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Phase Resetting Curves Allow for Simple and Accurate Prediction of Robust
N:1 Phase Locking for Strongly Coupled Neural Oscillators
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ABSTRACT Existence and stability criteria for harmonic locking modes were derived for two reciprocally pulse coupled oscil-
lators based on their first and second order phase resetting curves. Our theoretical methods are general in the sense that no
assumptions about the strength of coupling, type of synaptic coupling, and model are made. These methods were then tested
using two reciprocally inhibitory Wang and Buzsáki model neurons. The existence of bands of 2:1, 3:1, 4:1, and 5:1 phase locking
in the relative frequency parameter space was predicted correctly, as was the phase of the slow neuron’s spike within the cycle of
the fast neuron in which it occurred. For weak coupling the bands are very narrow, but strong coupling broadens the bands. The
predictions of the pulse coupled method agreed with weak coupling methods in the weak coupling regime, but extended predict-
ability into the strong coupling regime. We show that our prediction method generalizes to pairs of neural oscillators coupled
through excitatory synapses, and to networks of multiple oscillatory neurons. The main limitation of the method is the central
assumption that the effect of each input dies out before the next input is received.
INTRODUCTION

In harmonic N:1 phase locking the faster oscillator exhibits

an integer number (N) of oscillation cycles for every cycle

of the slower oscillator. Harmonic locking, which is

frequently referred to as cross-frequency synchronization,

occurs in many biological systems, including harmonic phase

locking between cardiovascular rhythms, breathing, blood

pressure, and other rhythmic activity (1–4). For example,

harmonic synchronization occurs between respiration and

heartbeat (4). In the absence of temporal cues, human

subjects can develop a 2:1 rhythm between their body

temperature and the sleep-wake cycle (5). In this study, we

focus on locking between pulse-coupled oscillators with

neural applications: coupling between neural oscillators in-

teracting through chemical synapses whose postsynaptic

effects decay rapidly compared with the cycle period of the

fastest oscillator can be approximated as pulsatile (6–8).

Cross-frequency synchronization between different bands

of brain rhythms has recently been hypothesized to be

a substrate for several cognitive functions. For example, lock-

ing between theta and delta (3:1) and alpha and delta (4:1)

rhythms has been proposed as a neural mechanism for the ori-

enting response (9). Synchronization between theta and

gamma has been suggested to match the information stored

in working memory with incoming sensory information

(10). Finally, synchronization between alpha and theta has

been suggested as a mechanism for retrieving items from

long-term memory and loading them in working memory

(11). In this study, we apply phase resetting methods to

gain insight into N:1 lockings.
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A phase resetting curve (PRC) tabulates the effect of

a perturbation on an oscillator as a function of the phase at

which the perturbation is applied. Only the effect on cycle

length is considered. PRCs are generated in the open loop

condition; that is, a perturbation is applied to an isolated

oscillator. Several studies (7,12–15) used open loop PRCs

to predict network activity once the loop is closed and all

connections in the network are active. To use PRCs for this

purpose, the perturbation used in the open loop should

resemble the perturbation(s) that will be received in the

closed loop circuit, which in the examples in this study is

a spike in the presynaptic neuron. The assumptions are then

made that closing the circuit does not substantially alter the

perturbation, and that the individual neurons remain oscilla-

tory in the network; that is, they do not get stuck at a fixed

point. The final assumption required is that the oscillator

returns to the limit cycle between inputs because the phase

resetting curve only applies to trajectories on the original

limit cycle. In other words, the effect of one input must die

out before the next one is received.

In this study, we focus on N:1 phase locked modes in

which a fast oscillator receives an input every Nth cycle

from a slow oscillator at a constant phase within that Nth

cycle. Previous studies of phase-locking in mutually coupled

oscillators (16) assumed weak coupling in that the phase

resetting due to a perturbation of a given waveform can be

characterized by the convolution of that waveform with the

resetting due to an infinitesimal perturbation under an

assumption of linearity, but here we dispense with that

assumption. First we formulate existence and stability criteria

based solely on the PRCs under the above assumptions, then we

use a system of two reciprocally coupled Wang and Buzsáki

model neurons to test the hypothesis that all information

required to predict N:1 locking is contained in the PRCs.
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METHODS

Simulations

The prediction methods were tested in a network of two Wang and Buzsáki

neurons coupled via inhibitory synapses (17). This single compartment

model was developed originally to represent the intrinsic properties of

a hippocampal interneuron. For each neuron the state variables change

according to the following equations:

C dVi=dt ¼ �gNa m3
N hi ðVi � ENaÞ � gK n4

i ðVi � EKÞ
� gL ðVi � ELÞ þ Iapp;i;

dhi=dt ¼ 4 fahðViÞ ð1� hiÞ � bhðViÞhig;

dni=dt ¼ 4 fanðViÞ ð1� niÞ � bnðViÞnig;
where Vi is the membrane potential (in mV), hi is the inactivation variable for

the sodium current and ni is the activation variable for the potassium current

with the subscript i indicating either the faster (F) or slower (S) neuron. The

steady state activation for the sodium current is described by

mN ¼ am=ðam þ bmÞ;

amðViÞ ¼ �0:1 ðVi þ 35Þ=fexpð � 0:1 ðVi þ 35ÞÞ � 1g;

bmðViÞ ¼ 4 expð � ðVi þ 60Þ=18Þ:
The kinetics for sodium channel inactivation and potassium channel activa-

tion are given by the following rate equations:

ahðViÞ ¼ 0:07 expð � ðVi þ 58Þ=20Þ;

bhðViÞ ¼ 1= fexpð � 0:1 ðVi þ 28Þ=18Þ þ 1g;f

anðViÞ ¼ �0:01 ðVi þ 34Þ=fexpð� 0:1 ðVi þ 34ÞÞ � 1g;

bnðViÞ ¼ 0:125 expð � ðVi þ 44Þ=80Þ:
We used the following parameter values. The conductances for the sodium,

potassium and leak channels are gNa ¼ 35 mS/cm2, gK ¼ 9 mS/cm2, and

gL ¼ 0.1 mS/cm2 and the reversal potentials are ENa ¼ 55 mV, EK ¼
�90 mV, and EL ¼ �65 mV. The dimensionless scale factor 4 was set to

5 and the membrane capacitance C was 1 mF/cm2. The synaptic current is

given by Isyn,i¼ gsyn si (Vi� Esyn) where gsyn is the synaptic conductance and

Esyn is the reversal potential. For inhibitory synapses, Esyn ¼ �75 mV. The

reciprocal synaptic coupling has a rise time and decay time that can be

controlled separately as in (15,18). The synapses are regulated by the

following equations:

dsi=dt ¼ a T
�
Vj

�
ð1� siÞ � si=tsyn;

T
�
Vj

�
¼ 1=

�
1 þ exp

�
�Vj =2

��
;

where Vj is the membrane potential for the cell presynaptic to cell i (j s i).

Heterogeneity in frequency can be obtained by using different applied

currents for each neuron so that Iapp,i s Iapp,j. The parameter 3 is defined

such that the faster neuron has Iapp,i ¼ Iapp þ 3 and the slower has Iapp,i ¼
Iapp � 3. Simulation of the Wang and Buzsáki model was implemented in

C code and integrated with a variable step size implicit fifth order Runge

Kutta method. An exhaustive search of the state space of initial conditions

was not carried out, but when modes were predicted but not observed, the

predictions were used to estimate initial conditions likely to lead to the
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predicted mode. Initial conditions between the predictions and the differen-

tial equations could be compared by selecting initial conditions along the

unperturbed limit cycle at a given phase.

