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ABSTRACT Phototropins, major blue-light receptors in plants, are sensitive to blue light through a pair of flavin mononucleotide
(FMN)-binding light oxygen and voltage (LOV) domains, LOV1 and LOV2. LOV2 undergoes a photocycle involving light-driven
covalent adduct formation between a conserved cysteine and the FMN C(4a) atom. Here, the primary reactions of Avena sativa
phototropin 1 LOV2 (AsLOV2) were studied using ultrafast mid-infrared spectroscopy and quantum chemistry. The singlet
excited state (S1) evolves into the triplet state (T1) with a lifetime of 1.5 ns at a yield of ~50%. The infrared signature of S1 is
characterized by absorption bands at 1657 cm�1, 1495–1415 cm�1, and 1375 cm�1. The T1 state shows infrared bands at
1657 cm�1, 1645 cm�1, 1491–1438 cm�1, and 1390 cm�1. For both electronic states, these bands are assigned principally to
C¼O, C¼N, C-C, and C-N stretch modes. The overall downshifting of C¼O and C¼N bond stretch modes is consistent with
an overall bond-order decrease of the conjugated isoalloxazine system upon a p-p* transition. The configuration interaction
singles (CIS) method was used to calculate the vibrational spectra of the S1 and T1 excited pp* states, as well as respective
electronic energies, structural parameters, electronic dipole moments, and intrinsic force constants. The harmonic frequencies
of S1 and T1, as calculated by the CIS method, are in satisfactory agreement with the evident band positions and intensities. On
the other hand, CIS calculations of a T1 cation that was protonated at the N(5) site did not reproduce the experimental FMN T1
spectrum. We conclude that the FMN T1 state remains nonprotonated on a nanosecond timescale, which rules out an ionic
mechanism for covalent adduct formation involving cysteine-N(5) proton transfer on this timescale. Finally, we observed a hetero-
geneous population of singly and doubly H-bonded FMN C(4)¼O conformers in the dark state, with stretch frequencies at
1714 cm�1 and 1694 cm�1, respectively.
INTRODUCTION

Phototropins (phot) are major blue-light receptors for photot-

ropism, light-directed chloroplast movement, light-induced

stomatal opening, rapid inhibition of growth, and gametogen-

esis, that are sensitive to blue light through a pair of light

oxygen and voltage (LOV) domains, LOV1 and LOV2 (1).

LOV2 constitutes the main blue-light input sensor of photo-

tropins, whereas LOV1 is hypothesized to play a regulatory

role (2). Avena sativa phot 1 LOV2 (AsLOV2) consists of

~100 amino acids, and noncovalently binds flavin mononu-

cleotide (FMN). The LOV2 domain undergoes a photocycle

involving light-driven covalent adduct formation between

a conserved cysteine residue and the C(4a) atom of FMN

(3–5). Formation of a covalent bond to the FMN triggers

protein conformational changes on the surface of the Per-

ARNT-Sim (PAS) core, disrupting the interactions of this

core with a C-terminal amphiphilic helix, called Ja, packed

against its central b-sheet (6). Unfolding of the Ja helix is

the critical event that regulates the C-terminal kinase activity

of phototropin (7) and downstream signal transduction.
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The early steps of the LOV photocycle after photon

absorption involve the intersystem crossing of the FMN

singlet excited state to the FMN triplet state on a nanosecond

timescale (8,9), after which, covalent adduct formation

proceeds without apparent intermediates on a microsecond

timescale (10–15). In contrast to the apparent consensus on

the spectroscopically distinguishable intermediates in the

LOV photocycle, the mechanism by which covalent adduct

formation occurs in the LOV domains is a matter of consid-

erable debate. Broadly speaking, two reaction mechanisms

for covalent adduct formation have been put forward: 1),

an ionic mechanism; and 2), a radical-pair mechanism

(16). According to the ionic model, which is schematically

depicted in Fig. 1 (top), the sharply increased basicity of

N5 in the FMN triplet state triggers its protonation. The

proton would either originate in the conserved cysteine itself

(8,17,18), or from another nearby group (11,19) (the former

origin is shown in Fig. 1). This event would change the

double-bond of N(5)¼C(4a) to a single bond, leaving a very

reactive carbocation at the C(4a) position. This carbon atom

has sp3 hybridization, which would decrease the distance to

the cysteine. Subsequently, a nucleophilic attack by the

cysteine thiolate on the C(4a) carbocation would occur,

leading to formation of the covalent FMN-C(4a)-thiol

adduct. All these events may occur sequentially (8), or in

a concerted fashion (17,18). In all cases, the sharp increase
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FIGURE 1 Proposed reaction mechanisms for light-driven covalent flavin-C(4a)-cysteinyl adduct formation in LOV domains. (Top) Ionic mechanism.

(Bottom) Radical-pair mechanism. See text for details.
in the pKa of N(5) upon triplet formation is the switch that

drives the photoreaction, via proton abstraction of a nearby

donor. In support of this mechanism, ultrafast ultraviolet-

visible (UV-V) experiments indicated a partial protonation

of the FMN triplet state in LOV2 on a nanosecond timescale

(8).

Alternatively, a radical-pair mechanism for covalent

adduct formation was put forward, as depicted in Fig. 1

(bottom) (20,21). Upon promotion of the FMN chromophore

to the triplet state, a hydrogen atom would be transferred

from the conserved cysteine to N5 of the flavin, resulting

in an FMNH�-H2C-S� radical pair. In the neutral flavin semi-

quinone radical, the unpaired electron density resides in the

C(4a) atom. Such a radical pair would be formed in a triplet

configuration. However, the proximity of the (heavy) sulfur

radical to the isoalloxazine ring causes a strong spin-orbit

coupling, inducing a rapid triplet-singlet interconversion.

