival IPMN samples for TMA construction were obtained from 
surgically resected specimens at The Johns Hopkins Hospital; all 
samples were de-linked from direct patient identifiers. Briefly, 5-
 � m sections of the IPMN TMAs were deparaffinized by routine 
techniques. Antigen retrieval was performed by incubating with 
DAKO low pH antigen retrieval reagent (1:   10 dilution) for 20 min 
at 95   °   C, followed by 20 min of cooling to ambient temperature. 
Primary and secondary incubation steps for anti-deleted in ma-
lignant brain tumor 1 (anti-DMBT1h12, 1/100 dilution, mouse 

monoclonal) and anti-tissue transglutaminase 2 (anti-TGM2, 
1/100 dilution of rabbit polyclonal; Neomarkers; LabVision Corp., 
Fremont, Calif., USA) were performed as described previously 
 [24, 25] . Scoring of TMAs utilized a four tier classification (0, 1, 2 
and 3) where less than 5% of labeled epithelial cells was scored as 
‘0’, 5–10% of epithelium labeling was scored as ‘1’, 10–30% of epi-
thelium labeling was scored as ‘2’, and  1 30% of cells labeling was 
scored as ‘3’. 

  Results 

 Proteomic analysis of the IPMN Liquid Tissue lysate 
using nanoLC-MS/MS yielded a total of 1,534 peptides, 
corresponding to 869 total proteins and 523 unique 
 proteins, which are presented in their entirety in online 
suppl.  t able  1   (www.karger.com/doi/10.1159/000161012).
Further, 95 proteins ( � 18%) were identified by two or 
more unique tryptic peptides. In online supplement  table 
2 , we have provided the SEQUEST parameters (Xcorr, 
 � Cn, Sp, RSp, and the coverage of  y - and  b -ions), which 
were determined in order to reduce the numbers of false 
positives, and increase the proportion of true positives. 
The calculated false-positive rate was 3.26%. Representa-
tive tandem mass spectra, including peptides corre-
sponding to three of the proteins identified as expressed 
in IPMN (cathepsin D, DMBT1, and clusterin), are shown 
in  figure 2 . Additional annotation for each unique pro-
tein is provided in online supplement  table 1 , including 
NCBI Entrez ID, unigene cluster for the corresponding 
transcript, cytogenetic location, and gene ontology (GO) 
classification by molecular function, process, and com-
ponent. Summarized graphically in online supplement 
 figure 1  is the GO molecular function, demonstrating 
that the top categories of functional proteins identified 
include those involved in structural and catalytic activity, 
and nucleic acid, DNA and protein binding.

  It is likely that the vast majority of proteins whose pep-
tides were identified by LC-MS/MS in the IPMN Liquid 
Tissue lysate are constitutively expressed ‘native’ proteins 
in the pancreas (including those expressed in the con-
taminating stromal component). Upon manual curation, 
however, the list of expressed proteins in the noninvasive 
IPMN included several whose mRNA transcripts are 
overexpressed in  invasive  pancreatic cancer by global 
mRNA expression profiling technologies (SAGE, cDNA 
and oligonucleotide microarrays)  [24–31] . Comparison 
with quantitative proteomic studies of invasive pancre-
atic cancer  [32, 33]  also revealed additional examples of 
upregulated proteins that were detected in the IPMN. 
This ‘enriched’ subset of 25 previously identified cancer-
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associated proteins in IPMN ( table 1 ) represents a source 
of markers with aberrant expression at the earliest stages 
of pancreatic neoplasia. For further validation in a larger 
series of IPMN TMAs we selected two proteins, DMBT1 
and TGM2, which have – to the best of our knowledge – 
so far never been reported to be overexpressed in IPMNs. 
However, we and others have previously described their 
upregulation in invasive pancreatic cancers  [24, 25, 34–
36] . 

