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A 3D Hybrid Model for Tissue Growth: The Interplay between Cell
Population and Mass Transport Dynamics
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†Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas; and ‡Department of Electrical and Computer
Engineering, University of Houston, Houston, Texas

ABSTRACT To provide theoretical guidance for the design and in vitro cultivation of bioartificial tissues, we have developed
a multiscale computational model that can describe the complex interplay between cell population and mass transport dynamics
that governs the growth of tissues in three-dimensional scaffolds. The model has three components: a transient partial differential
equation for the simultaneous diffusion and consumption of a limiting nutrient; a cellular automaton describing cell migration,
proliferation, and collision; and equations that quantify how the varying nutrient concentration modulates cell division and migra-
tion. The hybrid discrete-continuous model was parallelized and solved on a distributed-memory multicomputer to study how
transport limitations affect tissue regeneration rates under conditions encountered in typical bioreactors. Simulation results
show that the severity of transport limitations can be estimated by the magnitude of two dimensionless groups: the Thiele
modulus and the Biot number. Key parameters including the initial seeding mode, cell migration speed, and the hydrodynamic
conditions in the bioreactor are shown to affect not only the overall rate, but also the pattern of tissue growth. This study lays the
groundwork for more comprehensive models that can handle mixed cell cultures, multiple nutrients and growth factors, and other
cellular processes, such as cell death.
INTRODUCTION

Tissue engineering combines our knowledge in medicine,

cell biology, materials science, and bioreactor engineering

to develop bioartificial tissues in vitro or to induce tissue re-

modeling in vivo to replace, repair, or enhance the function

of a particular tissue or organ (1,2). To cultivate bioartificial

tissues in vitro, the appropriate type(s) of cells may first be

seeded into a highly porous scaffold made from natural mate-

rials such as fibrin, collagen, and chitosan (3–6), biocompat-

ible synthetic polymers such as polylactic acid, polyglycolic

acid, poly-lactic-glycolic acid, and poly(propylene fumarate-

co-ethylene glycol) (7–12), or a combination of natural and

synthetic fibers (13–16). The cell-scaffold construct is then

cultured in bioreactors where conditions (temperature, pH,

nutrient concentration, etc.) are maintained at levels suitable

for cell migration, proliferation, and, possibly, differentiation

until the tissue is ready for implantation. There are many

obstacles to overcome before clinically useful bioartificial

tissues can be readily made in laboratories (17). In particular,

the identification of the optimal conditions for in vitro or

in vivo cultivation of bioartificial tissues requires a better

understanding of the complex interactions between funda-

mental intracellular processes and the constantly changing

extracellular environment.

In an earlier publication (18), we demonstrated that cell pop-

ulation dynamics can play an important role in determining the
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growth rates of developing tissues. Specifically, our simula-

tion results revealed that the speed and persistence of cell

locomotion modulate the rates of tissue regeneration by over-

coming the adverse effects of contact inhibition, a process

that characterizes the proliferation of anchorage-dependent

mammalian cells cultured on flat surfaces or three-dimensional

(3D) scaffolds (19–29). We have also found that the magnitude

of this modulation strongly depends on the spatial distribution

of seed cells and the geometry of the scaffold, a conclusion that

may have significant implications for the design of experi-

ments that test the efficacy of biomimetical surface modifica-

tions designed to enhance cell migration speeds.

However, tissue growth is also affected by the availability

of nutrients and growth factors (GFs). As cells proliferate in

the scaffold interior, the total demand for nutrients and GFs

increases and may outstrip the ability of the system to trans-

port these compounds from the culture media to the scaffold

interior. Such mass transport limitations decrease the avail-

ability of nutrients and GFs in the scaffold and limit the

viable size of bioartificial constructs. Several studies have

shown that the formation of engineered tissues in bioreactors

is limited to a thin peripheral layer (less than a few hundred

microns deep) surrounding a relatively cell-free scaffold

interior (30–33). Mass transport limitations become even

more severe for tissues that normally have high metabolic

demands. Only very thin peripheral layers ranging from 50

to 180 mm have been reported for engineered cardiac tissues

when passive diffusion was the only mass transport mode

inside the scaffolds (32,34).

Several recent studies have focused on the development of

theoretical models that can predict the steady-state distribu-

tion of key nutrients (such as oxygen and glucose) inside

doi: 10.1016/j.bpj.2009.03.067

mailto:kyzy@rice.edu


402 Cheng et al.
bioartificial tissues (35–40). Although they provide valuable

insights into the interplay between transport and consump-

tion of nutrients in tissues, such models cannot elucidate

the dynamic process of tissue development inside biomate-

rial scaffolds.

Galban and Locke (41) proposed a dynamic model for the

in vitro growth of cartilage tissues based on species continuity

equations and the volume averaging method. The volume

averaging method, however, removes the spatial dependence

from the diffusion-reaction equations for nutrients, thus

ignoring the spatial heterogeneity that is a very important

characteristic of bioartificial tissue growth. Also, proliferation

is the only cellular function considered in the Galban and

Locke model, although it has been shown that low-passage,

primary chondrocytes not only migrate in some biomaterial

scaffolds, but also form aggregates from cell-cell collisions

(42–45). More recently, Chung and co-workers (46) devel-

oped a similar volume-averaging model with cell migration

added as another important cellular function. By describing

cell migration as a diffusion-like process, this model requires

an estimation of the key motility parameter, the cell ‘‘diffu-

sion’’ coefficient, from population measurements and the

solution of an inverse problem for each system studied. This

continuous approach does not allow us to study how tissue

growth is affected by important single-cell properties (like

migration speed and persistence) that can be measured

directly (18). Nor does it allow the incorporation of more

complicated cell behavior such as cell-cell collision (18).

