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ABSTRACT We investigated the initial coupling of agonist binding to channel gating of the nicotinic acetylcholine receptor using
targeted molecular-dynamics (TMD) simulation. After TMD simulation to accelerate closure of the C-loops at the agonist binding
sites, the region of the pore that passes through the cell membrane expands. To determine whether the structural changes in the
pore result in ion conduction, we used a coarse-grained ion conduction simulator, Biology Boltzmann transport Monte Carlo, and
applied it to two structural frames taken before and after TMD simulation. The structural model before TMD simulation represents
the channel in the proposed ‘‘resting’’ state, whereas the model after TMD simulation represents the channel in the proposed
‘‘active’’ state. Under external voltage biases, the channel in the ‘‘active’’ state was permeable to cations. Our simulated ion
conductance approaches that obtained experimentally and recapitulates several functional properties characteristic of the nico-
tinic acetylcholine receptor. Thus, closure of the C-loop triggers a structural change in the channel sufficient to account for the
open channel current. This approach of applying Biology Boltzmann transport Monte Carlo simulation can be used to further
investigate the binding to gating transduction mechanism and the structural bases for ion selection and translocation.
INTRODUCTION

Channel-forming proteins provide low-energy pathways for

ions and water to cross the otherwise impermeable cell

membrane and are essential to all life forms. The nicotinic

acetylcholine receptor (nAChR) at the motor endplate is

a prototypical channel-forming protein within a large family

of neurotransmitter-activated ion channels that mediates

rapid synaptic transmission. Despite decades of research,

the mechanism by which neurotransmitter binding triggers

channel gating remains elusive due to the lack of experi-

mental approaches to monitor the protein and ions in real

time and at atomic resolution. A general view of the channel

gating mechanism is that agonist binding to the extracellular

binding sites triggers a structural change in the channel.

Recent advances in structural determination of the nAChR

and homologous proteins have contributed to steady progress

in elucidating the gating mechanism. First, x-ray crystal struc-

tures of acetylcholine binding protein (AChBP), a homolog of

the nAChR extracellular domain, provided a detailed picture

of how an agonist binds to the receptor: a peripheral loop,

called the C-loop, closes when agonist occupies the binding

site (1–7). Second, a cryo-electron microscopic (cryo-EM)

structure of the Torpedo nAChR was solved at a resolution

of 4 Å and represents a nearly complete model of the nAChR

(8). This structure is considered to be a model of the closed

state because agonist was not present during the EM
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sampling. Recently, x-ray structures of related prokaryotic

proton-activated channels were solved. The channel from

the bacterium Erwinia chrysanthemi (ELIC) was solved in

the inactive state and exhibited a narrow hydrophobic

constriction at the upper half of the channel (9), whereas the

channel from the cyanobacterium Gloebacter violaceus
(GLIC) was solved in the apparently open state and showed

widening in the upper half of the channel (10,11).

Although these solved structures provide invaluable infor-

mation, they do not include thermodynamic fluctuations vital

to protein function, such as the structural motion that trans-

mits agonist binding to the channel. By using computational

molecular-dynamics (MD) simulations, we can gain insight

into the atomistic motion underlying this transduction

process. In a previous study (12), we used targeted MD

(TMD) simulations to apply force to close the C-loop at

the binding sites to mimic the effect of agonist binding,

and found that the structural rearrangement led to pore

widening. The question remained, however, whether these

structural changes result in an ion-conductive pore.

MD simulations of ion transport through the nAChR

channel have been attempted since publication of the cryo-

EM Torpedo structure. With only the transmembrane domains

embedded in a bilayer-mimetic slab, potential of mean force

calculations revealed an energy barrier of 9 kcal/mol midway

through the bilayer, suggesting that the channel was closed to

ion translocation (13). With the transmembrane domains

embedded in an explicit bilayer, MD simulations showed

that water molecules evacuated the narrowest constriction of

the pore and ion translocation did not occur. However,
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when the narrow constriction was manually widened by 1.5 Å,

water and ions entered the channel and the resulting ion trans-

port rate approached that expected from the single-channel

current amplitude (14). The inherent limitations of these

studies include an incomplete structure of the nAChR and

the absence of a transmembrane potential.

