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ABSTRACT Magainin, a 23-residue antibiotic peptide, interacts directly with the lipid bilayer leading to cell lysis in a strongly
concentration-dependent fashion. Utilizing cryo-electron microscopy, we have directly observed magainin interacting with
synthetic DMPC/DMPG membranes. Visual examination shows that visibly unperturbed vesicles are often found adjacent to
vesicles that are lysed or porous, demonstrating that magainin disruption is a highly stochastic process. Quantitatively, power
spectra of large numbers of porous vesicles can be averaged together to produce the equivalent of an electron scattering curve,
which can be related to theory, simulation, and published neutron scattering experiments. We demonstrate that magainin-
induced pores in lipid vesicles have a mean diameter of ~80 Å, compatible with earlier reported results in multilayer stacks. In
addition to establishing a connection between experiments in multilayer stacks and vesicles, this also demonstrates that
computed power spectra from windowed-out regions of cryo-EM images can be compared to neutron scattering data in a mean-
ingful way, even though the pores of interest cannot yet be individually identified in images. Cryo-EM offers direct imaging of
systems in configurations closely related to in vivo conditions, whereas neutron scattering has a greater variety of mechanisms
for specific contrast variation via D2O and deuterated lipids. Combined, the two mechanisms support each other, and provide
a clearer picture of such ‘soft’ systems than either could provide alone.
INTRODUCTION

Magainin 2 is a 23-residue antibiotic peptide isolated from

the skin of Xenopus laevis (1). Unlike most commercial anti-

biotics, which interact with specific protein targets, magainin

2 and other peptides in this class have been shown to interact

directly with the lipid bilayer (2,3). Peptides in this class are

ubiquitous, with hundreds of identified members (4) over

a wide range of species, and they play a critical role in the

early stages of host defense (5). Magainin 2 lyses a wide

range of both Gram-negative and gram-positive bacteria at

concentrations two-orders-of-magnitude lower than those

required to lyse red blood cells (6,7). Magainin has also

been demonstrated to lyse a range of cancer cells (8,9) at

concentrations at which normal tissue is unaffected. For

these reasons, peptides in this class are under active develop-

ment by the pharmaceutical industry. Because they interact

directly with the lipid bilayer, it is believed that bacteria

will be largely unable to develop resistance to this class of

antibiotics.

A wide range of techniques have been used to elucidate

magainin’s interaction with the lipid bilayer, including

fluorescence leakage experiments (10), oriented circular

dichroism (11), in-plane neutron and x-ray scattering and

lamellar x-ray diffraction (12,13), solid-state nuclear

magnetic resonance (14,15), Raman spectroscopy (16), and

simulation (17), just to name a few. Several reviews are

available with a more complete history of this active field

(18–21). Magainin exists as a disordered chain in aqueous
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solution, and is believed to initially interact specifically

with acidic lipids in the bacterial membrane through electro-

static interactions (22). Association with the lipid-water

interface induces folding into a single-domain, amphipathic

a-helix oriented parallel to the surface of the bilayer. This

surface adsorption causes local thinning of the bilayer

(13,23). Once a critical concentration of surface-adsorbed

peptides is achieved, the peptides spontaneously rotate 90�,
forming the boundary of an aqueous pore (Fig. 1) (18,24).

It was previously shown by neutron scattering (12) that the

pores formed by magainin were larger than anticipated

(~71 Å diameter), and hypothesized that the lipid bilayer

itself was also involved in channel formation, with magainin

acting as basically a stabilizing agent for a natural transient

membrane defect. However, much of the work leading to

these previous conclusions was performed using multilayer

stacks of lipid bilayers rather than lipid vesicles. That is,

many bilayers are forced into close contact in these experi-

ments, and it was unknown what implications this might

have, since, in vivo, the peptides would be interacting with

isolated vesiclelike membranes. However, the fact that in

some cases interactions between neighboring layers or pore-

pore correlation were observed in the multilayer stack exper-

iments (25) implied that there may be some differences

between the two systems.

