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ABSTRACT The wide use of lattice-sum strategies in biomolecular simulations has raised many questions on potential artifacts
in these strategies. One interesting question is the artifacts in the counterion distributions of highly charged systems. As one
would anticipate, Coulombic interactions under the periodic boundary condition may deviate noticeably from those under the
free boundary condition in the highly charged systems, significantly influencing their counterion distributions. On the other
hand, the electrostatic screening due to water molecules and mobile ions may effectively damp the possible periodic distortions
in Coulombic interactions. Therefore, the magnitude of periodicity-induced artifacts in counterion distributions is not straightfor-
ward to dissect without detailed analyses. In this study, we have developed a hybrid explicit counterion/implicit salt representa-
tion of mobile ions to address this question. We have chosen a well-studied DNA for easy validation of the minimal hybrid ion
representation. Our detailed analysis of continuum ion distributions, explicit ion distributions, radial counterion distribution func-
tions, and sequence-dependent counterion distributions, however, indicates that periodicity artifacts are not apparent at the
surface of the tested DNA. Nevertheless, influence of boundary conditions does show up starting at the second solvation shell
and becomes apparent at the cell boundary.
INTRODUCTION

Molecular dynamics (MD) simulations are widely applied to

the studies of chemical and physical properties of biomole-

cules. Although the simulation techniques are successful in

describing the biomolecular systems, many issues remain to

be addressed, especially on the approximations introduced

for efficient computation of long-range Coulombic interac-

tions. Two major approaches have been developed to approx-

imate long-range Coulombic interactions. The cutoff-based

methods (1), in which the Coulombic interactions beyond

a predefined cutoff distance are truncated or modified, were

widely employed in the early days of MD simulations.

Although the cutoff-based methods reduce the computation

complexity from quadratic scaling to linear scaling with

respect to the atom number, the methods introduce many arti-

facts in the simulations of liquids (1), solvated ions (2,3), ion

pairs (4), and biomolecules (5,6). Indeed, the truncation

approximation is possibly obsolete when rigorous treatments

of long-range interactions are required. The second group of

methods can be loosely termed as the lattice-sum methods,

such as the Ewald summation method (7), the particle-

particle-particle-mesh method (8), and the particle-mesh

Ewald (PME) method (9). In contrast to the cutoff-based

methods, the lattice-sum methods permit exact calculation

of Coulomb interactions under the periodic boundary condi-

tion (PBC). Although their numerical accuracy is in fact

limited in simulations (10), stable trajectories of biomolecules

are often obtained for systems where cutoff-based methods
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fail to maintain (6,11). Due to the simulation robustness, the

lattice-sum methods are now mainstream tools for biomolec-

ular simulations. However, the PBC approximation may still

lead to artifacts in simulations. Indeed PBC artifacts in the

calculation of the free energies of ionic hydration were iden-

tified more than a decade ago (11). Similar artifacts were also

observed in the calculation of potentials of mean forces of ion-

ion separation processes (12). Obviously, the PBC artifacts

need to be analyzed more quantitatively for the simulation

community to employ this general approach with higher

confidence.

Historically, the challenge in the PBC artifact analysis lies in

the fact that adequate sampling of solvent molecules and coun-

terions is extremely time-consuming. This is especially true for

the reference system treated by the free boundary condition

(a.k.a., the nonperiodic boundary condition (NPBC)), the

sampling of which is an almost unachievable task. Thanks to

recent developments, sampling of solvent molecules in such

analysis can be replaced by implicit solvation treatment.

Thereby, a direct comparison is computationally feasible

between the results expected for otherwise identical simulation

setups but under different boundary conditions (PBC and

NPBC). Along this line, a series of studies were conducted

by Hünenberger and co-workers (13–18). These studies re-

sulted in many interesting insights on possible PBC artifacts;

for instance, a nonnegligible energetic bias (17), low dielectric

permittivity, and other periodicity-induced artifacts (13,14),

all of which can be more prominent with the decrease of box

sizes and/or with the increase of solute charges. Moreover,

based on these analyses, a modified lattice-sum algorithm

was proposed to alleviate periodicity-induced artifacts (16).
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Despite the successful analyses of the solvation aspect of

PBC-induced artifacts, which are noted above, the period-

icity-induced effect on the counterion distributions is still

not clear (17). Since counterions play an important role in

the simulations of biomolecules, especially in highly charged

nucleic acids, typical MD simulations require the inclusion

of both explicit water molecules and explicit counterions.