We previously applied all-atom MD simulation to

a homology model of the human muscle nAChR in an explicit

bilayer with an applied transmembrane potential (15). Single

cations passed through the channel but paused at each of

a series negatively charged rings along the translocation

pathway. One of these rings, at a position equivalent to

aAsp97 in the extracellular vestibule, was recently shown to

affect unitary current amplitude, indicating that it functions

as a cation-selective filter (16).

The major challenge of MD simulations is the computa-

tional cost, which still prohibits simulation of biological

processes such as the electrical current through ion channels

(17). Ion translocation is a rare event, demanding simulations

that last several microseconds (18), but it is also essential to

account for short-range interactions between atoms, which

can be very strong and occur on the femtosecond timescale.

Although MD simulations can provide essential information

on protein dynamics and mechanisms of ion conduction,

the computational cost is still very high even on massively

parallel supercomputers.

Coarse-grained particle approaches such as Monte Carlo

(MC) or Brownian dynamics (BD) can extend simulation times

beyond those achievable by MD simulations while retaining

some atomistic representation (19–21). In such coarse-grained

approaches, ions are modeled as discrete particles with finite

size, whereas the rest of the system (protein, water, and

membrane) is treated as continuum media with a given electri-

cal permittivity. BD simulations, in particular, are being

increasingly applied to obtain macroscopic information with

respect to channel conductance and ion selectivity (22–24).

However, representing ion-water interactions with a single

frictional coefficient and a random stochastic force may be

an oversimplification in narrow regions of the channel where

complicated ion scattering events could occur (21). Biology

Boltzmann transport Monte Carlo (BioMOCA) is an alterna-

tive coarse-grained method for simulating ion translocation

through channels. It was developed based on the Boltzmann

Transport Monte Carlo (BTMC) methodology, which was

used for several decades to simulate charge transport in solid

state and plasma devices. In this study, we applied BioMOCA

simulation and combined it with TMD simulations to deter-

mine whether closure of the nAChR C-loop is sufficient to

produce a conducting channel.

MATERIALS AND METHODS

Homology modeling

Two homology models of the human muscle nAChR were constructed using

the comparative protein structural modeling program Modeller v8.0 (25). The
first model was constructed based on the cryo-EM structure of the Torpedo

nAChR (PDB code: 2BG9). Details of the modeling procedure employed

for construction of the first model have been described previously (15). The

second model was constructed based on a hybrid model consisting of the

x-ray structure of AChBP (PDB code: 1UV6) as the extracellular domain

and the cryo-EM Torpedo structure (PDB code: 2BG9). Construction of the

second model involved two steps. First, a homology model of the extracellular

domain of the human nAChR was built from the AChBP structure in an

agonist-bound conformation. Then the full receptor was modeled by simulta-

neously using the newly built extracellular domain and the Torpedo receptor

structures as templates. Because the agonist binding domain template already

had the same sequence as that of the target, the corresponding coordinates were

directly transferred to the final model. As a result of this two-step procedure,

the two templates were joined by implicitly satisfying geometrical constraints,

thereby avoiding errors from manually overlaying the two domains. All the

obtained models were evaluated with PROCHECK and Prosa 2003.

MD simulations

The control MD simulations were carried out with the first nAChR model

embedded in a fully hydrated palmitoyl-2-oleoyl-sn-glycerol-phosphatidyl-

choline (POPC) bilayer (120 Å � 120 Å) using the membrane subroutine

included in the VMD script library. Lipids within 0.8 Å of the protein were

removed. The total number of lipids was 298, with 141 on the extracellular

side and 157 on the intracellular side. Next, the membrane-protein complex

was solvated in TIP3P water using the solvate subroutine. Ions were added

to neutralize the net charge of the protein using the autoionize subroutine,

and amounted to 84 sodium and 26 chloride atoms, achieving a salt concen-

tration of 100 mM. The resulting system comprises 247,568 atoms, which

includes 1886 protein residues and 59,080 TIP3P water molecules.