Cryo-EM and neutron/x-ray scattering have been used

together in a cooperative approach in several cases

(26–28), and in fact, x-ray solution scattering curves are a

highly accurate method for CTF amplitude correction in

cryo-EM single particle reconstructions (29,30).
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MATERIALS AND METHODS

Data conventions

Throughout this article, we make use of momentum transfer, q, as tradition-

ally used in the scattering and physics communities in preference to the

spatial frequency, s, traditionally used in cryo-EM. The relationship is

simply s ¼ q/2p. Spatial frequency is simply the reciprocal of the real-space

periodicity of the oscillation. That is, a sinusoidal oscillation with a real-

space wavelength of 10 nm would have a spatial frequency of s¼ 0.1 nm�1.

Materials

1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyris-

toyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPG) were purchased from

Avanti Polar Lipids (Alabaster, AL). Magainin 2 was purchased from Sigma-

Aldrich Chemical (St. Louis, MO).

Sample preparation

Liposomes were prepared by mixing a 1:1 ratio of DMPC/DMPG in chloro-

form/methanol (1:1) and allowing the solvent to evaporate under a dry argon

gas flow. The films were kept under light vacuum overnight to remove re-

maining traces of organic solvent. The resulting dried lipid films were

hydrated with distilled water, and the suspension was then extruded using

a mini-extruder with a 0.05-mm pore polycarbonate filter (Avanti Polar

Lipids) (10). It has been shown by leakage experiments (31–33) that imme-

diately after mixing magainin with vesicles, there is an initial period of high

pore density, but that after equilibrium is reached (typically in under

10 min), the open pore fraction has fallen to ~10% of the peak value. To

achieve high pore density, the vesicles were vitrified as quickly as possible

after addition of magainin (under 30 s). This is a fundamental difference

from neutron scattering experiments in multilayer stacks, which were per-

formed in equilibrium, and thus leaflets could not be defined as inner or

outer. Experiments were conducted at various concentrations; the results

presented here utilized 400 mM magainin to produce a high surface density.

Although lower concentrations (tested down to 40 mM) also produce an

effect, the lower pore density produces a much weaker scattering signal.

FIGURE 1 Schematic of possible modes of interaction between amphi-

pathic peptides and lipid bilayers. At low concentration, peptides adsorb

to the surface of the lipid bilayer. At higher concentrations, a fraction of

peptide molecules rotate to form pores. If the peptide is oriented perpendic-

ular to the membrane, two models must be considered: the barrel-stave chan-

nels or the toroidal channels. Previous neutron scattering evidence led to the

hypothesis of the toroidal form for magainin channels based on arguments

about the amount of peptide available for pore formation.
For comparison with previous neutron scattering experiments, we desired

a high surface density of pores. The 400-mM concentration used here would

correspond to a lipid/peptide molar ratio of ~25:1 if all magainin were

associated with the lipid vesicles. Lipid concentration was determined by

phosphorus analysis after extrusion (34).

Vitrification

Before vitrification, all specimen preparation was carried out at 33�C, well

above the 24�C phase transition of the DMPC/DMPG mixture (35). It has

been previously demonstrated that the vitrification process of the thin films

on a TEM grid is so rapid (~10,000�C s�1), that the system effectively

remains in a snapshot of its solution conformation (36,37). Previous exper-

iments with lipid-dense systems have demonstrated that lipid preparations

vitrified from higher than the phase-transition temperature will not change

state upon vitrification (38). Vitrification was performed in LN2 cooled

liquid ethane using standard procedures on a Vitrobot (FEI, Hillsboro, OR).

Electron cryo-microscopy

All specimens were imaged on a JEM2010F electron microscope (JEOL,

Peabody, MA) equipped with a field emission gun operated at 200 keV.

Images were collected at 50 K magnification, and defocus ranged from 1.2

to 3.4 mm, putting the first zero crossing of the CTF at q ¼ 0.2–0.4 Å�1,

respectively. Images were collected on a 4 K � 4 K charge-coupled device

(CCD) camera (model No. US4000, Gatan, Pleasanton, CA) giving images

at 2.2 Å/pixel.