  Immunohistochemical analysis confirmed the over-
expression of both DMBT1 and TGM2 in IPMN tissues 
( fig. 3 ,  4 ). Specifically, 2–3+ staining was observed in 15 

of 38 (39%) IPMNs labeled with anti-DMBT1 antibody, 
and in 12 of 33 (36%) cases labeled with anti-TGM2 (five 
IPMN cores stained with anti-TGM2 were not able to be 
evaluated) ( table 2 ). While DMBT1 was primarily ex-
pressed in the IPMN epithelium ( fig. 3 ), TGM2 expres-
sion was also seen in the juxta-tumoral stroma, including 
in occasional cases where the epithelium itself did not 
express TGM2 ( fig. 4 ). In contrast, minimal or no DMBT1 
or TGM2 expression was observed in the non-neoplastic 
pancreas, including sections of normal intralobular ducts 
when these were available for evaluation. Although the 
numbers of cases are limited, we did not observe any sig-
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  Fig. 2.  Representative tandem mass spectra of peptides identified in the IPMN Liquid Tissue lysate preparation. 
Inset spectra illustrate three identified peptides corresponding to cathepsin D, DMBT1, and clusterin. 
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nificant correlation between aberrant protein expression 
and histologic grade of the IPMN epithelium (adenoma, 
moderate dysplasia, or carcinoma in situ)  [19, 37] .

  Discussion 

 Few public health measures have had as much success 
in ameliorating cancer mortality as early detection at an 
operable, and hence potentially curable, stage  [38, 39] . 
The National Cancer Institute recognizes this and has 
therefore invested considerable efforts in early detection 
strategies  [40, 41] . In order to implement effective early 
diagnosis of cancer, two prerequisite tenets need to be 
met. First, there must be a recognizable precursor stage 
before invasive cancer develops which provides a window 
of opportunity for preventative intervention. This crite-
rion has now been met for most common cancers  [42–
46] , including pancreatic cancer, where tangible nonin-
vasive precursor lesions are recognized, and for which 
standardized diagnostic criteria have been established  [2, 
37] . The second requirement is the identification of sensi-

Table 1. Subset of pancreatic cancer-associated proteins identified by Liquid Tissue technology in IPMN

Protein Gene symbol Unigene ID Number of peptides References

Annexin A1 ANXA1 Hs.494173 2 [25–27, 31, 33]
Annexin A2 ANXA2 Hs.511605 1 [32, 33]
Caldesmon CALD1 Hs.490203 4 [33]
Cathepsin D CTSD Hs.654447 2 [32]
Cytokeratin-7 KRT7 Hs.670221 4 [25, 26, 28]
Cytokeratin-8 KRT8 Hs.533782 8 [27]
Cytokeratin-19 KRT19 Hs.654568 4 [25, 27, 28]
Cofilin CFL1 Hs.170622 2 [32]
Collagen type I, alpha 1 COL1A1 Hs.172928 32 [26, 30]
Collagen type I, alpha 2 COL1A2 Hs.489142 19 [26, 28]
Collagen type IV, alpha 3 COL4A3 Hs.570065 3 [32]
Deleted in malignant brain tumors 1 DMBT1 Hs.279611 1 [24]
Fibrillin 1 FBN1 Hs.591133 4 [32]
Fibrinogen gamma chain FGG Hs.546255 1 [32]
Gelsolin GSN Hs.522373 5 [32]
Lumican LUM Hs.406475 5 [32]
Peroxiredoxin 1 PRDX1 Hs.180909 1 [27]
Phosphoglycerate kinase 1 PGK1 Hs.654578 5 [27]
Plectin 1 PLEC1 Hs.434248 3 [25, 32]
Rho GDP Dissociation Inhibitor alpha ARHGDIA Hs.159161 2 [31]
Transglutaminase 2 TGM2 Hs.517033 4 [25–27, 29, 32]
Transgelin 2 TAGLN2 Hs.517168 1 [32]
Tropomysin 4 TPM4 Hs.631618 1 [27]
Tubulin alpha-1 chain TUBA1A Hs.654422 4 [27]
Vimentin VIM Hs.642813 21 [29]

Table 2. Immunohistochemical analysis of DMBT1 and TGM2 in 
IPMN TMAs

Antigen labeling Percent positive

DMBT1
0 7/38 (18%)
1+ 16/38 (42%)
2+ 6/38 (16%)
3+ 9/38 (24%)

TGM2
0 13/33 (40%)
1+ 8/33 (24%)
2+ 7/33 (21%)
3+ 5/33 (15%)

Five TMA cores dropped out and were therefore not evaluable 
in the TGM2 series. DMBT1 labeling is restricted essentially to 
the IPMN epithelium, while TGM2 labeling is observed in both 
the neoplastic epithelium and the juxta-tumoral stroma.
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tive and specific surrogate biomarkers that can provide 
ancillary information to routine clinical assays for diag-
nosing the presence of high-risk precursor lesions  [41, 
47] . The latter remains a work in evolution. For example, 
in the case of pancreatic cancer, the most commonly uti-
lized serological marker – CA19-9 – has suboptimal per-
formance in the diagnosis of early pancreatic neoplasia, 
and is probably best utilized in monitoring disease recur-
rence in patients who have already received therapy  [48, 
49] .