We used the highly scalable MD simulation program NAMD (26) and the

CHARMM27 force field (27). Once the protein ensemble was built, the

following four rounds of equilibrations were completed: 1), 2000 steps of

energy minimization for the nonbackbone atoms; 2), five cycles of a 500-step

energy minimization with decreasing position restraints on the protein a-C

atoms; 3), a gradual increase in the temperature from 50 K to 310 K in

10,000 steps of constant volume (NVT ensemble) simulation with restraints

(with a force constant of 3 kcal.mol�1.Å�2) applied to the protein a-C atoms;

and 4), a 2 ns constant surface area ensemble MD equilibration with decreasing

positional restraints on the a-C atoms. A short cutoff of 9 Å was used for

nonbonded interactions, and long-range electrostatic interactions were treated

using the particle mesh Ewald method (28). Langevin dynamics and a Langevin

piston algorithm were used to maintain the temperature at 310 K and a pressure

of 1 atm. The r-RESPA multiple time step method (29) was employed with a

2 fs time step for bonded atoms, a 2 fs step for short-range nonbonded atoms,

and a 4 fs step for long-range electrostatic forces. The bonds between hydrogen

and heavy atoms were constrained with the SHAKE algorithm.

Targeted MD simulations

The procedure for the TMD simulation was described in detail in our

previous article (12). One difference between that study and the one pre-

sented here was in the choice of sites to which force was applied. Instead

of applying force to the entire C-loop, here we selected five residues at

each of the two agonist binding sites. These five residues are key determi-

nants of acetylcholine binding and include four residues from the principal

face (Tyr93, Trp149, Tyr190, and Tyr198) and one from the complementary

face (Trp55). They also form an ‘‘aromatic box’’ around the bound agonist

(Fig. 1). Application of force to these five key residues mimics the effect

of agonist binding and also reduces the computational cost. During the

TMD simulation, the root mean-square deviation (RMSD) of the five resides

at each binding site was calculated every 2 ps based on the starting structure

and the target structure of the second homology model, and was used in an

energy term: V ¼ 0.5 * k * (RMSD(t) � RMSD0(t))2, where the RMSD(t)
term represents the simulation structure at time t relative to the prescribed

target structure, the RMSD0(t) term represents the prescribed target
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RMSD value at time t, and the force constant k equals 20 kcal $ mol�1 $ Å�2.

The calculations were performed independently for the two binding sites,

under the assumption of independent agonist binding. The RMSDs of the two

binding sites decreased independently from the initial values of 6–7 Å to

1 Å within the first 4 ns, and remained at 1 Å for the rest of simulation time.

The total TMD simulation took 20 ns.

BioMOCA

BioMOCA was developed at the University of Illinois at Urbana-Cham-

paign to simulate ion transport in electrolyte environments of ion channels

or nano-pores embedded in membranes (21). It is based on two methodolo-

gies: BTMC (30) and particle-particle-particle-mesh (P3M) (31). BTMC

uses an MC method to solve the Boltzmann equation and has been used

for several decades to study charge transport in solid state and plasma

devices. The P3M methodology splits the electrostatic forces into short-

and long-range components. To reduce the computational cost, the protein,

membrane, and water are treated as continuum media with assigned permit-

tivity. Ions are the only particles explicitly represented; they move according

to Newtonian physics, and are overdamped by frequent scattering events

with water molecules. The electrostatic potential is computed at regular

time intervals by solving the Poisson equation:

V , ð3ðrÞVfðr; tÞÞ ¼ �
�
rionsðr; tÞ þ rpermðrÞ

�
; (1)

where rions(r,t) and rperm(r) are the charge densities of ions and permanent

charges on the protein, respectively; 3(r) is the local dielectric constant or

permittivity; and f(r,t) is the local electrostatic potential. Solving this equa-

tion provides a self-consistent way to include an applied voltage bias and the

effects of image charges induced at dielectric boundaries.