Similar limitations can be found in another recent continuous

model (47).

A more promising alternative for tissue-growth modeling is

the hybrid discrete-continuous (HDC) approach. In HDC

models, cells are simulated explicitly with a discrete,

stochastic component, the cellular automaton (CA), whereas

processes such as diffusion and consumption of nutrients

are described with a continuous, deterministic component

usually based on partial differential equations (PDEs). Such

hybrid models have been used to solve two-dimensional

(2D) problems involving the aggregation and self-organiza-

tion of the cellular slime mold Dictyostelium discoideum
(48–50) and the interactions between extracellular matrix

and fibroblasts (51). More recently, the HDC approach has

been used effectively for modeling tumor development.

Chaplain used 2D and 3D models to describe angiogenesis

and tumor growth (52), Patel and co-workers used a 2D model

to study acidosis (53), and Jiang and co-workers employed

a 3D model to investigate avascular tumor growth (54). The

CA component of these models only considered proliferation,

adhesion, and viability of individual cells. The migration of

individual tumor cells was incorporated in a recent 2D model

developed by Anderson and co-workers to study tumor

morphology and phenotypic evolution (55).

This study presents what we believe is a novel dynamic

HDC model that describes tissue growth under conditions

leading to significant mass transport limitations. The discrete
Biophysical Journal 97(2) 401–414
component of our model considers an asynchronous popula-

tion of cells that migrate, collide, and proliferate to build

a tissue inside a 3D scaffold. Between divisions, all cells

execute persistent random walks and cell-cell collisions are

handled as discrete events. The diffusion and consumption

of a limiting nutrient is modeled by a time-dependent PDE

with boundary conditions imposed by the bioreactor used

to culture the engineered tissue. Finally, the division times

and migration speeds of individual cells are dynamically

modulated by the changing nutrient concentrations in their

extracellular environment. Our main objective is to accu-

rately characterize the dynamics of tissue growth in the

regime of significant transport limitations and to identify

the key system parameters that affect the structure and

growth rate of the developing tissue. To meet the significant

computational requirements of this model, the HDC algo-

rithm has been parallelized for execution on distributed-

memory multicomputers.

MODEL FORMULATION

The configuration of the tissue engineering bioreactor and the

culturing conditions can vary widely. One example is the

system described in Fig. 1, where several scaffolds seeded

with a single type of cell are fixed on needles and cultured

in a well-stirred bioreactor. This is the so-called ‘‘dynamic’’

tissue culture method that has been shown to promote both

cell proliferation and extracellular matrix component deposi-

tion in bioartificial tissues (56–58). However, our model can

handle other reactor configurations by changing the boundary

conditions of the diffusion-reaction problem defined later in

this section.

FIGURE 1 Seeded bioartificial tissue constructs cultured in a well-stirred

bioreactor.
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We assume that cells can be seeded in two modes: the

‘‘uniform’’ mode, in which seed cells distribute uniformly

throughout the scaffold (Fig. 2 A); and the ‘‘surface’’

mode, in which seed cells are placed in a thin layer next to

the scaffold surface (Fig. 2 B). It is possible to achieve the

uniform initial distribution of cells with dynamic seeding

methods, in which mixing or stirring is employed to promote

the penetration of cells into the scaffold interior (32,59). The

seeding density, k0, is in the range 0.367–1.33% (cell volume

fraction) for various combinations of cell type and scaffold

material (31,60–65). When cells are seeded by simply

immersing an empty scaffold into a static cell solution for

a certain period of time, the spatial distribution of seed cells

can often be described by the surface mode. This is also

likely the case when the scaffold is big or its pore structure

is too tortuous for cells to penetrate deeply.

Discrete model for cell population dynamics

Our CA model for cell population dynamics has been

described in detail before (18). Briefly, we first assume

that the scaffold provides a uniform structure that allows

cells to move freely in all directions while going through

their division cycles. We also assume that the degradation

of scaffold material does not affect tissue growth. The

behavior of individual cells and cell-cell interaction are then

simulated with a cellular automaton consisting of a 3D array

with cubic computational sites (66,67). Each site in the cellu-

lar array can exist at one of a finite number of states at each

time interval. That is, a site may be empty, and thus avail-

able for a cell to move/divide into, or occupied by a cell that

is at a certain phase of its mitotic cycle and is either moving

in a certain direction or stationary. The state of each site can

be initialized and tracked individually. Every site is ‘‘con-

nected’’ to six neighbors (von Neumann neighborhood)

and its state evolves at discrete time steps through inter-

actions with these neighbors (18,68). These interactions are

governed by a set of ‘‘rules’’ that simulate cell migration

and proliferation, as well as cell-cell collisions. Other cellular

FIGURE 2 Initial spatial distribution of seed cells. (A) ‘‘Uniform’’ seed-

ing mode. (B) ‘‘Surface’’ seeding mode.
activities, such as differentiation, are currently not consid-

ered, but can be easily incorporated when necessary.