PRC generation

PRCs were generated as in Fig. 1 A using the change in postsynaptic conduc-

tance (lower trace) generated by an action potential in the presynaptic neuron

as the perturbation. This perturbation best approximates the input received by

the neuron in the network. The perturbation is applied at time ts after a spike is

initiated in the postsynaptic neuron. The phase (f) is defined as ts/P0, where P0

is the intrinsic period. As in previous studies (7), a phase of zero was assigned

to spike initiation defined as the upward crossing of�14 mV by the membrane

potential. This threshold was chosen because the activation of the postsynaptic

conductance began to be observable at this presynaptic voltage. The presyn-

aptic model neuron is initialized at its spiking threshold, then the unidirectional

coupling is turned on for a single cycle of the presynaptic neuron at different

phases in the cycle of the postsynaptic model neuron. This type of open loop

PRC is often called a spike time response curve (19). The phase resetting is

defined as fk(f) ¼ (Pk � P0)/P0, where k denotes the order of the PRC. If

a cycle is defined at the elapsed time between spikes, first order resetting tabu-

lates the change in the cycle length containing the perturbation onset, and the

second order resetting tabulates the change in the length of the next cycle.

Perturbations delivered immediately before the end of a cycle may span two

cycles. It is important to consider second order resetting if the perturbation

spans two cycles or if the trajectory has simply not yet relaxed to the limit

cycle before the next spike emitted after the perturbation. Under this conven-

tion, a decrease in cycle length produces negative resetting called an advance,

whereas an increase in cycle length produces positive resetting called a delay.

Biologists generally use the sign convention that we chose for this study,

whereas mathematicians usually use the opposite sign convention (20).

Fig. 1 B illustrates the first (solid line) and second (dashed line) order PRC

computed for a model neuron in the open loop configuration. The third order

resetting is not used or shown because it is negligible, as it must be to satisfy

the assumption that the effect of one perturbation dies out before the next one

is received. The PRC was generated by tabulating the effects of a perturbation

applied at 100 evenly spaced points during the cycle of a spontaneous limit

cycle oscillator on the length of the cycle as a function of the phase (f) at

which the perturbation is applied.

Weak coupling methods

In this section, we present the well-established and widely used weak

coupling methods (21–23) for studying phase oscillators for comparison

with the pulsatile coupling methods explained in the Results section. Previ-

ously, Ermentrout (16) derived existence and stability conditions for N:M

phase locked modes in the weak coupling limit. We repeat them here for

N:1 lockings only. The assumptions underlying weak coupling are that the

perturbations are small enough so that the effects of consecutive or superim-

posed perturbations add linearly, and that the relative phase of the oscillators

varies slowly compared to the rate that they travel around their respective

limit cycles (the rate that absolute phase varies). The difference between

our methods and preexisting weak coupling methods is that we do not require

these assumptions. Instead, we require only a return to the limit cycle

between inputs. The key idea for the previous, existing weak coupling

methods is that if you have a limit cycle oscillator, it can be described in

terms of a single variable, its phase. For weak coupling, a system of two limit

cycle oscillators can be further reduced to only account for the relative phase

between the oscillators. Thus in the regime where a stable limit cycle oscil-

lation exists, the differential equations for Wang and Buzsaki model neurons

used in this study can be simplified in principle to a single variable each, the

rates of change of the absolute phases

f
0

F ¼ uF þ HFðfF;fSÞ
f
0

S ¼ uS þ HSðfS;fFÞ;
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A B FIGURE 1 (A) PRC generation. The top trace shows the

membrane potential during PRC generation. The horizontal

dotted line indicates zero mV. The parameters were as in

the Methods section except that Iapp ¼ 0.5 mA/cm2 for

both neurons and gsyn ¼ 0.15 mS/cm2. The lower trace

shows the perturbation in the dimensionless activation

variable (s) for the synaptic conductance applied at a phase

of f ¼ 0.5. The intrinsic period is P0, the cycle containing

the perturbation is P1, and subsequent cycles are numbered

sequentially. The stimulus time, ts, is the time between the

previous spike and stimulus onset. (B) Typical phase reset-

ting curve. The first order resetting is the solid line and the

second order resetting is the dashed line. Third order reset-

ting was not visible on this scale and is therefore negligible.

The same parameters as in A were used.
where uF and uS are the intrinsic frequencies of the fast and slow oscillators

respectively and Hi indicates the coupling function determined as described

below. The infinitesimal PRC for each oscillator (or the adjoint z(fi) (3)) is

the phase resetting curve in the limit as perturbation in current i(fi,fj). The

infinitesimal PRC can also be defined as the phase resetting in these systems

normalized by the area under the perturbation as the strength and duration of

the perturbation go to zero. If the intrinsic periods of the neurons are PF and

PS, respectively, then the total phase resetting due to the perturbation i(fi,fj)

is termed the coupling function Hi, which can be computed by convolving the

coupling current waveform i(fi, fj)¼ gsyn s(fi) {V(fj)�Esyn} with the infin-

itesimal PRC, z(qj), over one complete cycle T of the uncoupled network

where T ¼ N PF ¼ PS.

HF

�
fS �

1

N
fF

�
¼
ZT

0

iðfS;fFÞzðfFÞdfS;

HS

�
� fS þ

1

N
fF

�
¼
ZT

0

iðfF;fSÞzðfSÞdfS:

For weak coupling, the changes in the period represented by the total resetting

approximate the change in frequency. The coupling functions HF, HS are peri-

odic with period T. The iPRCs were calculated by the adjoint method (21,23)

using XPPAUT (22).The coupling functions are given in terms of the relative

phase j¼ fS� (1/N) fF for two neural oscillators with an intrinsic frequency

ratio of N:1. Both phase and relative phase are defined modulo 1. For the

coupled system, the ratio of intrinsic frequencies is no longer an exact integer

because the coupling slightly changes the frequencies and the exact integral

ratio applies in the N:1 coupled system. The differential equation describing

the rate of change of the relative phase in the coupled system is

j
0 ¼ uS � ð1=NÞ ðuF þ DuFÞ þ HS ð�jÞ � HFðjÞ

where the term DuF represents the deviation in intrinsic frequency in the fast

neuron required to achieve a locking in the coupled network. The main idea

with respect to finding N:1 lockings is that the ratio uF/uS is initially

assumed to be N:1. Because the coupling functions are defined over N cycles

of the fast neuron but only one cycle of the slow neuron, if HS (�j)¼ HF (j)

then the effect of the coupling on the frequency of the slow neuron is exactly

1/N of that on the fast neuron, so an N:1 locking can be established. The lock-

ing points at which HS (�j) ¼ HF (j) can be determined by examining the

zero crossings of the function describing their difference K(j) ¼ HS (�j) �
HF (j). More generally, the range of frequencies of the fast neuron, uFþDuF,

that support a locking can be determined by determining the values of DuF

(positive and negative) that produce a zero crossing of the function Q(j) ¼
DuF þ HS (�j) � HF (j). This gives the range of intrinsic frequencies of

the fast neuron that produce an N:1 locking at a given intrinsic frequency

for the slow neuron uS.
Fig. 2 illustrates the weak coupling method with an example. The two neurons

were chosen to have as close to an exact 2:1 ratio of the intrinsic frequencies as

possible. This was achieved using Iapp,F¼ 1.842 mA/cm2 and Iapp,S¼ 0.77 mA/

cm2. The coupling was weak with gsyn¼ 0.01 mS/cm2. All traces for the slower

neuron are indicated by dashed lines and for the faster neuron by solid lines.