After the radical pair obtains an appreciable singlet character,

radical-pair recombination between H2C-S� and the unpaired

electron at C(4a) may take place, also resulting in the FMN-

C(4a)-thiol adduct. In the context of this proposed mecha-

nism, the trigger for adduct formation could either be an elec-

tron transfer from the cysteine to the flavin, followed by

proton transfer, or a concerted mechanism whereby

a hydrogen-atom transfer from the thiol to the flavin occurs

(20–23). Ab initio quantum chemical calculations favor the
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radical-pair over the ionic mechanism, through hydrogen

abstraction rather than electron transfer (24–27).

Time-resolved infrared spectroscopy is a powerful tool

for assessing the molecular nature of transient intermediates

in photoactive biomolecules (28–34). Here, we describe the

results of an ultrafast blue-pump, mid-infrared probe spectro-

scopic study of the LOV2 domain of Avena sativa phototro-

pin 1, to characterize the initial physical/chemical changes of

the chromophore and its protein environment on the femto-

second to nanosecond timescale. We obtained the infrared

signatures of the FMN singlet and triplet state in AsLOV2.

The FMN singlet-excited state mid-infrared spectrum, re-

corded in a broad spectral window from 1750 cm�1 to

1300 cm�1, provided direct information about the principal

stretch modes of the isoalloxazine moiety upon excitation.

The primary photoproduct of AsLOV2 corresponds to an

FMN triplet state that rises with a lifetime of 1.5 ns, because

of the sulfur-induced, enhanced intersystem crossing of

FMN by the reactive cysteine in (8,35). We report that the

triplet-state spectrum in AsLOV2 is very similar to the non-

protonated triplet states observed in a flavin- model

compound in aprotic solution according to time-resolved

infrared (IR) spectroscopy (36), and to the photoaccumulated

FMN triplet state at low temperature in Adiantum LOV2, as

probed by Fourier transform infrared (FTIR) spectroscopy

(37). The configuration interaction singles (CIS) method
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was used to calculate vibrational spectra of the first singlet

and triplet excited states. The calculated harmonic frequen-

cies of singlet and triplet excited states are in satisfactory

agreement with the evident band positions and intensities.

On the other hand, CIS calculations of a T1 cation that

was protonated at the N(5) site did not reproduce the exper-

imentally observed FMN triplet spectrum. The implications

for the reaction mechanism of covalent adduct formation

are discussed.

MATERIALS AND METHODS

LOV2 expression, purification, and preparation

The LOV2 domain of Avena sativa (As, oat) phototropin 1 was expressed

and purified as previously described (6). AsLOV2 was expressed from

a construct spanning residues 404–560 (construct generously provided by

K. Gardner of the Southwestern Medical Center, University of Texas,

Dallas, TX). The samples in H2O and D2O buffers (20 mM Tris/HCl, pH/

pD 8.0, and 50 mM NaCl) were concentrated (Amicon YM10, Millipore,

Billerica,MA) and placed between two 2-mm-thick CaF2 plates separated

by a 6-mm and 20-mm Teflon spacer, respectively. The samples had an

absorbance of ~0.2 at 447 nm and 1.2 and 0.8 at 1650 cm�1 for H2O and

D2O samples. A more concentrated H2O sample, with an absorbance of

~0.4 at 447 nm, was prepared to resolve the carbonyl region better between

1730 cm�1 and 1670 cm�1. During the experiments, the sample cell was

continuously translated with a Lissajous scanner, which ensured sample

refreshment after each laser shot and a time interval of 1 min between

successive exposures to laser beams. In H2O, the dark recovery rate amounts

to (40 s)�1. With a fraction of <20% of the LOV domains entering the pho-

tocycle with each shot and the given Lissajous return and dark recovery

times, a fraction of <10% of the AsLOV2 sample is continuously accumu-

lated in the covalent adduct state. Because the FMN-cysteinyl covalent

adduct does not absorb at an excitation wavelength of 475 nm, the latter state

will not be photo-excited, and hence will not contribute to the observed

dynamics. The dark recovery rate of AsLOV2 is slowed down about three

times in D2O (10) to (120 s)�1. We introduced 1 mM imidazole in the

D2O samples, to catalyze the dark recovery to a rate of about (12 s)�1

(38), which ensured that a major fraction of AsLOV2 decays between

successive laser shots (1 min).

Time-resolved mid-infrared spectroscopy

The experimental setup was a homebuilt spectrometer, based on a 1-kHz

amplified Ti:sapphire laser system operating at 1 kHz (Spectra Physics

Hurricane, Mountain View,CA) that allows for a visible-pump/mid-infrared

probe in a time window from 180 fs to 3 ns, as previously described (31,39).

The blue excitation pulse was generated by means of a noncollinear optical

parametric amplifier and centered around 475 nm, at an excitation energy of

500 nJ. The infrared probe had a spectral width of 200 cm�1, was spectrally

dispersed after the sample, and was detected with a 32-element array

detector, leading to a spectral resolution of 6 cm�1. Vibrational spectra

between 1720 cm�1 and 1300 cm�1 were taken in intervals and simulta-

neously analyzed. Spectra were recorded at 74 time-delay points between

�15 ps and 3 ns.