In accordance with experimental observations, we assume

that cells migrate by executing persistent random walks

(69–71). That is, each cell moves with speed S in one direc-

tion for a certain length of time (quantified by a persistence

time tp) before turning to another direction to continue its

migration. In a uniform environment, the direction after

each turn is randomly selected. However, cell movement

can be biased in our model to simulate chemotaxis or hapto-

taxis. This can be achieved by appropriately changing the

transition probabilities (that is, the probabilities with which

a cell will change its direction of movement from one to

another) to favor cell motility along directions dictated by

environmental cues such as chemoattractant concentration

gradients or substrate surface patterns (see Cheng et al. (18)

for more details). If the cell does not collide with another

cell, this persistent random movement continues until the end

of the cell’s current division cycle, upon which the cell will

stop and divide into two daughter cells. Cell division is asyn-

chronous in our model, and the distribution of cell division

time, td, is a measurable characteristic of each cell pheno-

type. Immediately after the division, the two daughter cells

assume their own persistent random walk in two randomly

selected directions. If one cell collides with another, both

cells pause for a given period of time—the pausing time,

tc—before moving away from each other (72,73). A detailed

description of this process is available in Cheng et al. (18).

The values of S, tp, td, and tc are characteristic of each cell

type and can be measured directly through time-lapse obser-

vation of cell migration (74–76).

Diffusion-reaction problem for nutrient mass
transport dynamics

Experiments have shown that concentration gradients of

both glucose and oxygen, two key nutrients for cellular func-

tion, exist in bioartificial scaffolds and affect tissue growth

(36,77,78). In this study, to demonstrate the importance of

mass transport dynamics, we assume that glucose is the

single limiting nutrient. More than one nutrient can be simi-

larly modeled by introducing additional PDEs.

Let us now consider a tissue growing in a cubic scaffold of

size L. In the absence of forced convection (i.e., flow or

perfusion of media through the scaffold), the spatiotemporal

evolution of the nutrient concentration C(x,y,z,t) can be

described by the PDE

vC

vt
¼ v

vx

�
De

vC

vx

�
þ v

vy

�
De

vC

vy

�
þ v

vz

�
De

vC

vz

�
� Rðrcell;CÞ þ Sðrcell;CÞ þ DðCÞ in U; (1)

where U denotes the cubic scaffold, De is the effective diffu-

sion coefficient, rcell is the local cell density, R(rcell, C) is the

cell uptake rate, S(rcell, C) is the rate of secretion by the cells,
Biophysical Journal 97(2) 401–414
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and D(C) is the rate of natural degradation. To integrate

Eq. 1, we must define the initial condition,

Cðx; y; z; 0Þ ¼ C0ðx; y; zÞ; (2)

where C0(x,y,z) is a known concentration profile with

boundary conditions that depend on the bioreactor configura-

tion. For the bioreactor depicted in Fig. 1, the appropriate

boundary condition is

De

vC

vn
¼ kgðCb � CÞ on vU; (3)

where vU refers to the surface of the scaffold and vC=vn
denotes the derivative with respect to the normal to the scaf-

fold surface, kg is the mass transport coefficient in the

medium-scaffold interface, and Cb is the nutrient concentra-

tion in the bulk of the medium.

The effective diffusivity in Eqs. 1 and 3 obviously

depends on local cell density. Let De,s and De,t denote its

value in tissue-free and tissue-filled regions respectively.

For the diffusivity between an empty element in the cellular

array and an occupied element, the averaging method used is

De ¼
2De;sDe;t

De;s þ De;t

:

For small nutrient molecules, such as glucose, that pass

directly across the cell membrane, the kinetics of uptake

and metabolism generally follow a Michaelis-Menten type

dependence (79). The reaction term R(rcell, C) in Eq. 1

thus takes the form

Rðrcell;CÞ ¼ rcell

VmaxC

Km þ C
; (4)

where Vmax is the maximum cell-uptake rate and Km is the

saturation constant. Both Vmax and Km can be measured

experimentally (80). The secretion term S(rcell, C) is zero,

since the cells do not produce glucose. The natural degrada-

tion term, D(C), is ignored because it is insignificant

compared to diffusion and cell uptake.

Substituting the terms from Eq. 4 in Eq. 1, we obtain the

diffusion-reaction PDE for glucose:

vC

vt
¼ v

vx

�
De

vC

vx

�
þ v

vy

�
De

vC

vy

�
þ v

vz

�
De

vC

vz

�

� rcell

VmaxC

Km þ C
; (5)

Since this continuous PDE must be coupled to our discrete

CA model, the cell density, rcell, is a discontinuous function

that is nonzero only in elements occupied by cells. Thus,

rcell ¼ gðx; y; z; tÞr�cell, where

gðx; y; z; tÞ ¼
1 if there is a cell at ðx; y; zÞat time time t

0 if there is no cell at ðx; y; zÞ at time t

�

In other words, the migrating and proliferating cells act as

moving sinks for our diffusion-reaction PDE. We can now
Biophysical Journal 97(2) 401–414
put Eq. 5 in dimensionless form by introducing the dimen-

sionless variables

u ¼ C

C�
; t ¼ t � D�e

L2
; x ¼ x

L
; j ¼ y

L
; z ¼ z

L
; d ¼ De

D�e
;

f2 ¼ L2 r�cellVmax

D�eC�
; b ¼ Km

C�
;

where C* and D�e are appropriate reference values for the

concentration and effective diffusivity, respectively. The

dimensionless form of Eq. 5 is then

vu

vt
¼ v

vx

�
d

vu

vx

�
þ v

vj

�
d

vu

vj

�
þ v

vz

�
d

vu

vz

�
� g

42u

b þ u
:

(6)

In a similar way, if we let u0ðx;j; zÞ ¼
C0ðx; y; zÞ

C�
, ub ¼

Cb

C�
,

Bi ¼ kgL

D�e
, and dn ¼

De;n

D�e
, we obtain the dimensionless forms

of the initial and boundary conditions:

uðx;j; 2; 0Þ ¼ u0ðx;j; 2Þ (7)

dn

vu

vn
¼ Biðub � uÞ on vU: (8)

The extent of mass transport limitations can be evaluated

(81,82) by the magnitude of two dimensionless numbers

generated in the nondimensionalization process: 1), the

Thiele modulus, f ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�cellVmax

D�eC�

s
, which indicates the rela-

tive magnitude of the nutrient uptake rate over the nutrient

diffusion rate; and 2), the Biot number, Bi ¼ kgL

D�e
, which indi-

cates the relative magnitude of the external nutrient transport

rate (from the media to the surface of the scaffold) over the

nutrient diffusion rate in the interior of the scaffold.