As one would anticipate, Coulombic interactions under

PBC may deviate more noticeably from those under NPBC

in highly charged systems; and the use of PBC may signifi-

cantly influence their counterion distributions. Therefore,

analysis of the counterion aspect of PBC-induced artifacts

should be of importance as well. In this study, we would

like to address this question by comparably mapping the

counterion distribution around a double-strand DNA with

a canonical sequence with both periodic and nonperiodic

boundary conditions.

To achieve an efficient and accurate analysis on the peri-

odicity-induced artifacts on the counterion distribution of

the DNA, we designed a unique hybrid representation of

the system with an explicit representation of both the solute

atoms and the counterions and an implicit representation of

solvent and bulk salt. The electrostatic interactions of the

hybrid system can be readily modeled within the Poisson-

Boltzmann (PB) framework. Under this design, the highly

charged solute is neutralized, so that the more efficient linear

PB treatment of electrostatics can be utilized with reasonable

accuracy. Furthermore, a robust numerical linear PB algo-

rithm (19,20) is used to compute electrostatic interactions

at every Monte Carlo sampling step. To enhance explicit

counterion sampling, we utilized an advanced Monte Carlo

sampling method—a variant Hamiltonian replica exchange

method (VHREM) that was designed for systems with

both the requirements of energy-barrier-crossing sampling

and diffusion sampling (21). Note that our Monte Carlo

simulation in the hybrid representation is different from

most previous Monte Carlo simulations of explicit ions

(22), in which typical electrostatic treatments were based

on either straight Coulombic law in the dielectric of 80 or

the distance-dependent dielectric.

METHODS

Hybrid ion representation

In this study, we developed a minimal hybrid representation of the solvated

nucleic acid system for efficient and accurate analysis of the counterion

distribution. First, the nucleic acid is represented in the all-atom detail,

although all atoms are fixed throughout a simulation trajectory as in previous

analyses of counterion distributions, since the focus is on mobile ions in such

analyses (22). Second, all solvent molecules are represented as a continuum.

Finally, the ions are represented in two different ways:

1. The counterions that are needed to neutralize the nucleic acid are explic-

itly represented and sampled.

2. The rest of the ions that are needed to maintain a bulk salt concentration

are implicitly represented.
If the solvated nucleic acid is without any ion, the total electrostatic inter-

actions of the system can be modeled with the Poisson’s equation in classical

electrostatics, given that:

1. The charges are located on all atomic centers of the nucleic acid; and

2. The dielectric constant is set to be 1 within the nucleic acid and the dielec-

tric constant is set to be 80 outside the nucleic acid.

The solute and solvent interface is usually defined as the solvent-excluded

surface or the molecular surface. Thus, we have

V , 3Vf ¼ �4pr0; (1)

where 3 is the dielectric constant, f is the electrostatic potential, and r0 is the

solute charge density.

When explicit counterions are used, they can be treated as part of the

solute, i.e., we simply solve the Poisson’s equation with both the nucleic

acid atoms and all counterions present. However, when the implicit salt

ions are used, they are modeled as continuum in a mean-field manner.

The implicit ion densities are assumed to follow the Boltzmann distribution.

Thus, the Poisson-Boltzmann’s equation is used to model the total electro-

static interactions of the solvated system,

V , 3Vf ¼ �4pr0 � 4p
X

i

ezicil expð � ezif=kBTÞ; (2)

where e is the unit charge, zi is the valence of ion type i, ci is the number

density of ion type i, l is the Stern layer masking function, kB is the Boltz-

mann constant, and T is the absolute temperature. For a solution with

symmetric 1:1 salt, Eq. 2 is usually written as

V , 3Vf ¼ �4pr0 þ
k2

C
l sinhðCfÞ; (3)

where k2 ¼ 8pe2I

kBT
and C ¼ ez

kBT
. Here I represents the ionic strength of the

bulk solution and I ¼ z2c. If the electrostatic potential is weak and the ionic

strength is low, Eq. 3 can be simplified to a linear form to improve compu-

tation efficiency (23):

V , 3Vf ¼ �4pr0 þ k2f: (4)

The electrostatic free energy of the nonlinear Poisson-Boltzmann equation

can be written as (24,25)

G ¼
Z h

r0f� 3

2
ðVfÞ2�k2ðcosh f� 1Þl

i
dv: (5)

For sufficiently small f, we can derive the linearized form of the free energy

by using the approximation of cosh f ~ 1 þ f2/2. Additional simplification

can be achieved by using the Gauss law on the second term of Eq. 5,

�
Z

3

2
ðVfÞ2dv ¼

Z
f

2
V , 3Vfdv: (6)

Finally, application of the linear Poisson-Boltzmann equation yields the

following well-known free energy for the linear Poisson-Boltzmann equation,

G ¼ 1

2

Z
r0fdv: (7)

Finite-difference Poisson-Boltzmann method

In typical finite-difference Poisson-Boltzmann (FDPB) calculations, the

solution system is discretized with a cubic lattice, i.e., electrostatic poten-

tials, charges, and mobile ion concentrations are all defined on grid points,

whereas the dielectric constants are defined on grid edges. Thus, FDPB

usually consists of the following steps:
Biophysical Journal 97(2) 554–562
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Step 1. All atomic charges are mapped to the nearest finite-difference grid

points.