The ion and partial charges on protein residues are assigned to a finite rect-

angular grid using the cloud-in-cell (CIC) scheme (31). Solving the Poisson

equation on the grid is based on the particle-mesh part of the P3M scheme.

However, the use of a grid leads to an unavoidable truncation of the short-

range component of electrostatic force, which can be corrected by

computing the short-range charge-charge interactions. The Lennard-Jones

potential was employed to prevent superposition of ions.

Dielectric coefficient

Assigning appropriate values for the dielectric permittivity of the protein,

membrane, and aqueous regions is of great importance. The dielectric coef-

ficient determines the strength of the interactions between charged particles,

and also the dielectric boundary forces on ions approaching two regions of

different permittivity. However, the task of assigning specific permittivity is

problematic and not straightforward at nanometer scales. The protein or

membrane environment could respond to an external field in a number of

ways (21). The issue of protein dielectric coefficients is addressed elsewhere

(32,33). Also, water molecules inside ion channels could be very ordered

due to the tapered shape of the pore, which is often lined with highly charged

residues or contains hydrogen bonds between water molecules and the

protein (34). As a result, the dielectric constant of water inside ion channels

could be lower than the value under bulk conditions. For the simulations pre-

sented here, we adopted the same dielectric constant for all of the aqueous

regions to reduce the computational cost required to account for a gradually

changing water permittivity from bulk-like baths to the channel. However,

we used 60 and 80 separately as the dielectric constants of water to assess

the effects of parameter choices on the conclusion.

Ion-water interactions

BioMOCA is a reduced-particle approach that replaces explicit water mole-

cules with a continuum background and handles the ion-water interactions

using the BTMC method. Ion trajectories are randomly interrupted by scat-

tering events that account for the ions’ diffusive motion in water (21). Between

these scattering events, ions follow Newtonian physics. The free flight times Tf

are generated statistically from the total scattering rate according to
Biophysical Journal 96(9) 3582–3590
�lnðrÞ ¼
Z Tf

0

lð~pðtÞÞdt; (2)

where r is a random number uniformly distributed on the unit interval, and l,

a function of momentum, is the total scattering rate for all collision mechanisms.

Although BioMOCA is equipped to handle multiple scattering processes, for

this work we used bulk diffusion coefficients inside the pore region.

Ion-protein interaction

The available high-resolution x-ray structures provide information about the

type and location of all atoms in the protein. BioMOCA uses this informa-

tion in the Position-Charge-Radius (PQR) format to map the protein system

onto a rectangular grid and partition the simulation domain into continuous

regions based on the Adaptive Poisson Boltzmann Solver (APBS) scheme

(35). Ions are deemed to have access to protein and lipid regions. If any point

within the finite size of an ionic sphere crosses the protein or membrane

boundary, a collision is assumed and the ion is reflected diffusively (21).

The detailed procedures for BioMOCA simulations have been described

elsewhere (36). In brief, we obtained the receptor’s static structural models

by extracting snapshots of the structural coordinates before and after the

TMD simulation, and added the charge and radius of each atom using the

CHARMM force field and a pH of 7.4. The resulting files were then uploaded

to a web-based BioMOCA suite (http://nanoHub.org) for ion-conduction

simulations. In detail, the nAChR models were separately embedded in a rect-

angular box with dimensions of 70 Å � 70 Å � 150 Å and grid spacing of

1.5 Å, and then wrapped with a 33-Å-thick layer of simplified lipid membrane

with a 13-Å-radius hole to surround the protein’s transmembrane domains.

The dielectric constants of protein and lipid were set to 5 and 2, respectively.