Modulation of cellular functions

Experiments have shown that both cell division time, td, and

cell migration speed, S, are affected significantly by glucose

concentration (83–85). Therefore, cell proliferation and migra-

tion must be modulated by the extracellular glucose concentra-

tion, which is computed by solving the boundary value

problem defined by Eqs. 6–8 at each time step of the simulation.

Previous studies have shown that the dependence of the

doubling rate, rg, on extracellular nutrient concentration

can be described with a Monod-type expression:

rg ¼
rg;maxC

K þ C
; (9)

where rg;max ¼ 1=td is the maximum cell population

doubling rate and K is a saturation constant. Reported values

of K for a line of human lung fibroblasts are 2.7 � 10�5 M
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for glucose and 1.1 � 10�5 M for glutamine (80). This study

will use the following values we determined experimentally

(86) for human dermal fibroblasts: rg,max ¼ 2.03 doublings/

day and K ¼ 6.022 � 10�4 M.

Our model modulates cell proliferation by introducing

a special ‘‘countdown’’ division counter for every cell (86).

If the nutrient concentration were at all times the same at every

location visited by the migrating cell, the division counter

would be decremented by a fixed amount at every time step.

In our simulations, however, every cell may move through

regions with varying glucose concentrations and its division

time will depend on the trajectory followed. Therefore, the

division counter is decremented at each time step by a variable

amount that depends on the nutrient concentration, C, in the

site occupied by the cell.

The energy required to maintain cell migration is provided

from either glycolysis or oxidative phosphorylation. An

earlier study from our lab reported that the speed of cell migra-

tion decreased significantly when cells were moved from

glucose-containing to glucose-free medium (85). However,

the quantitative relation between glucose concentration, C,

and cell migration speed, S, was not elucidated. Our model

assumes that the speed of migration is modulated by the

glucose concentration, C, according to the formula

If C%Clow; S ¼ 0

If Clow < C < Chigh; S ¼ Smax

ðC� ClowÞ�
Chigh � Clow

�
If CRChigh S ¼ Smax

;

8>><
>>: (10)

where Clow is the threshold glucose concentration below

which cell migration stops, and Chigh is the critical glucose

concentration above which cells migrate at the maximum

speed, Smax.

Implementation of parallel algorithm

The boundary value problem, defined by Eqs. 6–8, is discre-

tized over the cellular array with the seven-point finite differ-

ence method (see our previous study (86) for details) and an

implicit-explicit time integration scheme (87). The resulting

sparse linear system is then solved with a Preconditioned

General Minimum Residual solver from the PDE toolkit

PETSc (88). We have checked the correctness of our PDE

solving method by comparing the numerical solution to the

analytical solution for a diffusion-reaction problem that

assumes uniform and constant cell density, a linear cell

uptake term, and a Dirichlet boundary condition on all

surfaces of the cube. The analytical solution of this problem

can be obtained with finite Fourier trans form (86). The rela-

tive error of our numerical solution is ~0.1% for dx ¼ 0.01,

dt ¼ 1.0 � 10�4, and f2 ¼ 1.0 � 10�2.

The flow chart in Fig. 3 presents the integration of the

three components of our HDC model. First, the seed cells

are distributed according to one of the two seeding modes
described at the beginning of the Model Formulation section.

Next, the PETSc objects needed for solving the diffusion-

reaction PDE are defined and initialized. The CA iterations

are then started. Because the CA time step (typically ~0.1 h)

is usually too big for the PDE solver, the diffusion-reaction

PDE is integrated using a smaller time step (~0.002 h) within

each CA step to maintain both stability and accuracy of the

solver. When the PDE loop is completed, the computed

concentrations are imported into the subsequent CA routines

to modulate cell proliferation, migration, and collision. The

next CA iteration then starts with an updated cellular array.

The simulation continues until all CA iterations are co-

mpleted (see our previous study (86) for additional details).

The algorithm described above is both memory- and

computation-intensive, because it requires large 3D arrays

to accommodate the cell population (one cell per element)

and small time steps to accurately solve the diffusion-reac-

tion PDE. Therefore, we have parallelized it using the

Message Passing Interface (89), so that the simulations can

run on parallel computer clusters. This not only reduces

the CPU time, but also enables us to solve problems of

FIGURE 3 Main flow chart of the hybrid model.
Biophysical Journal 97(2) 401–414
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larger, and therefore more realistic, size. Our simulations

were carried out on a Linux cluster (Evolocity High-Perfor-

mance Cluster, Linux Networx, Bluffdale, UT) with one

master node and 41 slave nodes. Each node has two

1.7-GHz Pentium 4 Xeon processors and 2 GB of DDR

memory. The nodes are connected using Myrinet, a switched

1.2 GB/s network. The CPU time required to run a simulation

depends on many conditions, especially the size of the tissue,

the nutrient diffusivity, and the number of nodes used. A

typical simulation like the one whose model parameters are

shown in Table 1 takes ~4000 s on 10 nodes.