Step 2. The molecular surface is generated as the boundary between high-

dielectric (i.e., water) and low-dielectric (i.e., biomolecule)

volumes. Further, the dielectric boundary has to be mapped on the

finite-difference grid.

Step 3. Boundary conditions, i.e., electrostatic potentials on the external

surfaces of the finite-difference grid are assigned.

Step 4. These steps allow the partial differential equation to be converted

into a linear or nonlinear system and solved (20,26).

Step 5. Once the system is solved, the solution is used to compute the elec-

trostatic energies and forces.

NPBC and PBC in FDPB

In this study, NPBC was implemented in FDPB with the facility of electro-

static focusing for efficiency. In the electrostatic focusing treatment, both

a coarse grid and a fine grid were used in each FDPB calculation. Here

the coarse-grid calculation was solved only to obtain the boundary potential

for the fine-grid calculation. Specifically, the space boundary potentials for

the fine grid were computed using the trilinear interpolation technique from

the coarse grid. Note that electrostatic focusing or the double grid run is an

approximation to the single fine grid run even with the same boundary

condition. We analyzed the error introduced by electrostatic focusing with

the initial solute structure as a test case. We found that the energy difference

between the single grid run and the double grid run is<0.01 kcal/mol, a rela-

tive error of 10�7. Another source of potential error in NPBC lies in the use

of the Debye-Hückel potential of a spherical solute for the coarse-grid

boundary potential. The Debye-Hückel boundary potential is only a good

assumption when the finite-difference boundary grid is far away from the

solute. We have estimated the error of the approximation in the tested solute

by using successively larger grids, i.e., with the grid dimension two, four,

six, and eight times larger than the solute dimension. We found that the

energy difference is <0.01 kcal/mol when the grid dimension is changed

from two to eight times larger than the solute dimension. This corresponds

to a relative error of 10�7. Thus, we have set the dimension of the coarse grid

to be roughly twice that of the solute to secure good free-space boundary

potential for NPBC.

To realize PBC in FDPB, we adopted a straightforward strategy for the

purpose of minimizing changes in the existing FDPB solvers. Given that

FDPB potentials and charges are defined from grid 1 to n along any dimen-

sion, periodicity implies that grid�n to 0 and grid nþ1 to nþ2n are both the

exact images to grid 1 to n. Besides setting up FDPB charge and dielectric

constant in the boundary region following the periodicity convention, the

FDPB equation should be solved by setting the boundary potentials as

follows. Since the potential at grid 0 is used for the boundary condition

for grid 1, and the potential for grid nþ1 is used as boundary condition

for grid n, we simply copied the potential at grid n to grid 0, and copied

the potential at grid 1 to grid nþ1. The initially unknown boundary poten-

tials can be set up as guessed values, or set up as zero. Subsequent FDPB

runs would allow us to obtain the potential from grid 1 to n according to

the initial boundary potential values. The new potentials at grid 1 and n
were then used as new boundary potentials at nþ1 and 0, respectively, to

start the next FDPB run. Repeat of these steps would achieve a self-consis-

tency between the boundary potential and the potential on grids 1 to n. The

pseudo code is shown below:

Step 1. Set up initial boundary condition, i.e., f(0) ¼ 0 and f((nþ1) ¼ 0.

Step 2. Do FDPB iteration.

Step 3. If convergence is reached (i.e., the boundary potential no longer

changes), exit.

Step 4. Copy the potential of grid 1 to grid nþ1; copy the potential of grid n
to grid 0; update boundary condition, go to Step 2.

The PBC/FDPB implementation was validated by two charges in a dipolar

arrangement and four charges in a quadrupolar arrangement in vacuum. It
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can be seen from Table 1 that PBC/FDPB energies are very close to those

of Ewald and PME. Three methods, including Ewald (27), PME (28), and

PBC/FDPB, were used to compute the electrostatic energies of the two

test cases. The box size is 20 Å � 20 Å � 20 Å. The unit charges are placed

in the x-y plane and the distance between any two charges is 10 Å in the x

and y direction.