Global analysis

Time-resolved spectra were analyzed with a global analysis program (40),

using a kinetic model consisting of sequentially interconverting species,

i.e., 1 / 2 / ., in which the arrows indicate successive monoexponential

decays of increasing time constants. Associated with each species were a life-

time and a difference spectrum, denoted the evolution-associated difference
spectrum (EADS). The ultrafast IR signals before and around zero time

delay were affected by perturbed free induction decay (FID) and by cross-

phase modulation artifacts. To avoid inclusion of the perturbed FID and

cross-phase modulation signals in the global analysis, the signals from

�10 ps to 200 fs were given a low weight in the fitting process.

Differential FTIR spectroscopy

Infrared light-minus-dark spectra were recorded using an FTIR spectrometer

(IFS 66s, Bruker, Ettlingen, Germany) equipped with a nitrogen-cooled

photovoltaic mercury cadmium telluride detector (20 MHz, KV 100, Kolmar

Technologies Newburyport, MA). Background and sample interferograms

are the average of 500 and 2000 interferograms, recorded at 4-cm�1 resolu-

tion, respectively, and were repeated three times. After Fourier transform,

the obtained absorption spectrum represents the light-minus-dark FTIR

difference spectrum. A blue LED emitting at 470 nm (5-mW output) was

used for photo-conversion at saturating intensity.

Quantum-chemical calculations

Harmonic vibrations of a lumiflavin molecule in the electronically excited

singlet and triplet states were computed with a quantum-chemical program

PC GAMESS/Firefly (from Alex A. Granovsky, PC GAMESS/Firefly

version 7.1.C, www http://classic.chem.msu.su/gran/gamess/index.html).

We used the CIS/6–31(d)G method to calculate and compare the excited-

state equilibrium geometries, Löowdin atomic charges, and harmonic vibra-

tional spectra and normal modes. We also compared the energies of the

N(1)-H and N(5)-H protonated lumiflavin cations in the first triplet state

at their equilibrium geometries. The harmonic vibrations of the triplet

N(5)-H cation were computed and compared with the neutral triplet lumiflavin.

RESULTS AND DISCUSSION

Ultrafast mid-infrared spectroscopy of AsLOV2

Time-resolved mid-infrared (mid-IR) spectra of AsLOV2 in

H2O were collected at frequencies between 1730 cm�1 and

1300 cm�1 and globally analyzed. Two components were

required for an adequate description of the time-resolved

data, with a lifetime of 1.5 ns and a component that did not

decay on the timescale of the experiment (3 ns). The resulting

EADS of AsLOV2 in H2O are shown in Fig. 2, with the 1.5-ns

component represented by a black line and the nondecaying

component by a gray line. Kinetic traces at representative

vibrational frequencies are shown in Fig. 3. The EADS repre-

sent the mid-IR absorbance difference spectra of the molec-

ular species in question with respect to those of the ground

state, and show a bleaching of the FMN ground-state bands

(negative signals) and induced absorption bands of the groups

of the isoalloxazine ring of FMN and/or the protein that

undergo photophysical/chemical transformation (positive

signals). In this sense, the EADS can be interpreted in the

same way as conventional differential FTIR spectra.

The first EADS (Fig. 2, black line), with a 1.5-ns lifetime, is

assigned to a population of the lowest singlet excited state of

LOV2-bound FMN. It features negative signals at 1714 cm�1,

1694 cm�1, 1678 cm�1, 1637 cm�1, 1592 cm�1, 1582 cm�1,

1550 cm�1, 1395 cm�1, 1348 cm�1, and 1320 cm�1. Positive

bands were found at 1657 cm�1, 1645 cm�1 (shoulder),

1570 cm�1, 1415 cm�1, and 1375 cm�1. Notably, around
Biophysical Journal 97(1) 227–237
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FIGURE 2 EADS that follow from a global analysis of ultrafast IR transient absorption experiments on A. sativa phot1 LOV2 (AsLOV2) domain in H2O.

The excitation wavelength was 475 nm. The first EADS (black line) evolves in 1.5 ns to the second EADS (gray line), which does not decay on the timescale of

the experiment.
1500 cm�1, a multiple-band structure is evident, with peaks at

1475 cm�1 and 1495 cm�1, and a pronounced shoulder at

1520 cm�1. The frequencies of the bleaching bands agree

with those recorded with FTIR, Raman, and fluorescence
Biophysical Journal 97(1) 227–237
line-narrowing spectroscopy on AsLOV2 and several other

LOV domains upon covalent adduct formation (5,35,41,42).

The observation of a single-exponential decay of the FMN

singlet excited state in AsLOV2 agrees with that observed
FIGURE 3 Kinetic traces at indicated

mid-IR vibrational frequencies recorded

in the AsLOV2 domain (gray line). The

excitation wavelength was 475 nm. The

result of global analysis is shown as

a black line. Time axis is linear from

�10 ps to 7 ps, and logarithmic

thereafter.
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for essentially all LOV domains (8,9,43,44), in contrast with

the multiexponential excited-state decays found in the flavin

adenine dinucleotide (FAD)-binding blue-light sensing using

FAD (BLUF) domains (34,45–47). The 1.5-ns time constant

that was found here fairly agrees with that obtained previously

with ultrafast visible spectroscopy (2.0 ns (8)).

The second EADS (Fig. 2, gray line) did not decay on the

timescale of the experiment, had overall decreased amplitude,

and was formed in 1.5 ns from the FMN singlet excited state.

In accordance with previous ultrafast UV-V experiments, it is

assigned to a population of the FMN triplet state. The second

EADS exhibits essentially the same ground-state bleaching

features as the first EADS, except at frequencies below

1425 cm�1, where the bleach pattern appears to be different.