RESULTS AND DISCUSSION

We now present simulation results from a series of para-

metric studies to explore the interplay of cell population

and mass transport dynamics that governs the growth of

3D bioartificial tissues. Tissue growth was quantified by

computing the volume fraction, k (t), of the computational

domain (i.e., scaffold) occupied by cells after each iteration:

kðtÞ ¼ NðtÞ
Nmax

¼ Number of cells at time t

Number of cells at confluence
:

Note that the volume fraction (or tissue growth curve), k (t),
is essentially the ratio of the integral of g (x,y,z,t) over the

volume of the scaffold at time t over the total scaffold

volume V ¼ L3. For our simulations, we will assume that

the initial cell volume fraction in the scaffold is k0 ¼ 0.01

and that the cell-scaffold constructs will be cultured for

TABLE 1 Base-case model parameters

Parameter Physical meaning Value

Parameters for cells

d (mm) Average cell diameter 20

td (h) Minimum cell division time 12

Smax (mm/h) Maximum cell migration speed 20

tp (h) Cell migration persistence time 0.8

tc (h) Pausing time after cell-cell collision 1.4

Seeding mode Uniform

Parameters for the diffusion-reaction PDE

De,, (m2/s) Nutrient diffusivity in tissue-free

scaffold

2.7 � 10�10

De,, (m2/s) Nutrient diffusivity in tissue-filled

scaffold

7.0 � 10�11

Vmax (mol/cell$h) Maximum nutrient uptake

rate by cells

3.31 � 10�13

Km (mole/m3) Saturation constant for nutrient uptake 2.4

K (mole/m3) Saturation constant in Monod kinetics 6.022 � 10�2

Clow (mole/m3) Nutrient concentration below which cell

migration stops

0.0

Chigh (mole/m3) Nutrient concentration above which

cells migrate at Smax

5.0

Cb (mole/m3) Nutrient concentration in the bulk

of the medium

5.0

C0 (mole/m3) Initial nutrient concentration

in the scaffold

0.0

kg (m/s) Mass transfer coefficient for mixed

boundary condition

1.0 � 10�10

L (m) Side length of the cubic scaffold 0.002
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10 days. Other key model parameters for the base case are

shown in Table 1. The parameters De,n and kg of the boundary

condition given by Eq. 3 can be modified to reflect the config-

uration of the bioreactor and the tissue culture method. To

simplify the analysis, we first assume that the tissue culture

medium is well mixed and, therefore, that kg >> De,n. Equa-

tion 8 then reduces to the Dirichlet boundary condition u¼ ub

on vU, which will be used throughout this section unless spec-

ified otherwise.

Effect of mass transport limitations

With the previous assumptions, we can use the bulk concen-

tration, Cb, as our reference concentration and De,t as our

reference diffusion coefficient. Then, the Thiele modulus

becomes:

f ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�cellVmax

De;tCb

s
: (11)

Note that the Thiele modulus defined by Eq. 11 corresponds

to confluence conditions when the scaffold is completely

filled with cells and transport limitations are most severe.

If we further assume that the simulation starts from the

moment the seeded scaffolds are immersed into the medium

(i.e., there is no nutrient in the scaffold interior), the initial

and boundary conditions become

vu

vt
¼ v

vx

�
d

vu

vx

�
þ v

vj

�
d

vu

vj

�
þ v

vz

�
d

vu

vz

�

� g
f2u

b þ u
in U (12)

uðx;j; z; t ¼ 0Þ ¼ 0 in U (13)

uðx;j; z; tÞ ¼ 1 on vU; (14)

where again Uand vU refer to the cubic scaffold and the six

faces of the scaffold, respectively. The boundary value

problem defined by Eqs. 12–14 is a transient diffusion-reac-

tion problem. The fact that the cell distribution function, g,

varies with time and spatial location makes our problem

significantly more complicated than the classical isothermal

diffusion-reaction problem that has been extensively studied

in the chemical engineering literature (81,82). Still, the

results of these earlier studies allow us to predict the condi-

tions that will cause severe nutrient transport limitations

inside the scaffold:

1. Large scaffold (tissue) size, L;

2. High final cell density, r�cell, and high values of the

nutrient consumption rate, Vmax;

3. Low nutrient diffusivity, De,s; and

4. Low nutrient concentration on the scaffold surface, Cb.

Quantitative prediction of tissue growth under such condi-

tions is computationally challenging due to the temporal and
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spatial variations of the cell distribution function g that lead

to a complex interplay of nutrient transport and cell popula-

tion dynamics. However, our HDC model is uniquely equip-

ped to handle the complexities of this system.

Table 1 presents the values of the model parameters for

our base case. In this case, the Thiele modulus of Eq. 11

has a value of f ¼ 11.5 h f*. Note that f increases if we

increase the size of the scaffold, L, and the value of uptake

rate, Vmax(that is, make the cells more metabolically active),

and decrease the glucose diffusivity, De,s, or the value of the

glucose concentration, Cb, at the surface of the scaffold.

Fig. 4 presents the tissue growth curves, k (t), for a wide

range of values for the Thiele modulus. We observe first

that the tissue growth curves for f ¼ 0.1 f* and f ¼ f*

are almost identical. However, Fig. 5 reveals significant

differences in the spatiotemporal evolution of the nutrient

concentration profiles between these two cases. When f ¼
0.1 f*, the nutrient uptake rate and the mass transport rate

are closely matched. As a result, the nutrient quickly diffuses

into the scaffold and its concentration remains almost

constant even as the scaffold is filled with cells (see Fig. 5,

A–D). When f increases to f*, the nutrient transport rate

becomes significantly slower than the nutrient uptake rate,

and sharp concentration gradients develop in the scaffold

interior (Fig. 5, E–H). Since our current model does not

consider cell death due to nutrient depletion, cells do not

become apoptotic/necrotic even when nutrient concentration

drops very low, which is why the tissue growth curves for

f ¼ 0.1 f* and f ¼ f* are almost identical, even though

the nutrient concentrations in the scaffold interior drop to

very low values in the latter case (compare concentrations

in Fig. 5, G and H, to those in Fig. 5, C and D).