The dielectric constant of water was set to 80 or 60 as indicated. Each simu-

lation was carried out using a single Intel Xeon processor at 3.0 GHz and

achieved a computing speed of 6 ns/day. To examine current-voltage relation-

ships, we subjected each simulation to external voltage biases of�200,�100,

0,þ100, andþ200 mV. To examine the effect of divalent cations, we applied

each simulation in two solution settings. Without divalent cations, the intra-

cellular solution contained (mM) Naþ, 5; Cl�, 145; Kþ,140; and the extracel-

lular solution contained (mM) Naþ, 140; Cl�, 145; Kþ, 5. With divalent

cations, the intracellular solution contained (mM) Naþ,10; Cl�, 76;

Kþ, 100; Ca2þ, 0; Mg2þ, 3; and the extracellular solution contained (mM)

Naþ, 140; Cl�,100; Kþ, 5; Ca2þ, 2; Mg2þ, 1. All MD simulations were carried

out with the use of an in-house-built supercomputing cluster in the Receptor

Biology Laboratory at Mayo Clinic Rochester, and additional computing

resources from the Minnesota Supercomputing Institute.

Single-channel recordings

Single-channel recordings were obtained in the cell-attached patch configura-

tion at 22�C. Human wild-type nAChR subunit cDNAs were transfected into

the 293 HEK cell line using calcium phosphate precipitation. Cells were used

for measurements 1 or 2 days after transfection. The bath and pipette solutions

contained (mM) 142 KCl, 5.4 NaCl, 1.8 CaCl2, 1.7 MgCl2, 10 HEPES, pH 7.4.

Patch pipettes were pulled from 7052 capillary tubes (Garner Glass, Clave-

mount, CA) and coated with Sylgard (Dow Corning, Midland, MI). Single-

channel currents were recorded using Acquire software (Bruxton) and an

Axopatch 200B patch-clamp amplifier (Molecular Devices, Sunnvate, CA),

digitized at 2 ms intervals with a PCI-6111E fast data acquisition board

(National Instruments, Austin TX), and analyzed using TAC software (Brux-

ton, Seattle, WA) at a final bandwidth of 10 kHz. The single-channel ampli-

tudes were determined by fitting a Gaussian function to all-point histograms

generated from the digitized current traces. In most cases, two Gaussian distri-

butions were needed to describe the all-point histogram from each recording;

oneGaussiancorresponded to the closedchannel current level, and the other cor-

responded to the open channel current level. The difference between the mean

values of the two distributions yielded the single-channel current amplitude.

http://nanoHub.org
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RESULTS AND DISCUSSION

TMD simulations

To assess the extent to which the agonist bound conformation

changes the structure of the channel, we mimicked agonist

FIGURE 1 TMD simulation. The lower-left panel shows the entire

nAChR, with the cell membrane indicated by dark lines. The top panel

shows one of the two agonist binding sites (a�3 site). The C-loop is repre-

sented as a green tube. The selected key residues are in red in the pre-TMD

structure (cyan backbone), and in yellow in the post-TMD structure (white
backbone). Blue arrows indicate forces applied to the side-chain atoms of

the selected key residues. The lower-right panel shows structural models

of the pre- and post-TMD simulation in the region of the channel, and, for

clarity, displays only the five a-helices of the second transmembrane

domain. The pre-TMD structure is in cyan and the post-TMD structure is

in yellow.
binding using TMD simulation. The top panel of Fig. 1 illus-

trates one of the two agonist binding sites; the selected key

residues are colored red in the simulated structure (cyan)

and yellow in the target structure (white), and the backbone

of the C-loop is represented as a green tube. Blue arrows indi-

cate the direction of the forces applied to the side chain atoms

of the selected key residues. The lower-right panel shows the

changes of the channel before and after TMD simulation, and

displays only the five a-helices of the second transmembrane

domain with the pre-TMD structure in cyan and the post-

TMD structure in yellow. The lower-left panel shows the

entire nAChR, with the dark lines indicating the cell

membrane. After forcing the C-loop to close via TMD simu-

lation, we detected structural changes in the channel.