Relatively minor changes of induced absorption bands occur,

with the appearance of a shoulder at 1645 cm�1, absorption

near 1620 cm�1, a broadening and partial separation of bands

at 1491 cm�1 and 1520 cm�1, and the appearance of absorp-

tion at 1438 cm�1 and 1390 cm�1.

Notably, the overall amplitude of the second EADS

diminished with respect to the first EADS: the amplitude

of the dominant 1678-cm�1 and 1550-cm�1 bleach signals

decreased by ~50%. Although compensation effects of partly

overlapping bleach and induced absorption bands render

a quantitative estimate uncertain, this observation indicates

that the triplet yield in LOV2 amounts to ~50%, which

reasonably agrees with a previous estimate from ultrafast

visible spectroscopy (~60% (8)).

Infrared signature of AsLOV2 FMN singlet
excited state

The first EADS of Fig. 2 shows a pattern of negative and

positive absorption features that is characteristic of a popula-

tion of the FMN singlet excited state in LOV2. The

1714-cm�1, 1694-cm�1, and 1678-cm�1 bleaches can be as-

signed to the C(4)¼O and C(2)¼O stretch frequencies of

FMN in the ground state (5,35,41,42,48). The occurrence of

three rather than two C¼O frequencies will be discussed

below. Upon promotion of FMN to the singlet excited state,

the FMN C¼O frequencies downshift, to result in a single

resolved positive absorption at 1657 cm�1. A small bleach

signal at 1637 cm�1 can be assigned to the ring I vibration

of FMN (5,35,41,42). The bleach bands at 1582 cm�1 and

1550 cm�1 can be assigned to in-phase and out-of-phase

C¼N stretch modes of FMN, respectively (5,35,41,49). These

bands correlate with the large, positive, multiple-band feature

at 1475 cm�1, 1495 cm�1, and 1520 cm�1. Thus, the C¼N

stretch frequencies of FMN downshift in the singlet excited

state. The small positive feature at 1565 cm�1 may also follow

from a shifted C¼N stretch frequency. The overall downshift-

ing of the C¼O and C¼N (double) bond stretch modes in the

singlet excited state is consistent with an overall bond-order

decrease of the conjugated isoalloxazine system upon a

p-p* transition. The bleach bands at 1395 cm�1, 1348 cm�1,

and 1320 cm�1 contain the single-bond character of FMN,
such as the C(4)-N(3), C(4)-C(4a), C(4a)-C(10a), and

C(10a)-N(10) stretches (48,49).

The IR spectrum of the LOV2-bound FMN singlet excited

state may be compared with those obtained of flavins in other

systems. Wolf et al. reported on the IR spectrum of the

singlet excited state of riboflavin in organic solvent (48).

The observed bands of singlet-excited riboflavin were

similar to those observed here, with slightly different

frequencies and varying band intensities. The band assign-

ments for the FMN singlet excited state in AsLOV2, as

described above, are in line with those determined by CIS

calculations for riboflavin by Wolf et al. (48).

Stelling et al. (50) and Kondo et al. (51) performed an ultra-

fast IR study on FAD in aqueous solution and bound to the

AppA photoreceptor. In those studies, the ground-state FAD

C¼O bands in D2O solution were positioned at ~1700 cm�1

and 1650 cm�1, i.e., significantly lower frequencies than

observed here, which presumably resulted from extensive

hydrogen bonding with the (deuterated) solvent water mole-

cules. No positive absorption features of downshifted C¼O

frequencies were evident in the FAD singlet-excited state.

The pattern of downshifted C¼N stretches of FAD in D2O

was similar to that observed here. In FAD bound to the

AppA photoreceptor, the FAD C¼O bleach maxima were

similar to those observed in our study. Positive absorption

at 1666 cm�1 (which appeared within the instrument response

time) was assigned by the authors to an ultrafast keto-enol tau-

tomerization of a glutamine side chain in proximity to FAD,

resulting in a positive C¼N absorption band. Strikingly,

that band is very similar to the one observed in our study for

the LOV2 domain (1657 cm�1). In LOV2, a conserved gluta-

mine side chain is located in proximity to FMN, hydrogen-

bonded to its C(4)¼O group (17,52). However, we consider

it unlikely that a keto-enol tautomerization of this glutamine

occurs in LOV2 upon formation of the FMN singlet excited

state. Rather, we think that the induced absorption at 1657 cm�1

results from a downshift of FMN C¼O frequencies in the

singlet excited state, because: 1), a downshift of C¼O stretch

frequencies is expected for a p-p* transition; 2) the 1657-cm�1

band appears within the instrument response function of

200 fs; and 3), the conserved glutamine has no role in

LOV2 photochemistry (53). In our opinion, the 1666-cm�1

induced absorption observed in the AppA BLUF domain

may have the same origin. Accordingly, a similar band that

we observed in the Synechocystis Slr-1694 BLUF domain

was interpreted as a downshifted C¼O mode in the singlet

excited state (34). In riboflavin in organic solvent, positive

bands were observed at 1652 cm�1 and 1642 cm�1, which

could be assigned to downshifted C(4)¼O and C(2)¼O

stretches by means of CIS calculations (48).

In previous experiments on riboflavin in solution,

AsLOV2, and FAD-binding BLUF domains, a vibrational

cooling process occurring in ~2 ps was observed in the singlet

excited state after excitation at 400 nm (16,45,47,48). Here,

the FMN cofactor is excited at 475 nm, in the 0-0 vibronic
Biophysical Journal 97(1) 227–237
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transition, and thus no excess vibrational energy is deposited

in the system. Hence, no effects of vibrational cooling are

observed in the transient IR spectra.