  Large-scale proteomic approaches have provided a ma-
jor impetus to the search for new biomarkers in cancers 

and in their precursor lesions  [8, 50] . One of the major 
limitations of proteomic applications in clinical samples 
has been the requirement for high-quality snap-frozen or 
live tissue specimens  [51] , essentially excluding the repos-
itories of fixed, archival paraffin-embedded tissues avail-
able in most institutions. Further, the current approach to 
biomarker discovery in precursor lesions involves the ret-
rospective analysis of tumor antigens which are first iden-
tified in invasive cancers (‘reverse proteomics’)  [52] . An 
unbiased ‘forward’ proteomics analysis of precursor le-
sions might directly elucidate biomarkers that are aber-
rantly expressed at the earliest stages of multistep cancer 

a b

c d

  Fig. 3.  DMBT1 labeling in IPMN tissue microarrays.  a ,  b  Two examples of noninvasive IPMNs with intense 
DMBT1 expression in the neoplastic epithelium.  c  A representative example of a DMBT1-expressing invasive 
adenocarcinoma arising in an IPMN. Notice the absence of labeling in the stroma.  d  Example of IPMN with no 
expression of DMBT1 protein. 
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progression. The Liquid Tissue platform has previously 
been applied to the discovery of differentially expressed 
proteins in formalin-fixed paraffin embedded tissues  [16–
18] . In this study, we have applied the Liquid Tissue plat-
form to elucidate the proteome of a noninvasive precursor 
lesion of pancreatic cancer (IPMN). We have confirmed 
the upregulation of two of the expressed proteins (DMBT1 
and TGM2) in IPMNs versus normal pancreatic tissues by 
immunohistochemistry, underscoring the validity of our 
approach for tumor marker discovery in precursor le-
sions. Although our proof-of-principle analysis in IPMNs 
was not quantitative in nature, the Liquid Tissue platform 

has been shown to be amenable to quantitative proteomic 
analyses (e.g. stable isotope labeling) for biomarker dis-
covery in prostate cancer  [17] . Nevertheless, by simple 
manual curation, we were able to focus on those proteins 
most likely to be aberrantly expressed in IPMNs com-
pared to normal pancreas based on their known associa-
tion with the invasive pancreatic cancer proteome ( ta-
ble 1 ). One of the validated proteins, DMBT1, belongs to 
the superfamily of scavenger receptor cysteine-rich pro-
teins and is a secreted glycoprotein  [53] . Loss of DMBT1 
expression was first recognized in brain tumors, but over-
expression of this protein has now been documented in 
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  Fig. 4.  TGM2 labeling in IPMN TMAs.  a  Absence of TGM2 labeling in non-neoplastic pancreatic acini and in 
small intra-lobular ducts (arrow); labeling is observed only in endothelial cells.  b ,  c  Two examples of noninva-
sive IPMNs with intense TGM2 expression in the neoplastic epithelium. Unlike DMBT1, TGM2 expression is 
often observed in the juxta-tumoral stroma ( d ), even in the absence of demonstrable labeling in the IPMN ep-
ithelium (arrowhead). 
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pancreatic cancers  [24, 34] . Hence, our findings presented 
here, demonstrating for the first time overexpression of 
DMBT1 in IPMNs, are in line with these previous reports 
and suggest that upregulation of DMBT1 is a comparably 
early event in pancreatic carcinogenesis. TGM2 plays a 
critical role in catalyzing the calcium-dependent trans-
amidation of polypeptides, but is unique in that it also has 
protein isomerase and kinase activities  [54] . Several lines 
of evidence support a role for TGM2 in cancer biology 
 [55] , with distinct and potentially contrasting effects of 
expression in neoplastic cells  [56]  and in the juxta-tumor-
al stroma  [57] . We and others have established TGM2 
overexpression as a phenotype of invasive pancreatic can-
cer  [25, 36] , and this study extends this finding to IPMNs 
as well.

  In conclusion: In the present study, we show that our 
recently described technology for protein extraction from 
archival tissue sample material is amenable to mass spec-
trometric analysis of tryptic peptides for analyzing the 

proteome of noninvasive pancreatic cancer precursor le-
sions. We hope that application of the Liquid Tissue plat-
form to proteomic analysis of archival formalin-fixed tis-
sues will prove to be a valuable additional tool for bio-
marker discovery in the future.
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