Monte Carlo simulation of counterions

Monte Carlo (MC) has been proven to be a successful method in the studies

of counterion distributions of nucleic acids. Previous simulation findings

were found in good agreement with the counterion condensation theory

and experiment (22,29,30). To enhance sampling of explicit counterions,

a revised strategy based on the general Hamiltonian replica exchange

method (HREM), termed VHREM, was used in this study (21). The

VHREM method was designed to improve the diffusion sampling of coun-

terions by targeting each individual counterion in turn (21). This is different

from a general HREM implementation (31–36), which would target all

counterions simultaneously. The general HREM is apparently straightfor-

ward to implement, but the diffusion sampling can still be very challenging

when the number of degrees of freedom subject to treatment is large (31,36).

This is similar to the limitation in temperature replica exchange methods

(31,36), which activate all degrees of freedom at higher temperatures, result-

ing in reduced sampling efficiency in interested degrees of freedom.

In VHREM, in addition to one replica at the targeted state, which is

described by the original energy potential U0, we designed N replicas at

scaled states. Each of these scaled states has a unique portion of energy

potential, corresponding to one specific ion, scaled by a scaling parameter

l. The scaled potential is

Ui ¼ lUi
s þ Ui

e; i ¼ 0; 1;.;N; (8)

where Ui
s represents the energy potential corresponding to the ith ion and Ui

e

stands for the rest of the energy terms in the original energy function

U0ðUi
s þ Ui

e ¼ U0 for all iÞ. Specifically to realize the energy scaling in

FDPB, the charge of ion i in replica i is scaled by l before calling FDPB

to obtain the electrostatic energy.

If there are N ions in the simulated systems, we need to set up N þ 1

replicas: one replica at the target state and N replica at scaled states. Each

pair of neighboring replicas acted by the potentials of Uj and Uk are sched-

uled for structure exchanges based on canonical replica exchange acceptance

probability relationship,

w
�
Cold/Cnew

�
¼ min

�
1; exp

�
� b
��

Uk;j þ Uj;k

�
�
�
Uk;k

þ Uj;j

����
;

(9)

where Ux,y represents the energy calculated with the energy function of Ux,

but on the structure of the replica acted by the potential Uy. After each trial

replica exchange, the sequence of all the scaled state replicas is reshuffled to

guarantee thorough structural exchanges between the target state replica and

all the scaled state replicas. The neighboring replicas in the replica exchange

are determined for exchange according to the topology shown in Fig. 1 of

Min et al. (21). In this study, 23 replicas on 23 CPUs were employed in

each VHREM/MC simulation. These 23 replicas include the target state

replica and 22 scaled states replicas corresponding to 22 counterions, respec-

tively. The MC move step was set to 0.25 Å to yield an acceptance ratio of

TABLE 1 Electrostatic energies (kcal/mol) under the periodic

boundary condition by three different methods

Computational method Dipolar Quadrupolar

Ewald summation �45.5138 �107.1771

PME �45.4893 �107.1358

FDPB �45.5228 �107.2291
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65%. The scaled parameter l in VHREM was set as 0.7 to achieve a replica

exchange ratio of ~55%.

In PBC simulations, if a counterion moves out of the box from one side, it

moves into the box from the other side. In NPBC simulations, the centers of

mass of counterions are confined within the same ion-accessible volume in

the PBC simulations. The reflective boundary condition was used to prevent

counterions from diffusing away from the simulation box. Specifically, if

a counterion reaches the boundary, it can move to any direction except

crossing the boundary.

To accelerate FDPB calculations, the DNA was fixed throughout the

simulations and only counterions were allowed to move. This fact is ex-

ploited to save the CPU times of certain portions of a FDPB calculation.

For example, the charge and dielectric grids of the DNA alone were first

computed before the start of the simulations and saved. The complete charge

and dielectric grids of the DNA and counterions were then updated at every

step with the actual positions and radii of counterions.

We carried out 40 independent simulations in both PBC and NPBC,

respectively. These independent simulations were started with different

random seeds but from the same initial conformation. Each single simulation

was run for 470,000 steps per replica. Structures were saved every 100 steps

for analysis. Convergence of the simulations was monitored by analyzing

the running average energies of all 40 simulations. The running average

energies show that at least 200,000 steps per simulation are needed for equi-

librium in both the PBC and NPBC simulations. Nevertheless, the first

270,000 steps were discarded to secure good equilibration in both sets of

simulations, and the remaining 200,000 steps per simulation were used

and referred to as the production trajectory.

FIGURE 1 Continuum ion distributions in the x-z plane for 1BNA.