Image analysis

Images of vesicles were manually selected (Fig. 2); in the presence of magai-

nin, 69 CCD frames produced 304 magainin-perturbed vesicle images; for the

control experiment with no magainin, 64 CCD frames yielded 537 vesicle

images. Power spectra were determined by computing the two-dimensional

fast Fourier transform (FFT) of each masked image, rotationally averaging

the results, then averaging the one-dimensional power spectra from the set

of images. The image analysis was performed using the EMAN software

package (39). Vesicles from CCD frames were selected using the EMAN

command ‘‘boxer’’ with a 320 � 320 box size. Each image was normalized

such that the mean density around the edge was zero, then padded with zeroes

to 640� 640 pixels using the EMAN command ‘‘proc2d’’. The central region

of each vesicle was masked using a circular mask (radius¼ 150 pixels). Next,

the squared modulus of the FFT was computed for each image to produce an

estimated power spectrum. The masking process eliminates the strong signal

produced by the bilayer edge of each vesicle, and limits the curvature of the

vesicle surface area under consideration. To reduce noise levels, many such

power spectra are then averaged together from many images. The final two-

dimensional spectrum is then rotationally averaged to produce a one-dimen-

sional power spectrum. This aggregate process is completed using the

‘‘fftavg’’ program in EMAN (39). The error bars are simply the standard

deviation of the mean value at each spatial frequency.

Background subtraction

As with any scattering experiment, it is necessary to perform background

subtraction before modeling of the power spectra. Unlike solution scattering

experiments, where a separate scattering experiment is performed for

purposes of background subtraction, in cryo-EM this can theoretically be

performed using data contained within individual images. Regions in each

image where vesicles are not present can be treated as background. These

regions are simply ice, with residual solution magainin, and power spectra

from these regions can provide background curves for those computed

from the center of each vesicle. Unfortunately, although this does a good

job of background subtraction (Fig. 3 A), it appears not to account for the

entire background at low spatial frequencies in the presence of
Biophysical Journal 97(1) 164–172
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FIGURE 2 Typical cryo-EM images of (A) DMPC/PG

without magainin (control experiment). (B and C) DMPC/

PG with magainin. The bottom three vesicles in panel B

have arrows showing strongly perturbed vesicles, and the

top three are substantially less disturbed. In panel C, both

lysed vesicles and minimally perturbed vesicles are

observed. Circles inside vesicles indicate the region ex-

tracted for computation of power spectra. Scale bar repre-

sents 100 nm.
magainin(q ~ 0.02–0.05 Å�1), which causes difficulties in modeling, partic-

ularly in the high-concentration magainin case.

In addition, at q < 0.025 Å�1, a sharp peak appears in the power spec-

trum. This peak is always observed in cryo-EM data, even in images of

the background buffer alone. It is believed to be primarily due to inelastic

electron scattering and local fluctuations in ice thickness. This peak is highly

variable in amplitude and is routinely filtered out or reduced in traditional

single particle analysis. Because of its variability, it cannot be accurately

subtracted, and this region is not considered in our analysis. As this peak

typically corresponds to periodicities in the specimen of ~1000 Å, it plays

no real role in our analysis of pore structures.

In visually observing vesicles at high magainin concentrations, an inter-

esting observation can be made. Vesicles clearly fall into two classes:

some appear smooth, like the magainin-free control experiment, and some

appear visibly rough textured. Including both rough- and smooth-appearing

vesicles, we have 304 power spectra from individual vesicles in the high-

concentration magainin data set. Examining the region from 0.036 to

0.080 Å�1, we observe that the averaged power spectrum exhibits a clear

pattern of peaks. However, in looking at the distributions of mean intensity

over this range, it becomes clear that separating the data into two populations

based on peak height produces one curve with virtually no structure in this

region, and another with very strong peaks (Fig. 3 B). Unsurprisingly, when

comparing which images fell into each of the two groups, the flat spectrum

corresponds to the smooth-looking vesicles, and the power spectrum with

peaks corresponds to the images with a rough texture. For purposes of

analyzing the observed peak pattern, we will consider the flat curve as the

background to produce a new background-subtracted peaked curve (shown

in Fig. 4) The difference between ice-only background subtraction and the

background subtraction based on weakly perturbed vesicle data is small,

but permits significantly better fitting, particularly when CTF is included.