Infrared signature of FMN triplet state in AsLOV2

The nondecaying EADS of Fig. 2 was assigned to a population

of the FMN triplet state in LOV2. The bleaches remain at the

same frequencies as those of the singlet excited state, except

at frequencies below 1425 cm�1, where the bleach pattern

appears different. Strikingly, the induced absorption features

of the C¼O and C¼N stretches are overall similar to those in

the singlet excited state. The differences are relatively minor,

with the appearance of a shoulder at 1645 cm�1, absorption

near 1620 cm�1, and a broadening and partial separation of

the bands at 1491 cm�1 and 1520 cm�1. Moreover, the

pronounced absorption bands at 1415 cm�1 and 1375 cm�1

in the singlet excited state disappear, and are replaced by

absorptions at 1438 cm�1 and 1390 cm�1 with lower amplitude.

The IR spectrum of the LOV2 FMN triplet state may be

compared with the mid-IR triplet and radical spectra observed

in a riboflavin tetra-acetate (RBTA) model compound in

organic solvent (36). The triplet state of RBTA exhibited

major bleach signals at 1716 cm�1, 1684 cm�1, 1588 cm�1,

1548 cm�1, and 1348 cm�1, and induced absorption maxima

at 1652 cm�1, with a shoulder around 1645 cm�1, 1484 cm�1,

1436 cm�1, and 1380 cm�1, and thus showed a large simi-

larity with the LOV2 triplet spectrum. On the other hand,

the mid-IR spectra of the RBTA anion radical (RBTA��)

and the neutral semiquinone radical (RBTAH�) showed

C¼N-induced absorptions at 1524 cm�1 and 1500 cm�1

(anion radical) and 1532 cm�1 (neutral semiquinone) (36),

and thus did not contribute to the LOV2 triplet spectrum in

a major fashion. The LOV2 triplet spectrum is also very

similar to the photo-accumulated FMN triplet spectrum

of the Adiantum phys3 LOV2 domain observed with FTIR

at low temperature (37).

On the basis of the UV-V signature of the FMN triplet in

LOV2, it was previously proposed that protonation of the

FMN triplet state would take place on a nanosecond time-

scale. The triplet spectra of free FMN in solution were found

to be pH-dependent. At neutral pH, the triplet spectrum of

free FMN recorded after several nanoseconds exhibited

two distinct absorption bands near 650 nm and 710 nm. At

pH 2, only one band was observed at 660 nm, which had

previously been assigned to protonation of the FMN triplet

at the N(5) site (54). The triplet spectra of LOV2-bound

FMN of Adiantum phy3 and Avena phot1 could be well-

approximated by a superposition of these two species, and

may be interpreted as a partial protonation of the flavin triplet

at N(5), taking place on a nanosecond timescale. Proton

transfer would occur from the conserved cysteine’s thiol to

the FMN N(5), triggered by the increased basicity in the

triplet state of the latter (8). However, this scenario is not

supported by our results, because the FMN triplet IR signa-
Biophysical Journal 97(1) 227–237
ture in LOV2 is essentially identical to that of the model

compound RBTA (36). The latter was dissolved in aprotic

solvent (deutero-acetonitrile), implying that RBTA remained

nonprotonated. As will be shown by the use of quantum

chemical calculations, a putative protonation event at N(5)

would immediately become apparent in the IR spectrum of

the FMN triplet, through the appearance of distinct IR bands

at other frequencies. Moreover, ultrafast IR experiments on

a highly concentrated AsLOV2 sample, which probed the

S-H stretch region around 2760 cm�1, did not reveal the

bleach that would be expected from deprotonation of the

conserved cysteine’s thiol (results not shown). Thus, our

data support the notion that LOV2-bound FMN in the triplet

state remains nonprotonated during the first nanoseconds.

Sato et al. (37) recorded the FTIR spectrum of the photo-

accumulated FMN triplet state of Adiantum phy3 LOV2 at

low temperature, which featured C¼N stretch downshifts

from 1590–1546(�) cm�1 to 1493(þ) cm�1 and 1439(þ)

cm�1, essentially identical to the shifts observed in this

study. In addition, they observed a protonated cysteine thiol

(37). We conclude that the low-temperature photo-accumu-

lated FMN triplet in LOV2 and the one observed in real

time, using ultrafast IR spectroscopy, have similar molecular

properties, although the former corresponds to a nonreactive

fraction of LOV2 domains that does not form the covalent

adduct at low temperature.

Quantum chemical calculations on lumiflavin

For analysis of the lumiflavin vibrations in the singlet and

triplet excited electronic states, we performed CIS calcula-

tions. To examine how the molecular properties of lumiflavin

change upon electronic excitation, the results of the CIS

calculation for the excited state were compared with the

results of Hartree-Fock (HF) calculations for the ground

state. In Fig. S1 of the Supporting Material, the optimized

structures, atomic charges, and dipole moments of lumiflavin

in the ground state, singlet excited state, and triplet state are

shown. In Table S1, the vibrational frequencies of lumiflavin

in the ground state, as they follow from the HF calculations,

are summarized and compared with the observed modes.

Table S2 and Table S3 show the vibrational frequencies of

lumiflavin in the singlet and triplet excited states that resulted

from CIS calculations, together with the experimentally

observed vibrational modes. Fig. 4 shows the calculated

frequencies in a bar plot, with the lumiflavin ground-state

frequencies indicated negatively, and the singlet (black)

and triplet (gray) frequencies as positive. For the top hori-

zontal axis, a correction factor of 0.88 was applied, allowing

a convenient comparison with the experimentally observed

IR spectra of the LOV2-bound FMN singlet and triplet states

depicted in Fig. 2. The results for the S1 state are essentially

identical to those obtained for riboflavin (48).