Fig. 2 A displays the voltage V(fj) and Fig. 2 B the synaptic activation s(fi) traces

for the two uncoupled Wang and Buzsáki oscillators. The slower neuron

receives two synaptic inputs as the faster neuron spikes twice during the cycle

of the slow neuron. Fig. 2 C shows the adjoint z(fi) for each oscillator computed

for the longer period, then normalized to a period of length 1. The coupling func-

tions shown in Fig. 2 D are computed by convolving the coupling current wave-

form (not shown) with the infinitesimal PRC over two cycles of the fast neuron

(which is equal to one cycle of the slow neuron). The iPRCs were approximated

by the adjoint method (21,23) using XPPAUT (22). To get a 2:1 locking for the

coupled system, the frequency of the faster neuron over two of its cycles must be

changed by the same amount as frequency of the slower neuron over a single one

of its cycles to preserve the 2:1 ratio. There are no zero crossings of the function

K(fS� fF/2)¼ HS(�(fS� fF/2))� HF(fS� fF/2) (Fig. 3, solid curve) indi-

cating that no 2:1 locking will be exhibited by the coupled network. To bring the

frequency ratio back to an exact integer ratio, the frequency of one oscillator (in

this case the faster oscillator) must be adjusted by Du as determined by finding

the values that allow the following function, Q(j)¼DuFþHS (�j)�HF (j),

(Fig. 3, dashed curves) to cross the x axis. The additional applied current Iadded,f

that is required to change the frequency of the fast neuron can be determined by

analytically using weak coupling to solve for the magnitude of square pulse of

constant current that produces the correct change in frequency when convolved

with the iPRC or adjoint z(fi) (DuF ¼
R1
0

Iadded;F zðfFÞdfF). The sign conven-

tion is such that downward crossings are stable but upward ones are not. Details

about how XPPAUT was used to compute the coupling functions can be found

in the Supporting Material.

RESULTS

We develop a novel method for predicting and understanding

N:1 phase locking in two neuron networks in terms of the

phase response curve generated for each neuron using a pertur-

bation similar to the input that will be received in the network.

We test these methods extensively in model neurons for both

inhibition and excitation, and extend the analysis to locking

between populations of neurons. These results generalize to

any system of pulse-coupled oscillators, not just neurons.

Existence and stability criteria for N:1 locking
based on PRCs

In Fig. 4 A we define the firing intervals in an N:1 locking in

a very general way, indexed by the cycle number m. The
Biophysical Journal 97(1) 59–73
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ellipsis indicate the appropriate number of spikes in the faster

neuron (F) to produce an N:1 locking. The stimulus interval

(tsF) is defined as the time elapsed between the most recent

spike in the faster neuron and the time at which it receives

the input from the slower neuron. The phase at which the

faster neuron receives this input is denoted fF. The first

A

B

C

D

FIGURE 2 Illustration of averaged weak coupling. Iapp,F ¼ 1.842 mA/cm2

for the fast (F) neuron (solid line) and Iapp,S ¼ 0.77 mA/cm2 for the slow (S)

neuron (dashed line). These parameter values are for two oscillators where

neuron S has a free running period which is double the period of neuron

F. (A) The free-running membrane potential waveforms for the fast (solid

line) neuron and the slow (dashed line) neuron. This potential was used in

two ways: first to obtain the postsynaptic voltage V(fj) to calculate the post-

synaptic current i(fi, fj) ¼ gsyn s(fi) {V(fj) � Esyn} and second to calculate

the presynaptic voltage V(fi) to drive the presynaptic activation s(fi). (B) The

presynaptic activation calculated as described in A. Notice that the solid black

trace in A drives the dotted trace in B and vice versa. (C) The adjoint (iPRC)

is computed for each neuron. (D) The coupling functions computed using the

averaging method for weakly coupled oscillators for each neuron are shown

here. This is the only step in which the value of gsyn is taken into account.

The perturbations in the synaptic current are convolved with the iPRC

over the network period to calculate these functions. They were numerically

calculated using XPPAUT.
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recovery interval (trF1) for the fast neuron is the time elapsed

between when the input is received and when the fast neuron

next fires. The second recovery interval (trF2) consists of the

remaining (N-1) cycles of the fast neuron. The recovery

interval (trS) for the slow neuron (S) is defined as the interval

between when the slow neuron receives the last (Nth) input in

a given slow neuron cycle and when the slow neuron fires

next. The first stimulus interval (tsS1) is defined as the time

elapsed between when the slower neuron fires and when it

receives the first input from the faster neuron at a phase of

fS1. The second stimulus interval (tsS2) begins with the arrival

of the first input and terminates with the Nth input received at

a phase of fSN. By definition the following equalities must

be satisfied in any N:1 phase locked mode: tsF [m] ¼ trS [m],

trF1 [m þ 1] ¼ tsS1 [m þ 1], and trF2 [m þ 1] ¼ tsS2 [m þ 1],

hence they constitute the periodicity, or existence criteria.

The central idea of this study is to use the phase resetting

curves for the fast and slow neurons to predict which param-

eter values will give rise to N:1 lockings, and to predict the

phasic relationships between the neurons during the lockings.

This can be accomplished under the assumption of pulsatile

coupling. If the phase resetting due to each input is assumed

to be complete before the next input is received, then the

FIGURE 3 Mode prediction for weak averaged coupling. The solid black

curve is the effective coupling function K(f) for the system composed of

the two neurons from Fig. 3 whose intrinsic periods have a ratio of exactly

2:1 for weak coupling with gsyn ¼ 0.01 mS/cm2. The lack of zero crossing

shows that they cannot lock unless the intrinsic frequency of one neuron is

modified. The dashed curves are the coupling function Q(f) computed

with additional current to the fast neuron to change its intrinsic frequency

sufficiently to enable a locking. The range of current added to the fast neuron

(�0.026 mA/cm2 for the top dashed curve and�0.0385 mA/cm2 for the lower

dashed curve) that enables these curves to have a zero crossing of the x axis

determines the lower and upper limits of the intrinsic frequency of the fast

neuron that allow a locking. The region inside the dashed curves is the

existence region for this weak coupling strength. The upward zero crossings

indicate the phases (separated by ~0.5) at which the slow neuron receives an

input from the fast neuron in a stable 2:1 locking for the coupled system.
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B1

B2

C

D

A FIGURE 4 Mode prediction for

pulsatile coupling. (A) Assumed firing

pattern for N:1 locking. The faster

neuron (F) fires N times for each time

that the slower neuron (S) fires. Firing

times are indicated by thick vertical

bars. The input phases f are defined

on the upper and lower traces for dotted

lines corresponding to a vertical bar on

the partner trace indicating the time of

a spike in the partner. Only the first

and last spikes of the fast neuron within

each cycle of the slow neuron are

shown, the remaining spikes are indi-

cated by the dots. The stimulus (ts)

and recovery (tr) intervals are the time

elapsed between vertical dotted lines.

Both phases and intervals are subscrip-

ted by the neuron and indexed by the

cycle. The second subscript on the

phases of the slow neuron indicates

the jth input during the current cycle

of the slow neuron (cycles m and mþ 1

are shown). The intervals highlighted in

gray are defined in the text and used to

construct a discrete map from fSN[m]

to fSN[m þ 1], the phases highlighted

in gray. (B–D) show an example predic-

tion for 2:1 modes at Esyn ¼ 0.75 mV,

gsyn¼ 0.25 mS/cm2, Iapp¼ 1.0 mA/cm2,

and 3 ¼ 0.241 mA/cm2. (B) PRCs for

the faster neuron (B1) and the slower

neuron (B2). The phases for four modes

identified in C are shown. The open

symbols correspond to unstable modes

in C and the asterisks to stable modes.

(C) Graphical method for existence.