Simulation

To permit more precise modeling of possible pore configurations, in addition

to the basic two-dimensional hard-disk fluid theory, we also performed

simulations. The basic simulation model was a solid spherical shell with
Biophysical Journal 97(1) 164–172
pores (Fig. S2 A in the Supporting Material). Technically the pores are

conical for simplicity, though this should be a minimal effect given the thin-

ness of the membrane. A control was also simulated with no pores present

(Fig. S2 B). The diameter and thickness of the spherical shell in the three-

dimensional model were 1056 Å and 46 Å, respectively, but the bilayer

was given no internal structure. Since we are limiting ourselves to nearly

planar regions of the bilayer, the momentum transfer is almost entirely

confined to the plane of the vesicle, so simulating the internal structure of

the membrane was deemed unnecessary. Nonoverlapping pores with either

a fixed size or a Gaussian size distribution were randomly placed on the

surface until the specified density had been achieved. Analysis of these

simulated vesicles was performed in the same way as for the experimental

data.

CTF correction

In principle, the transmission electron microscope produces images repre-

senting two-dimensional projections of the electron density of the object

being imaged. However, in actuality, this is not strictly true, as the images

also include a number of largely correctable distortions. The functional

form of the contrast transfer function (CTF) (40) is regarded as a very accu-

rate representation of the imaging process. In the weak phase approximation,

the overall transfer function is written as

CðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

A

q
sinðgÞ þ CAcosðgÞ; (1)

where

g ¼ 2p

 
� Csl3ðq=2pÞ4

4
þ DZlðq=2pÞ2

2

!
;

CA is the fractional amplitude contrast, CS is spherical aberration, l is the

electron wavelength, and DZ is defocus. In addition, there is an envelope

function expressing the falloff in signal at high resolution, which
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for purposes of our analysis can be approximated as a Gaussian B-factor

(41,42) :

EðqÞ ¼ e
�1

4p2Bq2

:

The two most important features of this expression are that C(q) is oscilla-

tory, with a number of zero crossings, and that at typical levels (CA ~ 0.1),

there is very little contrast close to focus (small DZ), but contrast increases

further from focus. It is thus standard practice to collect images out of focus

to improve contrast. We specifically selected a defocus range such that

the first zero crossing of the CTF is at substantially higher resolution

(q > 0.25 Å�1) than the region we are analyzing.

The CTF curves are highly dependent on microscope defocus, which is

intentionally varied between images. To test for CTF effects, we separated

our data by defocus into three groups, without performing any CTF correc-

A

B

FIGURE 3 Background subtraction. (A) Example of a raw power spec-

trum and the background (ice only) subtraction process. The outer region

of each vesicle was masked out using a circular mask with a diameter of

66 nm to eliminate the strong signal due to the bilayer edge of each vesicle

and to limit the curvature of the vesicle surface. (B) Three-hundred-and-four

power spectra from magainin perturbed vesicles including both rough and

smooth appearing vesicles were separated into two groups based on peak

intensity. The average of 116 strongly peaked power spectra was used as

signal, and the average of 188 weakly peaked ones was used as background.

The subtraction of the two is the final experimental curve and is used for

fitting throughout the data analysis.
tion. In Fig. 5, we show the averaged power spectra for each of these groups.

The lack of significant variation between curves at different defoci demon-

strates that defocus is a minor effect with little impact on interpretation.

However, although variation with defocus is only a small effect, the pres-

ence or absence of the CTF model could have an important impact on

interpretation. Therefore, our modeling work incorporates CTF and enve-

lope function terms, using a defocus of 3 mm underfocus and 10% amplitude

contrast. Although small changes in these parameters have no significant

impact on the fit, omitting the CTF curve entirely causes a measurably

worse fit.

Fitting procedure

The simulated curve, multiplied by the CTF, was used as a model to fit to the

experimental data. We used the Levenberg-Marquardt generalized least-

squares fitting algorithm (43) to perform fitting. Specific fitting parameters

varied and are discussed in Results and Discussion.

FIGURE 4 Power spectra of the four classes of vesicles observed: the

control without magainin, strongly perturbed vesicles with magainin,

slightly perturbed (but not lysed) vesicles with magainin, and lysed vesicles

(with magainin). Slightly perturbed and lysed vesicles both clearly exhibit

a signal above the control experiment.