Contours are plotted from 75 mM negative charge (red) to 150 mM positive

charge (blue) with an interval of 5.625 mM. The five counters from�13.125

mM to þ15 mM are colored black. (a–c) PBC simulations in the small,

medium, and large boxes, respectively. (d) NPBC simulation.
Computation details

All simulations were performed with a revised AMBER 10 suite of programs

and the ff94 atomic charges for DNA and counterions (37). In both PBC and

NPBC simulations, the explicit sodium ions are treated as hard spheres with

their radii set as the cavity radius of the sodium ion (38). The radii of DNA

atoms were previously optimized against TIP3P solvation free energy simu-

lations (38). The solvent dielectric constant is 80, whereas the solute dielec-

tric constant is 1.

The dielectric interface between the solute and solvent regions was

defined by the solvent-excluded molecular surface, obtained with a solvent

probe radius 0.6 Å (38). Note that the unconventionally small probe radius

was optimized based on our quantitative comparative analyses of FDPB

versus the TIP3P explicit solvent model (38). In Tan et al. (38) and subse-

quent analysis (X. Ye, J. Wang, C. Tan, and R. Luo, unpublished), we found

that the electrostatic solvation energies of small molecules are not very sensi-

tive to the different probe sizes. However, the electrostatic potentials of

mean force of hydrogen-bonded or salt-bridge dimers are quite sensitive

to the probe radius used and a solvent probe radius of 0.6 Å can best repro-

duce the TIP3P solvent among the tested values (X. Ye, J. Wang, C. Tan,

and R. Luo, unpublished). Our subsequent analysis of ion pairs on peptides

and proteins also indicates that the probe radius of 0.6 Å can best reproduce

the TIP3P solvent. Indeed, unconventionally small probe radii, as small as

zero (i.e., van der Waals surface), were also used in previous studies and

were found to yield good agreement with experiment (39,40). It should be

pointed out that a small probe might cause numerical difficulties in loosely

packed biomolecules. These contradicting observations apparently result

from the limitation of hard-sphere models used in dielectric assignment in

the PB theory. These observations also support the arguments for more phys-

ical treatment of dielectrics for biomolecules. Since our interests are in the

mobile ions in this study and our fixed DNA structure does not contains

any artificial water-accessible pockets even with the small water probe,

the use of the optimized probe radius is a clearly a better choice to reproduce

the TIP3P electrostatic potentials of mean force.

The continuum salt is a 1:1 electrolyte of 150 mM behaving according to

the linear PB equation. The temperature is 300 K. The ion exclusion layer is

2.0 Å away from the DNA/explicit counterions surface. For NPBC/FDPB,

one coarse grid and one fine grid were used. The coarse-grid dimension is

82 Å � 86 Å � 116 Å with a spacing of 2 Å and the fine-grid dimension

is 42 Å� 44 Å� 59 Å with a spacing of 0.5 Å. For PBC/FDPB, only a single

fine grid of 0.5 Å was used, and the grid dimension is the same as the fine

grid in NPBC/FDPB. The convergence criterion was set to be 10�5. Other

details can be found elsewhere (19,20).

The initial structure was taken from the classical Drew-Dickerson dodeca-

mer B-DNA structure (PDB id: 1BNA). Twenty-two Naþ ions were added

to neutralize the system. Thus, the simulation system consists of DNA and

22 explicit Naþ counterions in the implicit water and 150 mM continuum

salt in a rectangular cell. The initial 22 sodium coordinates were determined

by successive positioning of each counterion at the lowest electrostatic

potential site from linear PB runs with NPBC/FDPB. Note that addition of

a neutralizing number of counterions alone approximates the screening

effects of counterions in a qualitative manner. However, it does not corre-

spond to a particular ionic strength. The final ionic strength also depends

on the size of the simulation box. This will be discussed below.

Counterion occupancy was analyzed with the method of Ponomarev et al.

(41). Specifically, explicit counterion occupancy for each atom was first

calculated with a cutoff distance of 5 Å. The explicit counterion occupancy

of each nucleotide was then computed by summing the occupancies of all

atoms of the nucleotide. The continuum counterion occupancies were

computed similarly, through volume integration. The summation of explicit

ion and implicit ion was reported as the ion occupancy for a given nucleo-

tide. In this work, each ion was assigned to one and only one nucleotide of

the DNA.

Biophysical Journal 97(2) 554–562
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RESULTS AND DISCUSSIONS

Continuum ion distribution

The periodic artifacts on ion distributions were first analyzed

by studying the effect of box size in PBC from the continuum

point of view. In this analysis, different box sizes centered on

the DNA were used in FDPB calculations to probe the effect

of box size. Here, the small box is merely large enough to

solvate the DNA by a layer of water of ~4 Å (box size

34 Å � 36 Å � 51 Å). The medium-size box and the large

box solvate the DNA by a layer of water of ~10 Å (box

size 42 Å � 44 Å � 59 Å) and 15 Å (box size 52 Å �
54 Å � 69 Å), respectively. Specifically the medium box

size was chosen to be similar to the typical box size chosen

by most workers in MD simulations with PME.