This tissue structure changes drastically as we further

increase the Thiele modulus to f ¼ 10.0 f* (Fig. 5, I–L).

FIGURE 4 Effect of the Thiele modulus, f ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�cellVmax=De;tCb

p
, on the

tissue growth curve. The legend lists the value of f for each run, with f* ¼
11.46 corresponding to the base case whose model parameters are listed in

Table 1.
A B C D

E F G H

I J K L

FIGURE 5 Temporal evolution of spatial cell distributions and nutrient

(glucose) concentrations for three runs with the same initial cell configura-

tion but different values of the Thiele modulus. The top half of each image

pair shows the cells (gray dots in print or red dots online) located on a hori-

zontal section plane through the center of the cubic scaffold, and the bottom

half depicts the dimensionless nutrient concentration, u(x,j,z,t), according

to the scale shown by the color bar located at the bottom of the figure.

Note that u varies from 0 to 1 as the nutrient concentration, C(x, y, z, t),

varies from 0 to Cb. This applies to all subsequent figures containing similar

surface plots of the dimensionless nutrient concentration. (A–D) f ¼ 0.1f*.

(E–H) f ¼ f*. (I–L) f ¼ 10.0f*.
Biophysical Journal 97(2) 401–414
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In this case, severe mass transport limitations create a very

sharp nutrient concentration gradient in the scaffold soon

after the simulation starts. As a result, only a thin layer of

cells is able to form just below the surface of the scaffold.

This enhances even more the ‘‘bottleneck effect’’ of diffu-

sional limitations, leaving the majority of the scaffold inte-

rior with near-zero nutrient concentration and essentially

stopping tissue growth after k(t) reaches 0.4 (Fig. 4). We

should note here that the dense peripheral tissue layer shown

in Fig. 5 L has a thickness of ~100 mm. This is similar to what

has been observed when bioartificial tissues with high

metabolic demand (e.g., cardiac tissues) are cultured in bio-

reactors under conditions similar to those assumed in our

simulation (32–34,90,91).

Effect of seeding mode

The initial distribution of cells is an important parameter

because it affects the evolution of the concentration field

from the beginning of the simulation, which in turn modulates

tissue growth. Simulation results for the uniform and surface

seeding modes are shown in Fig. 6. All the other parameters

for these two runs are the same as in Table 1. The surface seed-

ing mode gives slightly higher cell volume coverage at the

early stages of the simulation, since in this case all the cells

are located in the peripheral zone, where the nutrient concen-

tration is almost equal to the surface value. The volume

coverage for the surface seeding mode, however, is surpassed

by the uniform seeding mode at t¼ 3.1 days (k(t) z 0.3065).

By t ¼ 5.0 days, the growth curve for the uniform seeding

mode has reached complete coverage, whereas the curve for

the surface mode lags behind and even at 10 days has not

reached complete coverage. The values of kfinal at 10 days

are rather close: 1.00 for the uniform seeding mode versus

0.96 for the surface seeding mode.

These results can be explained by comparing the time series

of images showing the spatial cell distributions and glucose

FIGURE 6 Effect of initial seeding mode on the tissue growth curve. All

other parameters are the same as in Table 1.
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concentrations for the uniform seeding mode (Fig. 5, E–H)

and surface seeding mode (Fig. 7, A–D). The two time series

reveal significant differences in tissue growth dynamics.

When the cells are seeded uniformly, cell proliferation can

take place throughout the scaffold at all stages of the process.

The uniform dispersion of cells in the scaffold (Fig. 5, E and

F) minimizes the adverse effects of contact inhibition on cell

proliferation rates, as we established in an earlier publication

(18). With the surface seeding mode, however, growth begins

from the peripheral layer next to the scaffold surface and the

tissue expands as a diffuse front of cells moving toward the

center of the scaffold (Fig. 7, A–D). Between 2.5 and 5

days, a confluent layer of cells forms next to the surface of

the scaffold. This leads to severe contact inhibition effects,

since only the cells located in the proliferating front continue

to divide. The fraction of nonproliferating cells increases as

the thickness of the confluent layer increases (Fig. 7 C), and

the overall tissue growth rate slows down with time (Fig. 6).

Note that even though the average glucose concentration at

t ¼ 5 days is higher for the surface seeding mode (Fig. 7 C)

than for the uniform seeding mode (Fig. 5 G), we have faster

tissue growth (k z 0.999 at t ¼ 5 days) when we start with

uniform seeding than when we start with surface seeding

(k z 0.756 at t ¼ 5 days). This is because the high glucose

concentration available in the scaffold interior cannot be fully

exploited in the surface seeding mode since the cell front has

not yet reached the center of the scaffold.

Our simulation results on the effect of seeding mode are sup-

ported by experimental studies in which a more uniform initial

distribution of cells, achieved by applying either a lower-than-

atmospheric pressure (92,93) or cyclic compression-force-

induced suction (94) during seeding, has been shown to

significantly promote the growth of bioartificial tissues.