The HOLE program (37) was used to measure the pore

radius along the channel axis in the region of the cell

membrane. The pore radius is plotted as mirror images to

represent an idealized channel. In Fig. 2 A, the solid line repre-

sents the channel of the pre-TMD model, and the dashed line

represents that of the post-TMD model. A comparison of the

solid and dashed lines reveals that at the upper half of the

channel, the channel radius of the post-TMD model is greater

than that of the pre-TMD model. The two models are similar at

the lower half of the channel, but the post-TMD model has

a smaller radius at both the middle and the intracellular end

of the channel. A third, dotted line represents the channel

radius from the recently solved GLIC structure in an appar-

ently open conformation (PDB code: 3EAM), showing that

the radius of the upper half of the channel in the GLIC

structure approaches that observed in our post-TMD struc-

ture. The overall changes indicate that closure of the C-loops

at the two binding sites generates a funnel shape in the upper

half of the nAChR channel, corresponding to an outward

tilting motion of the second transmembrane domain sug-

gested by previous MD simulations (12), patch-clamp record-

ings (38,39) and comparison of ELIC and GLIC x-ray

structures (9–11).

To illustrate structural differences between the pre- and

post-TMD models, we display cross sections of the two

models, with the surface of the protein outlined in black

thin lines and the virtual membrane indicated by thick lines

(Fig. 2 B). For ease of presentation, we divide the ion
FIGURE 2 Comparison of the pre- and post-TMD

models. Panel A plots the pore radii of the two models,

as measured by the HOLE program. The solid line repre-

sents the pore radius of the pre-TMD model, and the

dashed line corresponds to the post-TMD model. The

dotted line is the pore radius of the bacterial channel

GLIC. Panel B shows cross sections of the two models dis-

played with the protein surfaces outlined in black thin lines

and the virtual membrane indicated by thick lines.
Biophysical Journal 96(9) 3582–3590
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translocation pathway into three separate chambers, from

extracellular to intracellular: chamber 1 is the extracellular

vestibule, chamber 2 is the upper half of the channel, and

chamber 3 is the intracellular vestibule. The region at the

lower half of the channel connecting chambers 2 and 3 is

the narrowest constriction. To our surprise, the main differ-

ence between the two structural models is not at the narrow-

est constriction, where changes might be expected, but in

chamber 2, which is considerably wider in the post-TMD

model than in the pre-TMD model.

Ion conduction simulations

To determine whether the observed changes in the pore

structure correspond to an open channel capable of conduct-

ing cations, we subjected both the pre- and post-TMD

models to BioMOCA simulations with 80 as the dielectric

constant of water. We included explicit ions in the virtual

solutions and applied external voltage biases to investigate

current-voltage relationships. We also tested the effects of

divalent cations. The simulated channel conductance of the

post-TMD model is similar to that determined experimen-

tally. In addition, our simulation results are consistent with

several functional properties characteristic of the nAChR,

including charge selectivity, inward current rectification,

and screening by divalent cations. We will describe these

results further in the following sections.

Charge selectivity

With a solution containing only Naþ, Kþ and Cl� ions, we

found that oppositely charged ions exhibited distinguishable

distributions inside the channel for both the pre- and post-

TMD structures. To illustrate the different charge distribu-

tions, we plotted the time-averaged ion density in a plane

passing through the channel axis. In both pre- and post-

TMD structures (Fig. 3, left and right), cations achieved

high concentrations in chambers 1 and 3, as indicated by the

predominantly red color, but chamber 2 in the post-TMD

model had a higher cation concentration than that of the pre-

TMD model. The distributions of cation density are consistent

with our previous all-atom MD simulations showing that

cations paused for extended periods at each of a series of rings

of negatively charged residues along the ion translocation

pathway (15). By contrast, anion density remained low in

both the pre- and post-TMD models. Considering that the

nAChR is a cation-selective channel, it is not surprising to

observe high concentrations of cations at both ends of the

channel where negatively charged residues are enriched.