The error is the difference between

assumed and predicted values of fSN

and is plotted as a function of the

assumed fSN. The open circles indicate

unstable fixed points and the asterisk indicates a stable fixed point. (D) Testing the predictions. The full set of differential equations for two coupled neurons

was integrated and produced a 2:1 mode with the membrane potential for the fast neuron (dotted curves) and slow neuron (solid curves) exhibiting the predicted

intervals (labeled horizontal bars). Technical note: The open triangle in C is not exactly a zero crossing, but rather was detected by checking for a change in the

sign of the error between the leftmost point on the error curve and the rightmost point on the error curve. The leftmost point corresponds to a fS1 > 0 and the

rightmost to a fSN < 1, so any near synchronous solution must lie between these two points and the algorithm declares synchronous solution to be at the

endpoint with the least error.
PRCs can be used to update the phase when an input is

received. This affects the phase at which subsequent inputs

are received, and ultimately determines when each neuron

will fire next. To be consistent with the assumption of pulsa-

tile coupling, only the first order resetting for each input is

considered unless the input is the last one received by a given

neuron in a cycle. For the last input only, the second order

resetting is added to the first stimulus interval in each neuron.

In terms of the phase, each neuron reaches firing threshold

when its phase reaches a value of 1, at which time its own

phase is reset to 0 and the phase of its partner is updated

by the appropriate amount of resetting. Under this assump-

tion, each interval can be written in terms of the phases at

which inputs are received (described below). The resetting
at each phase is given by fiF where the first subscript indicates

the order of the resetting and the second subscript denotes the

neuron.

We will define the gray highlighted intervals in Fig. 4 A in

terms of the phases. In this study, we use (.) to enclose the

argument of a function, {.} to delimit quantities being

multiplied, and [.] for indices of a map. The stimulus

interval for the fast neuron is the intrinsic period of the fast

neuron (PF) times the phase at which the input is received

(tsF[m] ¼ PF fF[m]). The first recovery interval for the fast

neuron is the first order phase resetting f1F(fF) plus the frac-

tion (1 � fF) of the cycle that remains to be traversed at the

time the input is received (trF1[m þ 1] ¼ PF {1 � fF [m] þ
f1F(fF[m])}). The second recovery interval for the fast neuron
Biophysical Journal 97(1) 59–73
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includes N-1 fast cycles plus the second order resetting due to

the input received at fF [m], so trF2 [mþ 1]¼ PF {N�1þ f2F

(fF[m])}. The recovery interval in the slow neuron can be

determined in the same way as the first recovery interval

for the fast neuron (trS [m] ¼ PS {1 � fSN [m] þ f1S(fSN

[m])}). The first stimulus interval for the slow neuron

includes the second order resetting from the most recent input

(tsS1 [m þ 1] ¼ PS {fS1 [m þ 1] þ f2S(fSN [m])}). The

second stimulus interval in the slow neuron is the most

difficult to calculate because it requires the knowledge of N
phases fS1 through fSN associated with each of the N inputs

received per cycle of the slow neuron. This interval is equal

to the intrinsic period times the difference in phase between

the last and first inputs plus the first order resetting due to

the first N-1 inputs: tsS2½mþ 1 ¼ PS fSN ½m þ 1
�
�

��
fS1 ½m þ 1

�
þ
PN�1

j¼1

f1S ðfSj ½mþ 1 Þg� . Taking advantage of

the fact that the interval between successive inputs is equal

to the intrinsic period of the fast neuron, each fSj [m þ 1]

can be iteratively calculated from the previous one. The first

interval contains second order resetting from the sole input to

the fast neuron, so the phase fS2 [m þ 1] can be calculated

from fS2 [m þ 1] ¼ fS1 [m þ 1] � f1S(fS1[m þ 1]) þ PF/

PS{1 þ f2F(fF [m])} and subsequent ones as fSj[m þ 1] ¼
fS,j-1[m þ 1] � f1S(fS1[m þ 1]) þ PF/PS. Using the descrip-

tion for each interval as described above, substituting the

definition for each interval into the equalities, and rearranging

we obtain the following equations:

PFfF ½m� ¼ PS f1� fSN½m� þ f1S ðfSN½m�Þg; (1)

PF f1� fF ½m� þ f1F ðfF½m�Þg
¼ PS ffS1 ½m þ 1� þ f2S ðfSN ½m�Þg; (2)

PF fN� 1 þ f2F ðfF½m�Þg ¼ PSffSN ½m þ 1��

fS1 ½m þ 1� þ
XN�1

j¼ 1

f1s

�
fSj½m þ 1�

�
g:

ð3Þ

In a steady N:1 locking, the stimulus and recovery intervals

and all of the phases at which inputs are received do not

change from cycle to cycle, and an asterisk is used instead

to denote the Nþ 1 phases {fF*,fS1*.fSN*} that constitute

a fixed point of the map given in Eqs. 1–3. This fixed point

corresponds to a periodic mode for the system of coupled

neurons. We use the stability of the fixed point of the

map to predict the stability of the periodic mode in the

system of coupled neurons. The stability of the fixed points

of the map was determined as follows. Assuming that the

phases fij[m] (with index i indicating the neuron, F or S)

converge to their steady state values fij as m / N, we

look at a perturbation from steady state on each cycle m

as fij[m] ¼ fij* þ Dfij[m]. We linearize the PRCs about

the steady state solution such that fki (fij [m]) ¼ fki (fij*)

þ fki
0 (fij*) Dfij[m]. The full derivation is given in the

Supporting Material, but the final result is that the linearized

map can be rewritten in terms of a single perturbation variable

DfSN[m þ 1] ¼ l DfSN[m] where l is the single eigenvalue

and can be expressed in terms of the slopes of the appropriate

PRCs. The perturbation is of the phase highlighted in blue in

Fig. 4 A. The following eigenvalue l must have an absolute

value <1 for stability because the perturbation DfSN[m]

from the fixed point will then decay to zero:

To evaluate the above expression, we must first find the

fixed points by finding the set of phases that satisfy the peri-

odicity (existence) criteria in Eqs. 1–3. These were deter-

mined numerically as follows. If we assume a value of fSN,

we can write down the equations for the other phases as

follows, dropping the cycle indices because we are assuming

steady state. Equation 1 can be rewritten in such a way that it

gives a value for fF* in terms of an assumed fSN:

f�F ¼ ðPS=PFÞ f1� fSN þ f1S ðfSNÞg: (5)

Equation 2 can be rewritten in such a way that it gives a value

for fS1 in terms of f*F and the assumed fSN:

f�S1 ¼ ðPF=PSÞ
�

1� f�F þ f1F

�
f�F
��
� f2S ðfSNÞ: (6)

Equation 3 can be rewritten in such a way that it calculates fSN*

from fS1* by calculating all the intervening values of fSj*:

f�S2 ¼ f�S1 � f1Sðf�S1Þ þ ðPF=PSÞ f1 þ f2F ðfFÞg; (7)

f�Sj ¼ f�S;j�1 � f1Sðf�S;j�1Þ þ ðPF=PSÞ; for j > 2: (8)

The zero crossings of the difference between the calculated

value fSN* and the assumed value fSN correspond to the

N:1 lockings that can exist because they satisfy the period-

icity criteria. We illustrate this method with an example in

Fig. 4, B–D. The first and second order PRCs for the fast

and slow neurons respectively are shown in Fig. 4, B1 and

B2. These PRCs were used to generate the error function

l ¼ f
0

2F

�
f�F
�n

f
0

1S

�
f�SN

�
� 1
o
þ
(n

f
0

1F

�
f�F
�
� 1
on

f
0

1S

�
f�SN

�
� 1
o
� f

0

2S

�
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�)
(

1� f
0

1S

�
f�S1

�
�
XN�1

j¼ 2

f
0

1S

	
f�Sj
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k¼ 1

n
1� f

0

1S

�
f�Sk

�o)
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j¼ 2
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(Fig. 4 C) for N¼ 2 (a different error function is generated for

each N). The error function starts at fSN ¼ 0.65 because it

does not exist for all values of the assumed fSN. Only values

that produced fS1 and fF between zero and one have their

phase resetting defined and can be used to calculate fSN*,

otherwise they are ignored. There are four zero crossings in

Fig. 4 C, corresponding to the four values of fSN* {0.65,

0.76, 0.85, and 0.89} in each of four possible 2:1 locking

patterns between the fast and slow neurons. The same

symbols were used to indicate the value of fF* on the fast

neuron PRC in Fig. 4 B1 corresponding to each value of

fSN* in Fig. 4 C, and to indicate the values of fS1* and

fSN*on the slow neuron PRC in Fig. 4 B2, where each

fS1* < fSN*. This was done to emphasize that the values

of the PRC are required to compute the zero crossing in

Fig. 4 C and the slopes are required to calculate stability

per the eigenvalue given in Eq. 4. Only one mode is indicated

by an asterisk because it was the only mode that was stable.