FIGURE 5 Background-subtracted power spectra of strongly perturbed

vesicles grouped by defocus (DZ1 1.4–2.1 mm; DZ2 2.2–2.8 mm; and DZ3

2.9–3.5 mm). Despite the large difference in defocus, no significant peak

position shifts occur, implying that our data is not sensitive to the defocus

parameter in CTF.
Biophysical Journal 97(1) 164–172



168 Han et al.
RESULTS AND DISCUSSION

Qualitative results

In the control experiments, without magainin, vesicles appear

smooth, and the bilayer can be clearly observed (Fig. 2 A and

Fig. S1). Interestingly, apparent bilayer thickness fluctuations

observed around the edge of each vesicle, were substantially

stronger than a similar experiment performed with POPC/

POPG (POPC/PG) even in the magainin-free control experi-

ment (Fig. S1). Although this relative difference is not

entirely unexpected because of the shorter chain-length in

the DM membranes, the degree to which the bilayer seems

to fluctuate in DMPC/PG membranes is somewhat surprising.

Although we cannot make any quantitative statements, it is

possible that the fact that POPC/PG responds differently to

magainin than DMPC/PG is related to this behavior.

In visually assessing the vesicles in the presence of magai-

nin, they clearly appear to fall into three classes: smooth vesi-

cles (Fig. 2 B, dotted line) similar to those without magainin

(Fig. 2 A); highly perturbed vesicles with intact surfaces

(Fig. 2 B, solid line); and lysed vesicles with clear discontinu-

ities in their membranes (Fig. 2 C). Furthermore, lysed vesi-

cles may appear directly adjacent to both strongly and weakly

perturbed vesicles, and they appear to be, at most, only

slightly perturbed. This demonstrates that the magainin-lipid

interactions are highly stochastic, and we cannot simply

assume that all vesicles will be impacted equally by the pres-

ence of magainin. The differentiation of the intact vesicles into

two (rough and smooth) classes was not anticipated, but the

effect is clear both visually and in terms of the power spectra

(Fig. 4). As discussed in Materials and Methods, the weakly

perturbed vesicles, as determined by quantitative analysis

of the power spectra, were used to compute the background

curve for the high-concentration magainin experiments.

A comparison of the power spectra for the four observed

vesicle types is shown in Fig. 4:

1. The control experiment, with no magainin.

2. Vesicles in the presence of magainin exhibiting a strongly

perturbed appearance.

3. Vesicles in the presence of magainin exhibiting a mini-

mally perturbed appearance.

4. Vesicles that had been obviously lysed (containing at

least one large gap in the bilayer).

As expected, the strongly perturbed membranes exhibit the

strongest scattering peaks in the region of interest. The mini-

mally perturbed vesicles still exhibit stronger scattering than

the control experiment, but far weaker than the strongly per-

turbed class. Additionally, the lysed vesicles agree best with

the minimally perturbed category.

Interpretation of power spectra

We now begin by attempting to interpret the data in terms of

the model (Fig. 1) assuming a distribution of similar-sized
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water-filled pores in the bilayer. First we consider a two-

dimensional hard-disk fluid model, which can be examined

theoretically, but is clearly only a limited approximation of

reality.

Theory

Although we are utilizing vesicles in these experiments,

which are clearly nonplanar, by using only the central region

of each vesicle for purposes of power spectrum calculations

(Fig. 2), we are considering two only slightly curved

membrane disks, one from the top of the vesicle and one

from the bottom. For purposes of theoretical analysis, we

consider these slightly curved surfaces to be flat, permitting

us to invoke the same scattering theory used to interpret

multilayer stack neutron-scattering experiments. This will

cause some minor inaccuracies in the structure factor

because of packing issues, but is acceptable as a first approx-

imation.