In the S1 and T1 equilibrium geometries, the C(4a)-N(5)

and C(5a)-C(9a) distance, but not the C(10a)-N(1) distance,
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increases, and the N(5) atom becomes more electronegative

compared with the ground electronic state (Fig. S1). The

calculated result, that N(5) is more basic than N(1) in the

flavin triplet state (11,17,36,55,56), indicates that in LOV

domains, the increased basicity of N(5) likely constitutes

a significant factor in the advancement of the adduct-forma-

tion reaction.

Although the S1 and T1 excited states originate from the

same highest occupied molecular orbital-lowest unoccupied

molecular orbitals pp* electronic excitation, there are

pronounced differences in their equilibrium structures,

charge distribution, and harmonic frequencies. The C(4a)-

C(10a) distance decreases more at S1 than at T1 equilibrium

geometry. Lumiflavin is more polar, and the negative charge

on the N(5) atom is larger in the S1 state than in the T1 state.

The geometry of the benzene ring undergoes more

pronounced changes in the S1 state than in the T1 state.

The fairly good correspondence between the computed and

experimental frequencies (Fig. 4 and Fig. S2) allowed us to

assign all observed positive bands (Table S1 and Table S3)

except for the weak absorption around 1625 cm�1 in the

excited singlet state, which has no corresponding frequency

in the S1 CIS vibrational spectrum. As expected, the C¼O

double-bond stretching frequencies are more greatly overesti-

mated, compared with other observed frequencies, because

the model does not account for the hydrogen bonding of flavin

O(4) and O(2) to the protein (52). We conclude that the CIS

method provides a satisfactory description, accounting for

the different molecular and electronic structures of the isoal-

loxazine ring in the S1 and T1 state. Importantly, the CIS

method predicts the triplet isoalloxazine biradical with the
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FIGURE 4 Calculated vibrational frequencies of lumiflavin, calculated by

HF and CIS methods, for electronic ground state (negative-going solid bars),

singlet excited state S1 (positive-going solid bars), triplet excited state T1

(gray bars), and triplet T1 cation protonated at N(5) (dashed bars). Bottom

axis indicates frequencies as they follow directly from calculations, whereas

for top axis, a correction factor of 0.88 was applied.
spin density on C(4a), N(5), and the benzene ring (Fig. 5).

A similar structure can be obtained from configuration inter-

action singles and doubles and complete active space self-

consistent field calculations (results not shown) (26).

However, this electronic structure is different from the one

derived from the B3LYP calculations by Martin et al. (36),

with unpaired spin density at N(5) and N(1). Next, we

describe band assignments to the CIS harmonic normal

modes.

Our calculations indicate different frequencies for the

C(4)¼O and C(2)¼O vibrations in the ground, S1, and T1

states (Table S1 and Table S3). In LOV2, only one carbonyl

frequency is resolved experimentally in the S1 state at

1657 cm�1, which likely indicates that the C(4)¼O and

C(2)¼O frequencies have merged. In the T1 state, two

frequencies are evident at 1660 cm�1 and 1645 cm�1.

However, given the hydrogen bonding to the carbonyls, it is

difficult to decide which frequency belongs to C(4)¼O and

C(2)¼O. The weak 1620-cm�1 band in the experimentally

observed triplet spectrum can be associated with the calcu-

lated 1860-cm�1 mode (Table S3), and is in part assigned to

C¼N double-bond stretching in the triplet state. In the singlet

excited state, the first C¼C and C¼N double-bond stretch

frequency appears at 1570 cm�1 (1772 cm�1 in the calcula-

tions). These two bands seem to be characteristic, and reveal

the different structure of the benzene ring in the singlet and

triplet excited states. The observed double-bond structure at

1520 cm�1 and 1491 cm�1, which is slightly different in the

two excited states, can be assigned to the downshifted stretch-

ing vibrations of the C¼N and C¼C double bonds. In the T1

state, the corresponding computed modes at 1763 cm�1 and

1721 cm�1 contain a contribution from N(5) atom displace-

ments. In the S1 state, the N(5) displacements contribute to

an observed band near 1480 cm�1 (computed modes at

1670 cm�1 and 1654 cm�1). In the S1 state, the shortened

C(4a)-C(10a) bond contributes to the observed 1495-cm�1

band (calculated at 1695 cm�1). In the triplet state, the

C(4a)-C(10a) distance is somewhat larger, and its stretching

vibration can be assigned to the 1438-cm�1 band (calculated

frequency at 1642 cm�1), in agreement with the previous

FIGURE 5 Calculated spin density in lumiflavin T1 electronic state.
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assignment. The band at 1390 cm�1 in the T1 state and at 1415

cm�1 in the S1 state are assigned to the ring I and II single-

bond stretching vibrations (calculated frequencies at 1599

cm�1 and 1620 cm�1, respectively). The band at 1375 cm�1

in the singlet state is attributable to the stretching vibrations

of uracil ring III (calculated at 1582 cm�1). According to

our computations, there should be a similar vibration with

a close frequency in the triplet state that can be assigned to

the shoulder at 1375 cm�1.