The eigenvalue l corresponding to the four values of fSN* are

{�1.97, 1.40, 0.93, 1.22} respectively, so only the value for

fSN* ¼ 0.85 has an absolute value of <1 and is stable. The

differential equations for fast and slow neurons coupled by

reciprocal inhibition using the parameters used to generate

the open loop PRCs in Fig. 4, B1 and B2, were integrated

in a closed loop network, the predicted mode was indeed

observed as indicated in Fig. 4 D. The stimulus intervals as

defined above were calculated using the predicted steady

state phases, and are indicated in Fig. 4 D. They correctly

predict the actual stimulus intervals observed in the closed

loop network simulations, using only the information con-

tained in the open loop PRC.

Inhibitory lockings as conductance
and heterogeneity are varied

To more rigorously test the existence and stability criteria that

we developed, we ran parameter sweeps in a model system of

two mutually inhibitory Wang and Buzsáki neurons. The

intrinsic frequency of the model neuron increases with

applied current, and the applied current to the faster neuron
was (Iapp þ 3) whereas that to the slower neuron was

(Iapp � 3). First we explored a two-dimensional parameter

space (Fig. 5) in which the x axis was the synaptic conduc-

tance, and the y axis was the spread in applied current indi-

cated by 3. The heterogeneity variable, 3, was incremented

in steps of 0.001 mA/cm2 and the synaptic conductance was

incremented in steps of 0.01 mS/cm2. The red circles in

Fig. 5 A indicate the parameter values that were predicted–

using only the information from the PRCs–to support a stable

2:1 locking. Green indicates 3:1, blue indicates 4:1, and

magenta indicates 5:1. Predictions were made as described

in the previous section. If jlj < 1, then the mode was pre-

dicted to be stable and indicated in Fig. 5 A. Fig. 5 B shows

the parameter values in the full system of differential equa-

tions that supported the same phase locked modes indicated

by the same colored symbols. The correspondence is qualita-

tively reasonable, although as the conductance strength is

increased there are some discrepancies at the borders of

stability and existence. These problems are exacerbated

when the locking region is narrow as in some parts of

Fig. 5 and not noticeable when the locking region is wide.

At lower conductance values, there is a continuous transi-

tion as 3 is varied between firing patterns in which the fast

neuron leads the slow neuron spike, and patterns in which

the slow neuron leads, but due to the steep region of initial

slope in the Wang and Buszáki model PRC with inhibition,

at stronger conductance values these bands separate and

gaps appear in which complex firing patterns emerge in

which the order often switches. This poses a challenge to

our method that does not occur for more typical PRCs. At

gsyn ¼ 0.15 mS/cm2 in Fig. 5 A, the red band indicating

2:1 coupling splits into three bands. The upper and lower

bands predict a 2:1 coupling regime in which the spike of

the slower neuron is nearly synchronous with one of the

faster neuron spikes. The order of the spikes is different in

the two bands: in one the faster neuron leads whereas in

the other it lags. In Fig. 6 A the upper trace shows the

observed 2:1 mode at gsyn ¼ 0.15 in which the slow neuron

leads as predicted whereas the lowermost trace (Fig. 6 D)

shows the observed mode in which the fast neuron leads.
A B

FIGURE 5 Qualitative comparison of predicted and

observed modes for pulsatile coupling method as heteroge-

neity and conductance strength are varied. (A) The predic-

tions were generated using the methodology described in

Fig. 4. The circles indicate stable predicted modes at

each locking ratio. (B) The observations were generated

by numerically solving the full system of differential equa-

tions that describe the two coupled Wang and Buzsáki

neurons. Iapp was held constant at 1 mA/cm2 as 3 and gsyn

were varied, and other parameters were as in the Methods.
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A

B

C

D

FIGURE 6 Different phasic relation-

ships observed at 2:1 frequency ratios.

(A) Near synchrony; 2:1 locking, near

synchrony between the slow (solid

line) neuron spike and one of the fast

(dashed line) neuron spikes, slow neuron

leads. (B) Near antiphase; 2:1 locking,

slow neuron fires near the midpoint of

two fast spikes in near antiphase. (C)

Leapfrog. Complex locking (4:2) in

which the firing order of the fast and

slow neurons switches each time the

slow neuron fires. (D) Near synchrony;

2:1 locking, near synchrony between

the slow neuron spike and one of the

fast neuron spikes, fast neuron leads.

These points were sampled from the

points in the previous figure at gsyn ¼
0.15 mS/cm2.
In between the two corresponding red bands complex, higher

order locking patterns are observed but not indicated in

Fig. 5, including some that exhibit leader switching, or leap-

frog mode. The analytical prediction method cannot predict

these leapfrog modes, one of which is illustrated in Fig. 6 C,

because the firing order does not conform to the pattern

assumed in Fig. 4 A, but instead switches on every firing

cycle of the slow neuron. The existence of these modes is

the result of the very steep initial portion of the first order

PRC (Fig. 1 B) that allows leader switching at constant

parameter values (24,25). The center band of red dots in

Fig. 5, A and B, indicates a mode that is bistable with the

higher order locking and can only be reached from a subset

of initial conditions. In this mode, the spike of the slower

neuron falls approximately midway between the two spikes

from the fast neuron, as shown in Fig. 6 B. The predicted

mode, in which the slow neuron spike is in near antiphase

rather than in near synchrony with the closest fast neuron

spike, was not observed initially, because the selected initial

conditions led to the complex higher order locking instead.

This mode was only observed after the initial conditions

were set to values corresponding to points near the limit cycle
Biophysical Journal 97(1) 59–73
attractor that map onto the phase determined by the predic-

tions just before the spike in the slow neuron.

Fig. 7 A shows the stimulus and response intervals for the

predictions and the observations to make a quantitative

comparison. The intervals for a single conductance in

Fig. 5 are shown as the heterogeneity parameter is varied

for the 2:1 mode. As N increases, the likelihood of returning

to the limit cycle between inputs decreases and the prediction

is expected to deteriorate. There is an excellent match

between the predictions (blue circles) and observations

(red crosses). There is a dramatic drop in the tsF at 3 ¼
0.359 mA/cm2, indicating that the slow neuron leads (long

interval tsF between fast neuron firing and that of the slow

neuron but short trF1 interval between the firing of the slow

neuron and that of the fast neuron) to the left of this point

and lags to the right.

The prediction in Fig. 5 is quite good at the values illus-

trated in Fig. 7 A. However, after the swath of red circles in

Fig. 5 indicating 2:1 locking splits into three bands, the upper-

most band of red circles (2:1 lockings) in the prediction does

not match the observed very well above conductance values of

0.32 mS/cm2. Similarly, the two bands (actually three, but the
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A B

FIGURE 7 Quantitative comparison of predicted and

observed intervals for pulsatile coupling method. (A) The

values for the successive intervals tsF, trF1, and trF2 as

defined in Fig. 2 are shown for selected parameter values

from Fig. 5 (gsyn ¼ 0.15 mS/cm2, Iapp ¼ 1 mA/ cm2).