Therefore, in this theoretical analysis, we consider the

membrane to be a plane, and the pores to be circular holes

in the plane. In the resolution range under consideration,

we can consider the electron microscope to produce parallel

beam projections of the three-dimensional specimen with

corrections for the CTF of the instrument. Additionally, liter-

ature has suggested (25) a more complicated potential for

pore-pore interactions, but here we consider a simple hard-

disk model, with a specified disk radius and pore density

to see if that suffices to explain the data. The power spectrum

intensity can be expressed as

IðqÞ ¼ jFðqÞj2 SðqÞ;

with an additional arbitrary scaling factor. In scattering

parlance, the form factor, F(q), is the radial profile of the

Fourier transform of a single pore. Since we are modeling

each pore as a hard disk, this is simply a Heaviside unit

step function u,

f ðrÞ ¼ 1

pR2
u
�
R2 � r2

�
;

where R is the radius of the pore and r is spatial coordinate

with origin in the middle of pore. We can thus express

F(q) as a Bessel function:

FðqÞ ¼ 2
J1ðqRÞ

qR
:

The first maximum after the origin is located at q z 5.14/R.

Thus, as expected, the peak moves to the left as the pore size

increases.

The structure factor S(q) can be theoretically computed

from two-dimensional hard-disk fluid theory (44),

SðqR; hÞ ¼ 1=

�
1� 8h

Z 1

0

c
�
r
0
; h
�
J0

�
qRr

0�
r
0
dr
0
�
;
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where h ¼ (p/4) rR2 is the packing fraction, r is the density

of pores, c(r0,h) is the direct correlation function, and r0 ¼ r/R
is the distance r scaled by the particle diameter R.

The first peak of S(q) is related to the mean distance

between particles of the fluid. As the particle density is

increased, the peak moves to the right, and increases in inten-

sity. As shown in Fig. 6, in our experiment, the first peak in

the power spectrum is thus due primarily to pore density, and

the second peak is due primarily to pore size (Fig. S3).

The theoretical curve qualitatively reproduces the main

features of the experimental power spectrum, but there are

substantial discrepancies between theory and the experi-

mental curve extending well beyond the error bars. However,

given the simplicity of the model, we would not have

A

B

FIGURE 6 (A) Theoretical analysis of power spectrum of the strongly per-

turbed vesicles. The solid line is the aggregate theoretical curve including

both form (jF(q)j2) and structure (S(q)) factors with pore size and densities

optimized to match the experimental data. The pore size deduced from the

best theoretical match is ~83 Å, and the mean distance between pores (center

to center) is ~108 Å. (B) Fitting CTF-corrected simulation curve to the exper-

imental data. Pore size, pore size variation, and pore density are allowed to

vary in simulation to yield the best matching power spectra to the experi-

mental data, with CTF correction performed. The best fitting parameter gives

a mean pore size of 80 5 2 Å and the pore size variation 12 Å.
expected an exact fit. A number of obvious possibilities for

subtle improvements to the model come to mind, but to

test these possibilities we must resort to simulation.

Simulation

One of the most useful aspects of a simulation is that its

complexity can be controlled, permitting us to identify the

minimal attributes of the problem required to accurately

reproduce the data. In this case, a true simulation would

include molecular dynamics on all of the molecular compo-

nents of the experiment. However, before deciding such

extremes are useful, we will first begin with our basic

hard-disk model and begin adding attributes to it and observe

agreement with the data. The details of the simulation are

discussed in Materials and Methods, but basically, we begin

with a solid spherical shell of specified thickness, then insert

random pores. Projections of these simulated vesicles are

then treated in the same fashion as the experimental data,

including imposition of a simulated CTF. We then permit

three parameters to vary, the pore size, the pore density,

and the B-factor (see CTF above), and perform a fit. Simply

performing the simulation on a spherical section already

provides a more accurate description of the problem, as

packing on a sphere is different than in a plane, impacting

the structure factor. Performing the fit with the simulation

provides a much better result than the theory (Fig. S4), but

still does not fully model the data.

Additional attributes we could potentially add to the simu-

lation include the structure of the bilayer, explicit peptides,

making the edge of the cone soft rather than hard and varia-

tions in pore size and/or shape. Given that we observe that

the experimental data does not fall to zero between the two

peaks, whereas the theoretical curve does, and that the simu-

lation has a deeper dip than the experimental data (Fig. S4),

a natural idea would be to try varying the pore size. Indeed,

including a Gaussian pore-size variation into the simulation,

with the width of the Gaussian as a fourth free parameter

produces an excellent fit, without requiring any additional

subtleties in the model (Fig. 6 B). Thus, the final fit yields

a mean diameter of 80 5 2 Å, a Gaussian pore size variation

of 12 Å, a density of 7.2 � 10�5 pores/Å2, and an envelope

function B factor of 1321 Å2.