We conclude that CIS calculations on lumiflavin reproduce

the vibrational spectra of the LOV2-bound FMN singlet and

triplet excited states with reasonable accuracy. This good

agreement supports the notion that in LOV2, the FMN triplet

state remains nonprotonated on the nanosecond timescale. To

investigate this point further, we calculated both N(5)-H and

N(1)-H protonated lumiflavin cations in the first triplet excited

state. At the CIS/6–31(d)G level of theory, the former is char-

acterized by a 16.5-kcal/mol lower energy. Hence, in agree-

ment with previous data, the N(5) site is more basic compared

with the N(1) site. In the triplet N(5)-H isoalloxazine cation,

electronic density is redistributed such that conjugation

between rings is disrupted, and some ‘‘double’’ bonds acquire

even more double-bond character than in the ground-state

neutral isoalloxazine. Computed geometry (Fig. S3) and

vibrations (Table S4) indicate these bonds to be C(6)¼C(7),

C(8)¼C(9), and C(2)¼O. Calculations predict an upshift of

one of the C¼O stretching vibrations, and a significant upshift

of the first C¼C and C¼N double-bond stretching frequency.

Therefore, upon N(5) protonation, we expect the 1620-cm�1

triplet-state absorption to move up in the C¼O stretching

region, as indicated in Fig. 4 (dashed bars). None of these pre-

dicted frequency upshifts were observed experimentally,

which strengthens our conclusion (see above) that the FMN

triplet state does not become protonated in the triplet excited

state, at least not on a nanosecond timescale.

Implications of LOV2 covalent adduct formation
reaction mechanism

Our results of ultrafast IR spectroscopy on AsLOV2 indicate

that the FMN triplet state is formed from the FMN singlet

excited state, at a considerable yield of ~50%. Furthermore,

we demonstrated that the FMN triplet state in LOV2 remains

nonprotonated on the nanosecond timescale. Therefore, the

previously hypothesized model that protonation of the

FMN triplet on a nanosecond timescale by cysteine takes

place, which in turn would lead to adduct formation through

a nucleophilic attack on a microsecond timescale (8), is prob-

ably not correct. In the context of an ionic model, this may

imply that excited-state proton transfer from cysteine to

FMN occurs in concert with a nucleophilic attack (Fig. 1,

top) (11,17,18), and in fact constitutes the rate-limiting

step. The latter possibility is supported by the observation

that hydrogen/deuterium (H/D) exchange in LOV2 slows

down covalent adduct formation from 2 ms to 10 ms (10).
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Kay et al. (20) and Schleicher et al. (21) discussed the

improbability of an ionic mechanism for adduct formation

by noting that in such a case, the covalent adduct has to be

formed in its triplet state, which would be energetically

highly unfavorable. A direct formation of the adduct singlet

ground state from the FMN triplet state would be a spin-

forbidden process, and if preceded by a triplet-to-singlet

transition to the FMN ground state, the FMN would deprot-

onate rapidly before the adduct could be formed. Instead, by

observing FMNH� neutral semiquinone radicals in cysteine

mutants of AsLOV2, Kay et al. (20) and Schleicher et al.

(21) proposed that adduct formation proceeds via a radical-

pair mechanism (Fig. 1, bottom). This mechanism was

supported by experiments on a site-directed mutant of

Chlamydomonas LOV1, where cysteine was replaced by

methionine (22,23). In addition, quantum-chemical calcula-

tions by a number of research groups invariably favored

the radical-pair over the ionic mechanism, through energetic

considerations of the transition state (24–27). On the basis of

cryotrapping experiments, it was argued that electron trans-

fer from the conserved cysteine to FMN constitutes the

rate-limiting reaction, after which, proton transfer leads to

FMNH� formation (21). However, the observation that H/D

exchange in LOV2 slows down the time constant of covalent

adduct formation fivefold (10) supports hydrogen transfer as

the rate-limiting step for FMNH� formation.

No direct spectroscopic observation of the occurrence of

flavin radicals was reported in the photocycle of LOV

domains (8,10–13). However, by their nature, such radicals

would be a short-lived intermediate between the flavin triplet

and covalent adduct states, and thus would easily escape

detection. We conclude that so far, the question remains

unsettled of whether an ionic or radical-pair mechanism is

in operation in LOV domains.

Heterogeneity in FMN C¼O vibrational
frequencies

Fig. 6 C reproduces the EADS of Fig. 2, zooming in on

the spectral region of the FMN carbonyl signals (1750–

1600 cm�1). Close inspection of the carbonyl bleach signals

at 1714–1678 cm�1 shows a fine structure, with bleach

minima at 1678 cm�1 and 1714 cm�1, and a shoulder at

1694 cm�1. Fig. 6 D shows the EADS of a highly concentrated

AsLOV2 sample in H2O, where the carbonyl bleach bands are

better resolved, clearly showing three distinct bleach minima.

The three bleach bands rise within the instrument response of

the apparatus (200 fs), indicating that these modes can be as-

signed to the LOV2-bound FMN chromophore. Thus, three

carbonyl vibrational modes are associated with FMN in dark-

state AsLOV2, with frequencies at 1678 cm�1, 1694 cm�1,

and 1714 cm�1. This is a rather striking observation, because

only two carbonyl modes are expected for flavins, i.e., the

C(2)¼O and C(4)¼O modes (49). Previously, the 1714-cm�1

mode was assigned to LOV-bound FMN C(4)¼O, whereas
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the 1678-cm�1 mode was assigned to C(2)¼O (5,41,42). The

1694-cm�1 mode was evident in several LOV FTIR spectra,

but not assigned. Here, we unambiguously demonstrate that

the latter is associated with the FMN chromophore.