Open circles indicate observations and crosses indicate

predictions. (B) The smallest stimulus interval at gsyn ¼
0.2 mS/cm2 from Fig. 5 is plotted against epsilon. Circles

indicate predictions and crosses and the X indicate

observed. Colors indicate locking mode as in Fig. 5. Black

circles indicate incorrect predictions as described in the

text.
middle band is sparse) of green circles indicating 3:1 do not

match well between predicted and observed above conduc-

tance values of 0.25 mS/cm2. The observed tend to follow

the lower branch at high conductance values whereas the pre-

dicted follow the upper branch. Mismatches between the thin

bands representing the 4:1 and 5:1 lockings start at even

smaller values of conductances. The method begins to fail at

very strong conductance values amid higher order lockings

because the error in identifying the modes that exist becomes

great enough that the existence criterion fails or is off enough

to give incorrect stability results. When the parameter regime

that supports locking becomes thin, the entire regime may fall

in the boundary region in which errors can occur.

The prediction can fail because the assumptions of pulsa-

tile coupling with the exact same form in the closed loop as

the open loop and complete return to the limit cycle between

inputs are not satisfied exactly, introducing error especially

near the existence and stability boundaries. As the conduc-

tance is increased, the slopes of the resetting in some regions

near f ¼ 0 and f ¼ 1 are changing more rapidly, thus near

synchronous firing of the slow spike and one of the fast

spikes the prediction is more sensitive to any small error

due to slight deviations from the assumptions or to numeric

errors. Fig. 7 B shows the ways in which the method can fail

as deviations from perfect pulsatile coupling result in errors.

The shortest predicted or observed stimulus interval was

plotted versus 3 at a fixed conductance of gsyn¼ 0.2 mS/cm2,

constituting a vertical line in Fig. 5. In no case was the relative

magnitude of the intervals predicted incorrectly, so the

smallest interval was plotted as the most sensitive readout

of the error. A short interval would cause an input to be

received at a very early phase in one neuron and at

a very late phase in its partner. The circles indicate predic-

tions and the crosses (and one X) indicate observed modes.

Red, green, blue, and magenta correspond to the 2:1, 3:1,

4:1, and 5:1 locking as in Fig. 5. The exception is that
the black circles indicate incorrect predictions, and are not

color coded by locking mode, although the locking mode

is obvious from their location within a colored band.

Open black circles indicate a prediction of a mode that

was not observed. Either the predicted mode does not in

fact exist, or it exists but is unstable. This type of error

occurred at the highest and lowest values of the stimulus

interval that fell on the boundaries of the locking mode.

The solid black circles indicate an incorrect prediction of

an unstable mode when a stable mode was actually

observed. In some cases (for 2:1 locking) the eigenvalues

were very close to 1. In others (4:1 locking mode, 3 ¼
0.438–9 mA/cm2) the error in the interval could be relatively

large. The largest error in the stimulus interval occurred at a

5:1 locking for an 3 value of 0.476 mA/cm2 but curiously did

not result in a stability error. The X at 3 ¼ 0.402 mA/cm2

indicates a different type of error; a 4:1 locking mode was

observed but was predicted not to exist, a failure of the exis-

tence criterion. Sensitivity to error on the borders of existence

and stability is not a major failure of the method but rather

is to be expected from any mathematical method due to the

inevitable inherent approximations.

Ranges of frequencies that support inhibitory
lockings at two conductance values

We examined the range of frequencies that support N:1 lock-

ing; we parameterized the two heterogeneous neurons by

their intrinsic, uncoupled frequencies and illustrated the

bands in which locking is enabled. The symbols in Fig. 8

show the parameter values at which N:1 lockings were

observed at a relatively strong conductance of gsyn ¼ 0.15

mS/cm2 whereas the solid lines show the narrow regimes in

which N:1 locking are observed at the relatively weak

conductance of gsyn ¼ 0.01 mS/cm2. The color scheme

from Fig. 5 is retained, but the 1:1 lockings are shown for
Biophysical Journal 97(1) 59–73
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A B
FIGURE 8 Qualitative comparison of predicted and

observed modes for pulsatile coupling method as both

intrinsic frequencies are varied. (A) The predictions were

generated using the methodology described in Fig. 4. The

circles indicate stable predicted modes at each locking ratio.

(B) The observations were generated by numerically

solving the full system of differential equations that

describe the two coupled Wang and Buzsáki neurons.

The colors indicate the value of N. The solid lines corre-

spond to the very narrow bands predicted and observed at

gsyn ¼ 0.05 mS/cm2 whereas the bands composed of small

open circles correspond to the broader bands predicted at

gsyn ¼ 0.15 mS/cm2. The stronger inhibitory coupling

enabled the observation of 4:1 and 5:1 locking, which

were not observed at the weaker coupling strength in the

range of intrinsic frequencies shown.
completeness (weak coupling, black line; strong coupling,

gray circles). These were calculated using similar methods

based on PRCs that have been published elsewhere (7,8).

Clearly, stronger coupling broadens the range of ratios of

intrinsic frequencies that allow locking because there is a

greater range of frequencies for each neuron with greater

phase resetting, thus more opportunity to reach an exact lock-

ing. The solid lines indicate the regions in which the intrinsic

frequency of the fast neuron is essentially an integral multiple

of the slow neuron, but the broad bands indicate that for

strong coupling an integer ratio of intrinsic frequency is no

longer necessary. Not only are the bands broadened, but addi-

tional bands such as those for 4:1 (Fig. 8, blue circles) and 5:1

(Fig. 8, magenta circles) lockings appear in this region

of parameter space for strong but not weak coupling. The

separation of the modes into distinct bands such as those

seen in Fig. 5 is also evident here, becoming more prominent

at lower frequencies. Initially, a few parameter values that

were predicted to support phase locking did not support lock-

ing in the observations. This was determined to be a result of

bistability. The same initial conditions were used for all simu-

lations, and at some parameter values these led to complex

modes. If initial conditions from phase locked modes located

nearby in the parameter space were instead used as initial

conditions, the predicted modes were observed. In general,

one can see from Fig. 8 that the correspondence between

predicted and observed was quite reasonable.

The conductance was increased still further to gsyn ¼
0.25 mS/cm2 in Fig. 9, and the locking bands became even

broader. The gaps between the bands of the same color indi-

cate complex lockings similar to but not exactly N:1. The

observations shown in Fig. 9 B are the result of parameter

sweeps from two different initial conditions. In one sweep

the next spikes of the fast and slow neuron were aligned

closely, and in one sweep they were not. Using both sets of

initial conditions was necessary to prevent large gaps in the

observations (Fig. 9 B) compared to the predictions

(Fig. 9 A) due to bistability. Some of the small remaining

gaps in the observed versus predicted could likely be resolved

Biophysical Journal 97(1) 59–73
by a more exhaustive search of the state space. However, as

in the case of Fig. 5, some incorrect predictions were due to

errors on the boundary of stability. In some of these cases,

rather than predictions that were not observed, modes were

observed but not predicted. For example at gsyn ¼ 0.25, there

was a very thin band of 3:1 solutions (Fig. 9 B, green open
circles) that were often missed because the band was too

narrow to be robustly detected in the parameter space in the

presence of error. For example, a 3:1 solution is correctly pre-

dicted and observed at Iapp values of (0.78, 1.64), correspond-

ing to frequencies of (20.6, 11.37 Hz). A 3:1 mode was also

observed at Iapp values of (0.77, 1.62) or (20.9, 11.8 Hz), and

its existence was predicted correctly. However, that mode

was incorrectly predicted to be unstable because one of the

predicted phases was near a region of rapidly changing slope

of the PRC, causing it to be vulnerable to error. A similar

phenomenon was observed in that several 4:1 modes (blue
open circles) at gsyn ¼ 0.15 (Fig. 8) in a similarly narrow

band of solutions were also missed.