We now consider earlier neutron-scattering experiments.

No actual neutron scattering was performed for this article,

but a brief discussion is useful to make a meaningful

comparison with our results. The advantage of neutron scat-

tering over electron or x-ray scattering is that it provides

a flexible contrast mechanism, as either the bulk water or

various hydrogens in the lipids can be deuterated. In the

experiment we are comparing with Ludtke et al. (12),

hydrated lipid multilayer stacks are prepared with a known

concentration of magainin. The separation between bilayers

in the stack is ~10 Å, so the magainin is effectively entirely

associated with the lipid, regardless of charge interactions.

Earlier oriented circular dichroism experiments already
Biophysical Journal 97(1) 164–172
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demonstrated in this environment that above a specific

threshold concentration, the peptide oriented itself perpen-

dicular to the surface of the bilayer (11). In the neutron-scat-

tering experiment, the bulk water began as H2O, then was

exchanged for D2O, then exchanged back to H2O. In this

experiment from Ludtke et al. (11), when the bulk water

was H2O, no signal was observed; but when it was D2O,

two peaks, one large and one small, appeared (Fig. 7, from

original data).

Through an analysis comparable to the one performed

here with electron scattering, it was demonstrated that the

larger peak was almost certainly due to the presence of

water-filled pores in the plane of the bilayers. The smaller

peak was due to smectic defects in the multilayer stack struc-

ture. Based on this model, the diameter of the water channel

was measured as 71 5 3 Å. Initially, it might seem that the

two experiments (neutron and electron scattering) should

yield similar values; however, the differences in the source

of contrast in the two experiments are quite important. In

the neutron-scattering experiment only the column of water

filling the actual pore appears, since the magainin and lipid

were undeuterated. Only one peak is observed in this exper-

iment, since the channel-channel contact radius is larger than

the pore radius, and this produces a falloff in the theoretical

scattering curve, which eliminates the second peak observed

in the electron scattering experiment. In the electron scat-

tering experiment, we are observing contrast between the

lipid bilayer and three possible contrast producing agents:

1. The water in the channel.

2. The magainin around the edge of the channel.

3. If a ‘‘wormhole’’ channel, some portion of the bright

phosphate peak lining the edge of the pore.

FIGURE 7 Small angle neutron scattering (SANS) curve from multilayer

stacks of DMPC/PG regenerated from original data (12). Multilayer stacks

of DMPC/PG showed a pore peak (left peak) yielding a size of ~71 Å. (Right
peak) Residual lamellar scattering peak due to imperfect alignment of the

lipid multilayer stacks. Because of differing contrast mechanisms, this curve

is not expected to match the electron scattering results directly.
Biophysical Journal 97(1) 164–172
That is, the contrast-producing mechanism for neutron scat-

tering includes only the pore, whereas in electron scattering it

will also likely include some portion of the surrounding pore

edge, and could thus be larger. In addition, our simulation

required a model where the pore sizes were allowed to

vary by 512 Å for an accurate fit, making the neutron scat-

tering result entirely consistent with this result.

Our simulation-based fit of the data in Fig. 6 B used four

parameters, and accurately fit the data to within the limits of

measurement uncertainty. However, it is worth considering

that this fit determined the B-factor as ~1300 Å2, rather

than the more typical 200–500 Å2 for this instrument. In

many ways, our simulation model is still oversimplified.

Specifically, we are still using pores represented as sharp-

edged disks. Softening the edges of the pores would cause

an additional decay in the form-factor of the channels,

meaning less decay in the Gaussian B-factor would be

required to fit the data. That is, with a gradual decay on

the edges of the pores, the B-factor would be reduced in

the fit. However, given the high accuracy of the current fit,

an additional parameter to account for the level of softness

in the pore edges would not be separable from the B-factor,

and the fit would produce two values with high uncertainty

rather than a single well-determined value. The B-factor

we are presently determining is a combination of the exper-

imental B-factor from the microscope and the true shape of

the edge of the pores, but we do not believe the data permits

a more detailed answer without making the results

ambiguous.