However, a gap between chambers 2 and 3 in cation distribu-

tion is observed in both models, suggesting that cations

cannot easily pass through the narrowest constriction under

normal ionic conditions without a transmembrane potential.

In fact, our previous all-atom MD simulations showed that

cations can pass through the channel under external voltage

biases (15).
Biophysical Journal 96(9) 3582–3590
Current-voltage relationship

To examine current-voltage relationships for the pre- and

post-TMD models, we added external voltage biases, with de-

polarized potentials ofþ100 mV andþ200 mV, and hyperpo-

larized potentials of �100 mV and �200 mV. Comparisons

between the two models are shown with the corresponding

time-averaged electrostatic potentials and cation/anion distri-

butions (Fig. 4). The top row shows electrostatic potential

distributions for each simulation in which the reference poten-

tial in the extracellular compartment is set to zero. The net

transmembrane voltage can be seen by comparing the colors

in the extra- and intracellular compartments. The second

and third rows display the density distributions of cations

and anions, respectively. Of particular interest, in the cation

FIGURE 3 Time-averaged ion distributions. In both pre-TMD (left) and

post-TMD (right) models, cations achieved high concentrations in chambers

1 and 3 (see Fig. 2), but in the post-TMD model chamber 2 has a higher

cation concentration than in the pre-TMD model. By contrast, anion density

remains low in both the pre- and post-TMD models.
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FIGURE 4 Effects of transmembrane voltage. The top row shows electrostatic potentials for each simulation computed using BioMOCA. The net transmem-

brane voltage difference is shown by the difference in color between extra- and intracellular compartments. The second and third rows show density distri-

butions of cations and anions, respectively. Note that in the post-TMD simulation, cation density increases in the narrow region of the channel.
distributions of the post-TMD model, the gap between cham-

bers 2 and 3 disappeared when a hyperpolarized potential was

applied, suggesting that ion conduction occurred.

The overall results are compiled in the upper half of

Table 1, which contains observed translocation events for

Naþ, Kþ, and Cl� (here ‘‘�’’ indicates inward ion movement

(from extracellular to intracellular), and ‘‘þ’’ indicates outward

ion movement). For the pre-TMD structure, ion translocation

is infrequent and corresponds to a small net current (1–2 pA).

For the post-TMD structure, however, ion translocation

increases and corresponds to a much larger current (2–14 pA,

depending on the applied potential).
To examine the effects of the choice of dielectric constant on

the results, we performed additional BioMOCA simulations

using 60 as the dielectric constant of water (Table 1, lower
half). For the pre-TMD structure at negative potentials, the

lower dielectric constant gives rise to much smaller net currents.

At positive potential, the net currents for both the pre- and post-

TMD structures are similar for both 60 and 80. Moreover, the

current amplitude for the pre-TMD structure remains much

lower than that for the post-TMD structure. A significant differ-

ence still remains in the net current between the pre- and post-

TMD structures. In subsequent computations, we used 80 as the

dielectric constant of water.
TABLE 1 Results of 500 ns BioMOCA simulation without divalent cations

Model DE Pre-TMD Post-TMD

Voltage/mV 80 �200 �100 0 þ100 þ200 �200 �100 0 þ100 þ200

Naþ 80 �6 — — — — �42 �13 — — þ2

Cl� 80 — — — �2 �1 — — — — —

Kþ 80 — — — þ2 þ2 �1 0 þ1 þ7 þ19

Current/pA 80 �1.92 0 0 1.28 0.96 �13.67 �4.13 0.32 2.22 6.73

Naþ 60 �2 �1 — — — �30 �8 — �1 þ3

Cl� 60 — �1 — — �2 — — — — —

Kþ 60 — — — — þ2 0 �1 �1 þ7 þ17

Current/pA 60 �0.74 0 0 0 1.28 �9.60 �2.88 �0.32 1.92 6.41

Numbers of observed translocation events are listed for each ion (Naþ, Kþ, and Cl�); here ‘‘�’’ indicates inward ion movement (from extracellular to intra-

cellular), and ‘‘þ’’ indicates outward movement. Currents were calculated from the net charge transferred divided by the simulation time.