The PBC ion distributions from the different boxes are

shown in Fig. 1. The NPBC ion distribution is also shown

for comparison. The figure shows two-dimensional ion

concentration contours in the x-z plan. Note that the z axis

is chosen to be the DNA helical axis in this study. Contours

are shown at intervals of 5.625 mM from 75 mM negative

charge to 150 mM positive charge. For the small simulation

box, it is apparent that the PBC ion distribution is similar to

the NPBC ion distribution near the surface of the DNA

(Fig. 1 a). However, their difference becomes obvious in

regions away from the DNA (Fig. 1 a). In the medium box

shown in Fig. 1 b, almost no difference can be seen near

the DNA surface; in the region away from the DNA, some

deviations can be identified, but not as obvious as that in

the small box. In the large box shown in Fig. 1 c, no visible

difference can be seen throughout the simulation box when

compared with the NPBC ion distribution. To rule out likely

artifacts in arbitrary choice of the plan perpendicular to the

helix of DNA, the continuum ion distributions in the y-z
plane were also compared for the commonly used medium

box (Fig. 2). It can be seen that the visible difference is

only located near the box boundary region as in the x-z plane.

Finally, it should be pointed that the effect of box size is

small for the NPBC ion distribution. Indeed, we tested the

effect by doubling and quadrupling the box size and found

no noticeable differences in continuum ion distributions in

NPBC. This shows that the medium box chosen here is large

enough for NPBC calculations. These observations are also

in qualitative agreement with previous studies of proteins:

it was reported that the periodicity-induced artifacts may

be enhanced when the solute size is nonnegligible, when

compared to the size of the simulation box (14).

Explicit counterion distribution

A visual representation of the spatial distribution of the 22

explicit counterions is shown in Fig. 3. Note that all simula-

tions were conducted with the medium-sized box discussed

above. The most frequently visited positions by explicit

counterions were chosen through 10 lowest energy configu-

Biophysical Journal 97(2) 554–562
rations. As shown in Fig. 3, the density of clustered spheres,

each of which represents an individual counterion, can be

used to estimate the local concentration of explicit counter-

ions. The explicit counterions, as expected, preferentially

visit the vicinity of, but are not necessarily directly bound

to, the double helix. This does not imply that these explicit

counterions spend most of the time bound to the surface of

the DNA, and this indeed is not the case. The detailed

analysis of counterion occupancy is described below. Never-

theless, these lowest-energy snapshots show that explicit

counterion distributions are very similar between NPBC

and PBC at least when the medium box is used.

Radial distribution of total counterion
and Manning radius

Given the above analyses of continuum and explicit ion

distributions, we went ahead to quantify the total counterion

distributions in PBC and NPBC simulations. Here, the total

counterion concentration is the sum of both explicit and

implicit cations from the hybrid ion representation. Fig. 4

shows the total counterion distributions as a function of

distance from the DNA helical axis. The figure shows that

counterion densities in both PBC and NPBC are as high as

1.5 M in region 6–12 Å from the helix axis (Fig. 4, upper

FIGURE 2 Continuum ion distributions in the x-z and y-z planes for the

medium-sized box. (a) NPBC, x-z plane; (b) PBC, x-z plane; (c) NPBC, y-

z plane; (d) PBC, y-z plane. See Fig. 1 for more details.
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panel). This region happens to fall in the major and minor

grooves where the counterions frequently visit as shown

above. Note that the shape of the distribution function is

similar to that observed in full explicit ion simulations with

the Poisson’s equation (42). Since the simulation box in

this study is smaller, the highest density observed is expected

to be higher. Both simulations also show that the concentra-

tion of counterions near the surface of DNA (~10 Å from the

helix axis) is >1 M, consistent with previous theoretical

FIGURE 3 Superposition of 10 lowest energy snapshots from the MC

simulations. (a) Major groove; (b) minor groove. Ions in PBC simulations

are colored yellow, and those in NPBC simulations are colored blue.

FIGURE 4 Counterion radial distribution functions. Radial distance

measured from the average helical axis. The upper panel is computed with

ion accessible volume and lower panel is computed with the total volume.
nonlinear PB studies (43). Finally, if the total volume is

used (Fig. 4, lower panel), the peak of distribution function

is narrowed and centered in the region 11–13 Å and the high-

est density is also reduced from 1.5 M to 1.25 M.