B C DA

FIGURE 7 Temporal evolution of spatial cell distribution and glucose

concentration for a run with surface seeding mode and f ¼ f*. Each pair

of images depicts the location of cells and the nutrient concentration on a hori-

zontal section plane through the center of the scaffold. All other parameters

are the same as in Table 1. Compare with Fig. 5, E–H, which shows results

from a run with uniform seeding mode and the same model parameters.
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Effect of cell migration speed

Cell migration speed, S, varies widely among different cell

types. Reported values from 2D migration studies range

from S¼ 30 mm/h for human microvascular endothelial cells

(95,96), bovine pulmonary artery endothelial cells (73), and

smooth muscle cells (96,97) to S ¼ 600 mm/h for rabbit

neutrophils (98). Recent 3D studies reported speeds of

8–15 mm/h for adenocarcinoma and prostate cancer cell lines

in collagen (71) and 20–40 mm/h for melanoma cells

migrating in collagen matrices modified with RGD peptides

(69). We are interested in cell migration speed because if its

effect on tissue growth is known, we can modulate S to

promote tissue growth by varying the concentrations of

growth factor in the media (74,99–101) or by biomimetically

modifying the scaffold material (102,103).

Fig. 8 shows the results from four simulations with two

migration speeds (20 mm/h and 1 mm/h) and two seeding

modes, uniform and surface. All other parameters are the

same as in Table 1. For the runs that started with the uniform

seeding mode, the results show that the cell migration speed

has a minimal effect on the tissue growth curves. However,

higher migration speeds result in significantly faster tissue

growth when we start with the surface seeding mode.

Fig. 9, A–D, presents the time series of images with the

spatial cell distributions and glucose concentrations for the

uniform seeding mode and S ¼ 1 mm/h, and Fig. 5, E–H,

presents the corresponding results for S ¼ 20 mm/h. The

time series for the surface seeding mode is shown in Figs.

9, E–H, and 7, A–D, respectively.

For the uniform seeding mode, clumps of cells form after

only a few divisions when S¼ 1 mm/h (Fig. 9 B). Because of

contact inhibition, only the cells located on the surface of

these clumps can divide, and thus, the tissue grows more

slowly than when S ¼ 20 mm/h. The latter speed is high

FIGURE 8 Combined effect of initial seeding mode and cell migration

speed on tissue growth rates. The legend shows the seeding mode and the

cell migration speed. All other parameters are the same as in Table 1.
enough to produce a much more uniform distribution of cells

at 2.5 days (Fig. 5 F). However, the contact inhibition effects

are not strong enough even at S¼ 1 mm/h to drastically delay

tissue growth rates.

The effect of cell migration speed is much more signifi-

cant in the surface seeding mode. When S ¼ 1 mm/h,

a peripheral layer of densely packed tissue develops next

to the scaffold surface (Fig. 9, E–H). Since only the cells

on the ‘‘tortuous’’ inner surface of this layer can proliferate,

contact inhibition effects dominate from the early stages of

this run, and tissue growth is significantly delayed. By

t ¼ 10 days, the tissue growth curve is still far from its

plateau phase. When S ¼ 20 mm/h, however, a wide and

diffuse front of proliferating cells forms and moves toward

the interior of the scaffold (see Fig. 7, B and C). This migra-

tion-driven dispersion delays the onset of contact inhibition

effects until the diffuse front reaches the center of the scaf-

fold and the cell density there reaches high levels. As a result,

a significantly larger fraction of cells can divide when the

κ(t) = 0.1177 κ(t) = 0.3263 κ(t) = 0.6307
t = 2.5 days t = 5.0 days t = 10.0 daysInitial

κ(t) = 0.010

0.0 0.25 0.5 0.75 1.0

A

κ(t) = 0.1461  κ(t) = 0.9221 κ(t) = 0.9981

B C D

t = 2.5 days t = 5.0 days t = 10.0 daysInitial
κ(t) = 0.010

E F G H

FIGURE 9 Temporal evolution of cell distribution and nutrient (glucose)

concentration for two runs at S ¼ 1 mm/h and different seeding modes. All

other parameters are the same as in Table 1. Each pair of images depicts the

location of cells (top half) and the nutrient concentration (bottom half) on

a horizontal section plane through the center of the scaffold. (A–D) Uniform

seeding mode. (E–H) Surface seeding mode.
Biophysical Journal 97(2) 401–414
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speed of migration is 20 mm/h and the tissue growth rate is

significantly enhanced.

Effect of boundary conditions

Although we have so far presented results from runs with

Dirichlet boundary conditions, our simulator can solve the

diffusion-reaction problem for other boundary conditions

corresponding to different bioreactor configurations or tissue

culture methods. In simple static culturing systems, for

example, seeded scaffolds are often placed at the bottom of

a petri dish or some other tissue culture plate. As a result,

there will be no flux of nutrients through the bottom surface

of the scaffold. This situation can be handled by applying

a Neumann boundary condition at the bottom face of the

scaffold with Dirichlet conditions on the five other faces:

Fig. 10, A–G, presents results from a run with f ¼ 5.48f* ¼
62.8 and a Dirichlet boundary condition on all six faces

(A–D) (Eq. 14), and another run with the same initial spatial

distributions of seed cells and the same value of f, but with

a Neumann boundary condition on the bottom face and

a Dirichlet boundary condition on the other five faces of

the scaffold (E–G) (Eq. 15). Although both boundary condi-

tions give similar growth curves (kfinal is 0.5392 for the full

Dirichlet boundary condition and 0.4798 for the Dirichlet-

Neumann condition), we observe a significant difference in

the structure of the final tissues. Because of the lack of

incoming nutrients, no dense peripheral tissue layer forms

at the bottom of the scaffold (Fig. 10 H).

If the tissue culture medium in the bioreactor is not vigor-

ously stirred, external mass transport rates (from the

medium to the scaffold surface) may become comparable

to internal transport rates. Then, we can no longer apply

Dirichlet boundary conditions to the surfaces of the scaffold.