Our methods provide an improvement over weak
coupling

In the weak coupling regime, our method and weak coupling

methods gave similar results. For a weak coupling strength

of gsyn¼ 0.01 mS/cm2, the predictions from the weak coupling

method agreed with our predictions (Fig. 4). For this

specific example, the upper and lower limits of the adjustment

are Iadded,low¼�0.026 mA/cm2 and Iadded, high¼�0.0385 mA/

cm2, which means that the original value of 1.842 mA/cm2

leads to a range of applied currents from 1.8035 to

1.816 mA/cm2, corresponding to the point at Iapp,F ¼ 1.81

and Iapp,S ¼ 0.77, which is in agreement with the point

(freqF ¼ 94.33 and freqS ¼ 47.16) on the red line in Fig. 8 B.

The shaded region in Fig. 4 displays all possibilities for a stable

locked mode.

For the stronger coupling strengths, we see that the weak

coupling method fails as expected. This is due to the assump-

tions of the method in calculating the coupling functions. In
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A B

FIGURE 9 Qualitative comparison of predicted and

observed modes for stronger pulsatile coupling as both

intrinsic frequencies are varied. (A) The predictions were

generated using the methodology described in Fig. 4. The

circles indicate stable predicted modes at each locking ratio.

(B) The observations were generated by numerically

solving the full system of differential equations that

describe the two coupled Wang and Buzsáki neurons. The

colors indicate the value of N whereas the bands composed

of small open circles correspond to the bands predicted at

gsyn ¼ 0.25 mS/cm2.
Fig. 10 we show the prediction from weak coupling method

for gsyn ¼ 0.25 mS/cm2, Iapp,F ¼ 1.842 mA/cm2, and Iapp,S ¼
0.77 mA/cm2. The red curve illustrates the effective coupling

function when coupling is turned on. There are no zero cross-

ings indicating that 2:1 locking does not occur for these

parameter values (initial frequencies are freqF ¼ 95.8 Hz

and freqS ¼ 47.9 Hz), although Fig. 9 B clearly shows lock-

ing at these values. Further changing the value of Iapp,F in the

FIGURE 10 Weak coupling predictions compared to observations from

our method. Shown are the effective coupling function (solid black curve)

for the coupled system with gsyn ¼ 0.25 mS/cm2. The system does not

have a stable locking mode at the values of the applied current that give

rise to a 2:1 mode in the uncoupled system. Changing the applied current

value for the fast neuron shifts the coupling function down. For the range

of values where there was a predicted and observed 2:1 locking in the system

with our method (shaded region enclosed by the dashed curves), weak

coupling method does not predict such a mode. This is due to a failure to

satisfy the conditions required for the weak coupling method.
regime predicted by our method does not improve the results.

The weak averaged coupling method predicts the locking to

occur in the range of frequency values freqF¼ [56.82, 80.32]

Hz and freqS ¼ [32.9, 36.76] Hz, which is clearly not the

region where these modes are observed in Fig. 9 B. This

shows that the weak coupling method fails for stronger

coupling strengths.

Ranges of frequencies that support excitatory
lockings

To illustrate that our method is quite general, we also tested

the predictions on a two neuron Wang and Buzsáki network

identical to the one used in Figs. 8 and 9 except that Esyn

was changed from�75 mV to 0 mV to represent an excitatory

rather than inhibitory synapse. Because the membrane poten-

tial in a free-running model neuron spends much more time

near �75 mV than near 0 mV, the driving force for excitation

is much stronger than for inhibition. Therefore a smaller

conductance value (gsyn ¼ 0.04 mS/cm2) was chosen for

this example. The use of excitation rather than inhibition

prevents the appearance of the leapfrog modes in which the

firing order switches (7,26), so the picture is simpler. Using

the same range of intrinsic frequencies as in the inhibitory

examples produced only 2:1 locking. The Wang and Buzsáki

model neuron used in this study has Type I excitability (27),

which produces Type I phase resetting (28) in which inhibi-

tion produces only delays and excitation produces only

advances. The amount of advance that excitatory coupling

can produce is limited by causality. That is, an input cannot

cause a spike to occur before the input is presented, so the total

advance cannot exceed Pi(1 � f). The delays produced by

inhibition are not limited; hence delays can produce larger

changes in the period of the slower neuron that receives

multiple inputs per cycle. These larger changes led to up to

5:1 lockings for inhibition but only 2:1 for excitation (Fig. 11).

Prediction of locking between populations

Harmonic N:1 locking in the nervous system is likely to be

manifested in populations of oscillators. Achuthan and
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A B

FIGURE 11 Accurate prediction of 2:1 locking band in

two neuron network with excitation. The parameters were

the same as in Figs. 8 and 9 except Esyn ¼ 0 mV and

gsyn ¼ 0.04 mS/cm2. Two to one lockings are indicated in

red. For completeness, 1:1 lockings are shown in gray.

(A) Predicted. Modes were predicted directly from the

PRCs using the existence and stability criteria. (B)

Observed. The solution to the differential equations were

run until the transients dissipated (1 s) and locked modes

were identified by the periodic repetition of intervals. The

agreement between predicted and observed is excellent.
Canavier (29) suggested a method recently for applying

phase resetting tools to predict clustering of oscillators. The

basic idea was to treat interactions within a cluster separately

from interactions between clusters. For an illustrative

example, we examine one slow synchronous cluster of two

neurons and one faster synchronous cluster of two neurons.

Because the Wang and Buzsáki model neurons used in this

study synchronize readily with inhibition (7), we chose inhib-

itory connections with gsyn ¼ 0.025 mS/cm2 for the within-

cluster synapses. We make the assumption that if two such

neurons coupled by excitation would lock in an N:1 mode,

so will the two clusters. Because each neuron receives two

synaptic inputs from the other cluster (one from each neuron)

the effective conductance that each neuron sees from the

other cluster is twice the conductance of an individual

between-cluster synapse. We set the individual between-

cluster excitatory synapses to 0.02 mS/cm2 for a total

between-cluster conductance of 0.04 mS/cm2, and picked

the intrinsic frequencies for the two clusters by choosing

a value in the center of the red 2:1 locking band in Fig. 11,

with an intrinsic frequency of 35.3 Hz for the slower cluster

and 94.3 Hz for the faster cluster, corresponding to Iapp values

of 0.55 and 1.8 mA/cm2. We then used our PRC methods to

predict a locking between one slow and one fast neuron

coupled by the effective between-cluster conductance 0.04

mS/cm2 (see Fig. 12 A and Pervouchine et al. (30)), and

applied that prediction to the network. The PRC-based

prediction method identified a stable 2:1 mode in which the

synchronous firing of the slow cluster occurred in the middle

of a cycle of the fast cluster, followed 4.89 ms later by the

synchronous firing of the fast cluster, by another firing of

the fast cluster 10.64 ms later, followed by the next firing

of the slow cluster 4.29 ms later. When the full system of

differential equations was integrated (Fig. 12 B), a locking

was observed with the corresponding intervals of 4.89,

10.64, and 4.25 ms, which is a very good match.

This example is intended to capture the essentials of poten-

tial N:1 locking between networks of inhibitory interneurons

coupled via excitatory pyramidal cells. The excitation

between groups of interneurons is not mediated directly by
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interneurons, but rather relayed via pyramidal neurons. For

simplicity, we ignored the delay between the firing of pyra-

midal and interneuronal cells and simply wired the network

with the clusters of interneurons directly exciting each other.