An interesting common observation from both the PBC

and NPBC simulations is the rather high counterion density,

approaching 500 mM, near the box boundary. This is very

different from the bulk value as set to be 150 mM, indicating

the artificially high density is not due to the use of PBC, but

mostly due to the use of rather small simulation box. It is

likely that the high counterion concentration might cause

energetic artifacts and subsequent dynamic artifacts when

the DNA is fully mobile during simulations.

One commonly used measure of total counterion distribu-

tions in DNA is the radius within which the Manning fraction

of the net DNA charge is neutralized. For B-DNA, it is 76%

(43). The Manning radius is 17.75 Å in NPBC, and it is

18.00 Å in PBC. This is quite close to those reported in

a previous nonlinear PB study, 17 Å for a salt concentration

of 250 mM (29). In our work, the ionic strength is set as

150 mM, so that the Manning radius should be somewhat

larger, as predicted from the trend of Manning radius versus

ionic strength, i.e., the Manning radius increases as the ionic

strength decreases. Here we also tested the linear PB theory

without any explicit counterions to calculate the Manning

radius. We found that it is much larger, at ~25 Å. It is apparent

that the linear PB alone without neutralizing counterions is

insufficient in modeling highly charged systems (23).

Sequence dependence of total counterion
distribution

The sequence dependence of total counterion distributions in

both PBC and NPBC simulations were also analyzed and

shown in Fig. 5. Consistent with above analyses, the differ-

ence between PBC and NPBC is not obvious; but at least

FIGURE 5 Counterion occupancies as a function of sequence. Minor and

major groove occupancies are shown as square and cycle, respectively.
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the peaks and troughs from both boundary conditions are at

the same locations. The calculated occupancies of counterions

within the major/minor grooves are clearly sensitive to se-

quence, as pointed out previously (23). In the major groove,

the preferred sites for counterions are at basepairs A5:T20

to T8:A17; on average, 0.4–0.5 counterions per pair are bound

to these nucleotides. The preferred sites in the minor groove

are at basepairs G4:C21 and C9:G16, with, on average, 0.5

counterions per basepair bound to them. These findings are

also consistent with the previous reports in explicit ion/

explicit solvent simulations (21,41), further validating the

minimal hybrid ion approach in our analysis of counterion

distributions.

Further considerations

Effects of solute charge and structure on counterion
distribution

It is important to note that the above comparisons are made

for a particular nucleic acid, 1BNA. The short and rigid DNA

is a relatively homogeneously charged and highly asymmet-

rical biomolecule. It is likely that the effects of PBC would

be more prominent if a solute with asymmetrical charge

distribution or a geometrically asymmetrical solute were

considered. To assess the generality of above comparisons,

we analyzed the continuum ion distributions for two more

systems. The first one is an asymmetrical nucleic acid,

310D, a t-RNA. The second one is a DNA-binding protein,

1TSR B chain, with a large dipole moment of (�96.9 eÅ,

6.6 eÅ, �44.7 eÅ). Fig. S1 and Fig. S2 in the Supporting

Material show the continuum ion distributions of the 310D

and 1TSR, respectively. As in the analysis for 1BNA

(Fig. 1), the continuum ion distribution in NPBC is

compared with those in PBC with different box dimensions.

These comparisons show that the continuum salt distribu-

tions in the medium box between PBC and NPBC are qual-

itatively similar near the solute surface, although differences

are noticeable at second solvation shell, consistent to the

findings for 1BNA in Fig. 1.

Linear approximation in the hybrid ion representation

It is well known that electrostatic energy and its salt depen-

dence are strongly affected by accounting for nonlinearity in

highly charged systems. An interesting question to ask is

whether the nonlinearity is still prominent when enough coun-

terions are used toneutralize the system, or whether a linearized

PB treatment is enough when the minimal hybrid ion represen-

tation is used. Using 1TSR and 1BNA as the test cases, our

comparative analysis shows that the potential in the nonlinear

FDPB is ~10% less than that in the linear FDPB in the cell

boundary region. Nearby the solute surface, the continuum

ion density by the nonlinear PB is higher than that by linear

PB due to the nonlinear effect (Fig. S3). Nevertheless, the qual-

itative comparison of PBC and NPBC in Fig. 1, Fig. S1, and

Fig. S2 still holds when the nonlinear PB is used.
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To further assess the approximations introduced by using

the linear FDPB instead of nonlinear FDPB in the electro-

static energies, we studied the correlation between two sets

of 28 relative electrostatic energies of eight snapshots

roughly evenly, covering the sampled electrostatic free

energy values in one MC trajectory. Although the two sets

of absolute electrostatic energies are clearly different, the

two set of relative energies (these relative energies were actu-

ally used in a MC simulation) are highly correlated with each

other with a correlation coefficient of 0.9994, a linear regres-

sion slope of 1.02, and a root-mean square relative deviation

of 2.8%, as shown in Fig. S4. Note also that our current im-

plementation of the nonlinear FDPB is ~10 times slower that

of the linear FDPB. Balancing both accuracy and efficiency,

we believe the linear FDPB is a reasonable initial choice for

the minimal hybrid ion treatment in DNA simulations.