To characterize further the FMN carbonyl vibrational

pattern in LOV2, we performed ultrafast IR spectroscopy

on AsLOV2 dissolved in D2O. The time-resolved data were

globally analyzed, using a sequential kinetic scheme. As

with AsLOV2 in H2O, one lifetime of 1.5 ns and a component

that did not decay on the timescale of the experiment were

found. The resulting EADS are shown in Fig. 6 A. The first

EADS (black line) is assigned to the FMN singlet excited

state. Compared with AsLOV2 in H2O, significant shifts

were observed between 1730 cm�1 and 1650 cm�1, with

bleach minima at 1707 cm�1, 1688 cm�1, and 1667 cm�1,

and an induced absorption at 1642 cm�1. Thus, the band

previously assigned to C(4)¼O at 1714 cm�1 in H2O (42)

downshifts to 1707 cm�1 in D2O. The large carbonyl bleach

envelope in H2O, containing the 1694-cm�1 shoulder and

1678-cm�1 minimum, downshifts and splits into two distinct

bands at 1688 cm�1 and 1667 cm�1 in D2O. The downshift of

carbonyl frequencies is mainly attributable to deuteration of

the FMN N(3)-H bond, because both of these modes also

involve a substantial contribution from the N(3)-H(D) bend

(57). For comparison, the light-minus-dark FTIR spectra of

AsLOV2 in H2O and D2O are shown in Fig. 6 B (dashed black
and gray lines, respectively). Similar downshifts of FMN

upon H/D exchange are evident in these spectra.

The extent of downshift upon H/D exchange indicates

that the 1694(�)-cm�1 band belongs to FMN C(4)¼O. We

FIGURE 6 EADS that follow from a global analysis of ultrafast IR tran-

sient absorption experiments on A. sativa AsLOV2 domain in carbonyl

region in D2O (A) and H2O (C). Black lines denote first EADS, with a life-

time of 1.5 ns, and gray lines denote nondecaying EADS. (D) EADS of

a highly concentrated AsLOV2 sample in H2O, where three FMN carbonyls

bands are clearly resolved. (B) AsLOV2 light-minus-dark FTIR spectra in

H2O (dotted black line) and D2O (dotted gray line).
observe that the 1694(�)-cm�1 band downshifts by 6 cm�1,

to 1688(�) cm�1. This is comparable to the shift of the

C(4)¼O band at 1714 cm�1, which downshifts by 7 cm�1

to 1707 cm�1. In contrast, the C(2)¼O band at

1678(�) cm�1 undergoes a significantly larger downshift

by 11 cm�1 to 1667 cm�1. Thus, the 1714-cm�1 and

1694-cm�1 bands belong to FMN C(4)¼O, and the

1678-cm�1 band to FMN C(2)¼O. Comparable FMN

carbonyl downshifts were evident in the Slr-1694 BLUF

domain from Synechocystis upon H/D exchange (58).

The presence of two distinct FMN C(4)¼O vibrational

frequencies at 1714 cm�1 and 1694 cm�1 in AsLOV2 is in-

terpreted in terms of conformational heterogeneity in the

LOV2 domain involving two different C(4)¼O conformer

populations that are singly and doubly H-bonded with the

protein environment, respectively, and that coexist in the

dark state. Such conformers display slightly shifted absorp-

tion spectra, and likely cause a splitting of the 475-nm

band in the UV-V spectra of LOV domains at low tempera-

ture (Alexandre et al. in the accompanying article).

CONCLUSIONS

We report on an ultrafast blue-pump, mid-IR probe spectro-

scopic study of the LOV2 domain of Avena sativa phototropin

1 (AsLOV2). Two components were required for an adequate

description of the time-resolved data, with a lifetime of 1.5 ns

and a component that did not decay on the timescale of the

experiment. These two kinetic components were assigned to

the singlet excited (S1) and the triplet excited (T1) states of

LOV2-bound FMN, respectively. The T1 state is formed

from the S1 state, with a yield of ~50%. As expected for

a p-p* electronic transition, the C¼O and C¼N bonds of

the isoalloxazine moiety acquire a single-bond character in

the S1 state, characterized by bandshifts of their main normal

modes at ~1700(�)/1657(þ) cm�1 and 1582;1550(�)/

1520;1495;1475(þ) cm�1, respectively. Upon triplet forma-

tion, the IR bands associated with C¼O and C¼N stretches

are overall similar to the singlet excited state, but show

some significant shifts. Pronounced absorption bands at

1415 cm�1 and 1375 cm�1 in the S1 state disappear, and

are replaced by absorptions at 1438 cm�1 and 1390 cm�1 in

the T1 state. The harmonic frequencies of the S1 and T1

excited states, as calculated by the CIS method, are in satisfac-

tory agreement with the observed band positions. On the other

hand, CIS calculations of a T1 cation protonated at the N(5)

site did not reproduce the experimentally observed FMN T1

spectrum in LOV2. This study indicates that the FMN triplet

state of AsLOV2 remains nonprotonated on the nanosecond

timescale, which rules out a previously hypothesized ionic

mechanism for covalent adduct formation involving

cysteine-N(5) proton transfer on this timescale (8). In addi-

tion, we report that the LOV2-bound FMN chromophore in

the dark exhibits three carbonyl stretch modes at 1678 cm�1,

1714 cm�1, and 1694 cm�1, of which the former is assigned to
Biophysical Journal 97(1) 227–237
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C(2)¼O and the latter two to C(4)¼O. The dual C(4)¼O

frequencies are explained by a heterogeneous population of

FMN C(4)¼O conformers with single and double H-bonds

with the protein environment.
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