Delays can be incorporated if necessary; they simply shift the

locking point (31). This approach is easily extended to larger

and unequal cluster sizes.

DISCUSSION

Relationship to previous work by others

N:1 phase-locked solutions in the case of forced oscillators,

in which there is no feedback from the driven oscillator

to the driving oscillator, have been studied extensively

(32–35). Recently, Oprisan and Boutan (36) derived a crite-

rion for 1:N forcing of pulse coupled oscillators using strong

coupling PRC methods. Ermentrout (16) published existence

and stability requirements for N:M modes in the case of

weakly coupled oscillators, which also covered periodically

forced oscillator systems for all values of N:M. In this study,

we used the averaged weak coupling methods to identify 2:1

modes as described in Methods. This method is more compu-

tationally intensive and difficult to implement than the pulsa-

tile coupling methods we developed in this study. Its strength

is that the coupling is not required to be pulsatile, as it is

possible to sum the contributions of the coupling to multiple

cycles. However, the coupling is constrained to be quite weak

to not violate the assumptions. Thus the methods presented in

this study extend the regime in which the behavior of coupled

oscillators is understood.

Palacios et al. (37) examined N:1 locking between arrays

of mutually diffusively coupled van der Pol neurons, and

found that mutual coupling was more effective than unidirec-

tional coupling in establishing such lockings. Our results do

not apply to diffusive coupling, but are novel in that similar

results for pulse-coupled oscillators have not, to our knowl-

edge, been derived previously. Grassman (38) used perturba-

tion methods to study N:M locking of coupled oscillators

assuming that the component oscillators were relaxation
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A B

FIGURE 12 Prediction of population locking. (A) A four

neuron network with two clusters of neurons with different

intrinsic frequencies. Each cluster is indicated inside a box.

The within cluster connections are inhibitory (solid circles)

and the between cluster connections are excitatory (open
triangles). Each cluster is collapsed into a single oscillator

representing the cluster. (B) The example chosen shows 2:1

locking as predicted. The traces of the neurons in the fast

(solid lines) and slow (dashed lines) cluster are indistin-

guishable.
oscillators whose limit cycles were known and that the

coupling simply changed the rate of travel along the trajec-

tory on each branch by changing the rate of change of the

slow variable. The method of Grassman is less general than

the method presented herein. The strength of the method

presented in this study is that it provides a simple way of pre-

dicting the locked modes for a system of coupled oscillators

by only using their phase resetting curves, which are gener-

ated easily for biological neurons as well as for model

neurons. The applicability is not limited to neural or biolog-

ical systems; the results apply to any coupled limit cycle

oscillators that can be characterized by their PRCs.

Applications

In a recent book entitled Rhythms of the Brain, Buzsáki (39)

classifies the oscillatory rhythms observed in human EEG into

10 frequency bands, such as gamma and theta oscillations,

that cover four orders of magnitude of frequencies. It was

once thought that because the mean frequencies of these

bands are not integer multiples of each other, they could

not phase lock. Although this is true for weak coupling

(16), we have shown in Figs. 8 and 9 that it is not true for

strong coupling. Strong coupling produces greater changes

in the intrinsic frequency, resulting in a larger range of

frequencies from which the two oscillators can select to

find a phasic relationship that allows exact locking. Evidence

that at least some of these frequency bands are intrinsic oscil-

lators that can be reset and entrained is provided by the obser-

vation that the occipital alpha rhythm can be entrained by

subharmonic light flashes (25). Another example of a possible

2:1 locking in humans is given by the observation of Timmer-

mann et al. (40) of an 8 5 12 Hz motor cortical oscillatory

activity in patients exhibiting Parkinsonian tremor at the first

subharmonic frequency of 4 5 6 Hz . This is consistent with

recent physiological studies of 1-methyl-4-phenyl-1,2,3,

6-tetrahydropyridine-treated monkeys, which showed that the

maximal power of the synchronous oscillators in various

regions of the basal ganglia was ~10–12 Hz, which is double

the Parkinsonian tremor frequency (24).
Whereas the preceding examples may reflect unidirec-

tional driving rather than an emergent phenomenon arising

from reciprocal coupling, there is data to suggest that N:1

dynamics as a result of mutual phase locking between

rhythms in the nervous system can occur. Stein (41) produced

a 2:1 locking between the swimming movements of the fore-

limb and the hindlimbs in a freely moving turtle with

a partially transected spinal cord, which indicates the pres-

ence of separate oscillators for the control of each limb that

can mutually reset each other’s phase to produce a locking.

Three to one locking has been observed in hippocampal

slices between interneurons firing at gamma and pyramidal

neurons firing at beta frequencies with missed gamma beats

(42). Additionally, in a model network, 5:1 and 6:1 locking

could be observed between gamma modules composed of

basket cells and pyramidal cells and O-LM cells firing at theta

frequency (43). Hence it may be important to understand

under what circumstances such lockings can occur.

Limitations

In this study, we did not predict the complex lockings shown

in Fig. 6 C and implied by the gaps between bands in Figs. 5,

8, and 9. It is theoretically possible to predict the leapfrog

modes by following an approach similar to that given in

Graves et al. (34) for 2:2 lockings, but because they were

bracketed by predicted modes we did not find it necessary

to predict these complex modes analytically. The inhibitory

type I Wang and Buzsáki model neuron used in this study

is a severe test of the method because most other simple

networks (see Fig. 11 for excitatory coupling in the same

network) do not exhibit such complex behavior (29). Not

only the leapfrog modes but also higher order and aperiodic

complex modes could be predicted (not shown) using an

iterative map program that does not presume a particular

firing order as described in Maran and Canavier (7) and

Sieling et al. (44). This proves that the PRC also contained all

information necessary to predict complex modes.

The main limitation of our method is that the underlying

assumptions of pulsatile coupling must be approximately
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satisfied. The most stringent one is that the slower neuron

must return to its limit cycle after it is perturbed by one input

from the slower neuron before the next input is received,

otherwise the phase is undefined and the phase resetting

due to the second input cannot be calculated. Thus as N
becomes large enough, eventually the approximation will

break down. In practice, this means that only sufficiently

nearby frequencies from the ten bands identified by Buzsaki

could lock under pulsatile coupling. In the network we

studied, as N gets larger the slow neuron is suppressed, which

eliminates the observance of harmonic locking. If the

synaptic time constant is small relative to the interval

between inputs then the assumptions may be satisfied, but

increasing the frequency or the synaptic time constant could

cause a breakdown. Because the assumptions are not exactly

satisfied, some error in the method can be expected at the

boundaries where solutions lose existence or stability, and

this is exactly where the errors in Figs. 5, 7, and 8 are

observed. Another potential problem is adaptation, in which

multiple pulses evoke a conductance that is not significantly

activated by a single pulse. Other studies address the effects

of adaptation (45) and these techniques could be incorporated

into the methodology as necessary. Finally, the issue of

robustness to noise is an area for future exploration.

CONCLUSIONS

This prediction method provides what we believe is an under-

standing of under which conditions N:1 locking can occur, and

gives insight into how such locking could be facilitated or

suppressed by adjusting the phase resetting curves until the

conditions for existence and stability are met or not met. We

also illustrate that strong coupling greatly increases the region

of parameter space in which N:1 lockings can be observed.

Our prediction method is generally applicable, including in

cases of inhibitory and excitatory coupling, and can be

extended to networks of multiple coupled oscillators.

SUPPORTING MATERIAL

Twenty-five equations describing the full derivation of Eq. 4 in the text as

well as notes on the use of the program XPPAUT are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(09)00841-8.

We thank Bard Ermentrout, Dr. Srisariam Achuthan, and members of the

PRC research group for helpful discussions.
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under the Collaborative Research in Computational Neuroscience program.
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