CONCLUSIONS

We have demonstrated clearly that magainin induces surface

perturbations in synthetic lipid vesicles, and that these

perturbations can be attributed to a random distribution of

pores ~80 Å in diameter, compatible with results from earlier

neutron-scattering experiments in multilayer lipid stacks.

Unlike earlier neutron-scattering experiments, the cryo-

EM experiments were performed out of equilibrium during

the vesicle lysis process. Our results demonstrate that the

earlier results in multilayer stacks were not an artifact of

that experimental geometry, but can be reproduced in a

nativelike situation. This experiment, combined with earlier

experiments establishing peptide orientation and leakage,

combine to give a clear picture of the biochemistry taking

place in this system. When mixed in solution, the magainin

first interacts with the outer leaflet of the (charged) vesicles,

initially adsorbing to the surface. When the concentration on

any specific vesicle surface exceeds a threshold level, the

peptide begins inducing wormhole pores, briefly making

topological connections between the inner and outer leaflets.

The magainin then passes along the topological connection

to the inner leaflet. Pores continue to form after magainin

equilibrium has been reached between the inner and outer

leaflets, but with a much reduced probability, because of
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both a reduction in surface stress once the peptide has equil-

ibrated and the relative lower concentration of peptide in

each leaflet. It is worth mentioning that the argument for

wormhole-style pores rather than the traditional barrel-stave

pores (Fig. 1) was that in the neutron-scattering experiment,

there was an insufficient amount of magainin present to form

the lining around the observed pores. The experiment pre-

sented here does not offer any new evidence for this partic-

ular question, aside from the observation of substantial

distortions in membrane thickness already present for

DMPC/PG in the absence of magainin.

In some of the vesicles in our experiments, the pore-form-

ing process was sufficient to cause lysis of the vesicle, but as

there is no osmotic stress in this synthetic system, it is also

quite possible for vesicles to survive this process intact.

This model is supported by the fact that the lysed vesicles

exhibit a similar pore formation pattern to the less-perturbed

looking vesicles, implying that those vesicles are ones that

have already achieved equilibration between leaflets. One

would expect bacteria to be far less likely to survive the

high-density pore-forming phase because of osmotic stress.

We have also demonstrated that cryo-EM can be a power-

ful tool for studying peptide-lipid interactions even in cases

where the resulting structures cannot be individually

resolved, and demonstrated that it is straightforward to relate

such cryo-EM virtual scattering results to in-plane neutron

scattering experiments. One of the major advantages of

cryo-EM imaging over a technique like small angle neutron

or x-ray scattering is fine control over the portion of the

image included in the power spectrum calculation. By

computing the power spectrum of only the center of each

vesicle, we can effectively perform in-plane scattering,

equivalent to a neutron/x-ray scattering experiment, which

requires use of lipid multilayer stacks. However, although

cryo-EM is an extraordinarily powerful technique, contrast

mechanisms are not as flexible as those available in neutron

scattering, where deuterium can be used as a very flexible

contrast agent with minimal impact on the physical proper-

ties of the system. Although there are mechanisms for

varying contrast in cryo-EM or x-ray scattering, none are

nearly as flexible, and addition of agents such as nanogold

labels would have a strongly perturbing effect on systems

such as this. This argues for future hybridizations of these

independently powerful techniques.

Finally, although we can qualitatively claim that the

surface of the perturbed vesicles appears porous, the fact

that we are looking through two bilayers, each of which

has a high density of pores, makes direct visualization a diffi-

cult position to argue. To address this issue and truly visu-

alize individual peptide-induced pores, it will be necessary

to move into three dimensions through use of cryo-electron

tomography. Although, theoretically, visualizing pores of

this size using this technique is possible, there are many

complexities, such as the missing-wedge problem, due to

the inability to tilt cryo-EM specimens >60–70�. Nonethe-
less, a successful cryo-electron tomography experiment is

clearly the next step in developing cryo-EM as a technique

for studying such lipid systems. These same techniques

may also offer powerful tools for studying events such as

vesicle fusion or the mechanics of membrane-penetrating

peptides.

SUPPORTING MATERIAL

Four figures are available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(09)00905-9.
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