CONCLUSIONS

The wide use of lattice-sum strategies in biomolecular simu-

lations brought up a series of questions regarding artifacts in

periodic simulations. One remaining question is the artifacts

in the counterion distributions in periodic simulations. As

one would anticipate, Coulombic interactions under PBC

may deviate more noticeably from those under NPBC espe-

cially in highly charged systems; and the use of PBC may

significantly influence the counterion distributions in such

systems. However, the electrostatic screening due to the

high-dielectric constant of water and ion-ion screening might

significantly damp the charge-charge interactions. Therefore,

the magnitude of PBC-induced artifacts in counterion distri-

butions is not straightforward to dissect without detailed

analysis. In this study, we have addressed this question by

comparably mapping the counterion distributions around

a double-strand DNA with a canonical sequence from simu-

lations with both boundary conditions.

The PBC artifacts on ion distributions were first analyzed

from the continuum point of view. Our analysis, however,

shows that the ion distributions near the DNA surface are

quite similar between PBC and NPBC calculations. Never-

theless, their difference becomes obvious in regions further

away from the DNA. As expected, the difference in ion distri-

butions becomes smaller when the simulation cell in PBC is

larger. These observations are in qualitative agreement with

previous studies in the context of proteins, i.e., the PBC arti-

facts may be enhanced when the solute size is comparable to

the simulation cell. The effect of boundary conditions upon

ion distribution was then analyzed by studying the spatial

distribution of the explicit counterions. Consistent with the

observations in the continuum ion analysis, explicit coun-

terion distributions are very similar between NPBC and

PBC when a typical-sized simulation cell is used.

The analysis of total counterion distributions in PBC and

NPBC simulations shows that counterion densities in both

PBC and NPBC are as high as 1.5 M in region 6–12 Å from
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the helical axis. This region happens to fall in the major and

minor grooves where the counterions frequently visit. The

distribution functions are similar to that observed in full

explicit ion simulations with the Poisson’s equation. Both

simulations show that the concentration of counterions near

the DNA surface can be as high as 1 M, which is consistent

with previous nonlinear PB studies. An interesting common

observation from both the PBC and NPBC simulations is

the rather high counterion density, approaching 500 mM,

near the box boundary. This is very different from the bulk

value that is set to be 150 mM, indicating the artificially

high density is not due to the use of PBC, but mostly due to

the use of a rather small simulation box. The analysis of the

Manning radius shows a consistent picture with highly similar

radii from the NPBC and PBC simulations, 17.75 Å vs.

18.00 Å. The sequence dependences of counterion distribu-

tions were also analyzed and the difference between PBC

and NPBC is not obvious.

In summary, our comparative analyses with the minimal

hybrid ion treatment of mobile ions show that periodicity

artifacts are small in the ion distributions of the tested

DNA. This is especially so near the solute surface, although

the difference in distributions is visible starting from the

second solvation shell. Interestingly, a rather high counterion

density that is noticeably different from bulk concentration

was observed near the simulation cell boundary, regardless

of the boundary conditions used. This indicates that the arti-

ficially high density is mostly due to the use of the rather

small simulation cell that is typical in periodic simulations.

Due to the limited computational resources, the bulk of our

comparable analyses is only for a particular nucleic acid,

1BNA, with a rather symmetrical charge distribution. Thus,

these conclusions do not exclude the presence of period-

icity-induced artifacts of counterion distributions in other

untested biomolecular systems. To assess the generality of

the above comparisons, we analyzed the continuum ion distri-

butions for two more biomolecules: a t-RNA with an asym-

metrical geometry and a DNA-binding protein with a large

dipole moment. The two additional comparisons of the

continuum ion distributions show that the findings obtained

for 1BNA are still relevant at least for the continuum ion

distributions. Another limitation of our analyses lies in the

use of linear FDPB calculations for computational efficiency.

To estimate the potential influence from the linearization

approximation, we further compared the continuum ion distri-

butions between PBC and NPBC with nonlinear FDPB calcu-

lations. The additional comparisons show that the conclusions

drawn from the linear FDPB calculations are qualitatively

consistent with those obtained from nonlinear FDPB calcula-

tions, as far as the continuum ion distributions are concerned.

SUPPORTING MATERIAL

Four figures are available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(09)00973-4.
This work was supported in part by the National Institutes of Health (grant

No. GM069620).
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