Instead, we need to apply the following mixed boundary

condition:

dn �
vu

vn
¼ Bi � ðub � uÞ on vU (16)

where the dimensionless Biot number Bi, as mentioned

earlier, provides a measure of the relative magnitude of the

external and internal resistances to mass transport. Fig. 11

shows the effect of Bi on tissue growth. Large values of

the Biot number (achieved, for example, by vigorously

stirring the tissue culture medium) clearly promote tissue

growth, but this beneficial effect gradually diminishes.

uðt; x;j; zÞ ¼ 1; where x ¼ 0 or 1;

or j ¼ 0 or 1;

or z ¼ 1 and zs0

vuðt; x;j; zÞ
vn

¼ 0; where z ¼ 0:

8>>>>>><
>>>>>>:

(15)
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CONCLUSIONS

To establish a framework for simulating in vitro growth of 3D

bioartificial tissues under realistic conditions, we have devel-

oped a high-performance, hybrid discrete-continuous model

that has three major components: 1), a cellular automaton

simulating individual cell activities and cell-cell interactions;

2), a transient PDE describing the diffusion and consumption

of a limiting nutrient; and 3), equations describing how

single-cell behavior is modulated by the local concentrations

of the nutrient. These model components are integrated to

describe in detail the intricate interplay between cell popula-

tion and mass transport dynamics with parameters that can be

measured directly through experiments. The hybrid nature of

our model also makes it highly adaptable for simulating

A B C D

E F G H

FIGURE 10 Temporal evolution of cell distributions and nutrient

(glucose) concentrations for two runs with f ¼ 5.48f* and the same initial

cell configuration but different boundary conditions. All other parameters

are the same as in Table 1. Each pair of images depicts the location of cells

(top half) and the nutrient concentration (bottom half) on a vertical section

plane through the center of the scaffold. (A–D) The Dirichlet boundary

condition is applied to all six surfaces of the scaffold. (E–H) A Neumann

boundary condition is applied to the bottom surface, with Dirichlet boundary

conditions on the other five surfaces.
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complicated system configurations involving, for example,

mixed cell cultures and cell differentiation.

The dimensionless Thiele modulus and Biot number iden-

tify the major parameters affecting the severity of nutrient

transport limitations in the tissue culture system. We have

also seen that transport limitations affect both the overall

tissue growth rate and the final spatial distributions of cells

inside the scaffold. When the Thiele modulus is large, the

nutrient consumption rates are much faster than the corre-

sponding mass transport rates and sharp concentration gradi-

ents develop in the scaffold interior. Tissue growth stops in

the nutrient-deficient interior of the scaffold and a dense,

thin layer of cells forms just below the surface of the scaf-

fold. The thickness of the dense peripheral tissue layer pre-

dicted by our model has values similar to those observed

when bioartificial tissues with high metabolic demand are

cultured in bioreactors.

Cell migration is also shown to be very important for tissue

growth due to its effect on reducing contact inhibition and

alleviating the bottleneck effect on nutrient transport. High

cell migration speed is more beneficial if cells are initially

seeded close to the scaffold surface rather than uniformly

distributed throughout the entire scaffold. Our simulations

offer interesting insights into the interplay between cell pop-

ulation and mass transport dynamics that leads to these

phenomena. We also demonstrate our model’s ability to simu-

late various boundary conditions corresponding to different

bioreactor configurations. Thus, the conclusions drawn

from our simulations provide much needed theoretical guid-

ance for tissue engineers in their design of scaffold biomate-

rials, cell seeding methods, bioreactor configurations, and

tissue culture medium formula.

The simulations discussed in this study were based on the

assumption that cell proliferation does not stop until the

nutrient concentration drops to zero. However, our model

FIGURE 11 The effect of the Biot number, Bi ¼ kgL=D�e , on tissue

growth rates. The mixed boundary condition is applied on all surfaces and

the mass transfer coefficient, kg, is varied to affect the value of Bi. Its base

case value, Bi* ¼ 7.41 � 10�4, corresponds to the parameters shown in

Table 1.
can easily handle cases where both migration and prolifera-

tion stop when the nutrient concentration drops below certain

critical levels. Simulation results (not shown here) indicate

that the setting of nonzero concentration thresholds for

proliferation will have minimal effects on tissue growth in

the absence of significant transport limitations. As expected,

these effects become more pronounced with the onset of

severe nutrient transport limitations.

The hybrid modeling approach described in this study can

form the framework for the development of a comprehensive

model that incorporates many more realistic features. For

example, it has been found that coculture of multiple cell types

is necessary for enhanced organ-specific cellular functions

(104,105), the formation of vascular network (106–108),

and cell differentiation (109–111) in biomaterial scaffolds.

Other processes that can be easily incorporated into our model

include scaffold heterogeneities, convection of medium

through the scaffold when the tissue is cultured in perfused

bioreactors (33,112–114), natural cell death (apoptosis), and

cell death caused by nutrient depletion (necrosis). In the

case of cell death due to nutrient depletion, for example,

one would expect the development of necrotic regions in

the scaffold interior for large values of the Thiele modulus

instead of the sparsely populated inner cores observed, for

example, in Fig. 5, K and L. Of course, experiments must be

performed to measure the parameters related to the regulatory

mechanism for cell death, including the critical nutrient

concentration below which cells become quiescent, the

reduced nutrient consumption rate of quiescent cells, the dura-

tion of the quiescent state of cells before they commit to

necrosis, and the time it takes for necrotic cells to decompose

and make their position available for other cells. Work to

extend the model to systems with heterogeneous cell popula-

tions and cell death is already underway in our lab.
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