DE, delectric constant of water.
Biophysical Journal 96(9) 3582–3590
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Fig. 5 plots current amplitude versus voltage for the post-

TMD simulations (open squares). The current-voltage rela-

tionship is linear in both inward and outward directions. A

bend is observed near the reversal potential at ~0 mV, so

we fitted two straight lines to the data corresponding to nega-

tive and positive potentials; at negative potentials the slope

conductance is 69 pS, whereas at positive potentials the slope

conductance is 32 pS. The reduced conductance at positive

potentials, known as inward current rectification, was previ-

ously reported from single-channel recordings of currents

through nAChRs (40–42).

To directly compare the simulation results with data

obtained experimentally, we used the patch-clamp to deter-

mine the single-channel current amplitude for the wild-type

human nAChR expressed in the 293 HEK cell line (see

Materials and Methods). The measured channel conductance

is 84 pS at negative potentials and 40 pS at positive poten-

tials (Fig. 5, solid circles). Thus, the simulated single-

channel conductances at negative and positive potentials

FIGURE 5 Current-voltage relationships. Experimentally measured

single-channel current amplitudes (solid circles) are plotted against

membrane potential. Simulated single-channel current amplitudes are taken

from Table 1, without divalent cations (open squares), and Table 2, with

divalent cations (solid squares). Straight lines are fitted to the data at positive

and negative membrane potentials. The slope of each line gives the unitary

conductance for each condition (see text).
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are ~80% of those measured experimentally. However, the

ratio of inward to outward conductance is the same for

both simulation and experiment.

Effects of divalent cations

Divalent cations such as Ca2þ and Mg2þ reduce the single-

channel conductance (40,43,44), presumably because they

interact more strongly than monovalent cations with the

negative electrostatic field in the channel vestibule. To

examine whether such a screening effect by divalent cations

can be detected in BioMOCA simulations, we included Ca2þ

and Mg2þ ions in both the extra- and intracellular solutions

(see Materials and Methods). With Ca2þ and Mg2þ included,

the slope conductance is reduced to 61 pS at negative poten-

tials and 28 pS at positive potentials, both of which are ~12%

less than observed without divalent cations (Table 2; Fig. 5,

solid squares).

These simulations recapitulated several properties charac-

teristic of the nAChR: cation selectivity, single-channel

current amplitude, inward current rectification, and screening

by divalent cations. Furthermore, the simulated single-

channel conductance was similar to that obtained experimen-

tally. The success of the simulation results may be partly

fortuitous because several factors could impact the simulations,

including the missing part of the intracellular domain, imper-

fect methodology used in TMD simulation, simplifications

inherent to BioMOCA simulations, and the use of static rather

than dynamic structures. These factors are discussed below.

First, the cryo-EM structural determination of the Torpedo
nAChR could not resolve a major portion of the cytoplasmic

domain, which contains residues that contribute to channel

conductance (42,45,46). Furthermore, in the prokaryotic

proton activated channel, with 20% homology to the nAChR

and without an intracellular domain, the measured channel

conductance is only 8 pS (47). On the other hand, detection

of small numbers of cations and anions in the pre-TMD model

highlights a potential limitation of the Torpedo nAChR struc-

ture used as a template for homology modeling in this work,

namely, the functional state of the cryo-EM Torpedo struc-

ture. There are two possible explanations for the low but

detectable ion translocation in the pre-TMD model: the recep-

tor’s resting state may not be absolutely closed to ions, or the
TABLE 2 Results of 500 ns BioMOCA simulation with divalent cations included in the solution (see Materials and Methods)

Model DE Pre-TMD Post-TMD

Voltage/mV 80 �200 �100 0 þ100 þ200 �200 �100 0 þ100 þ200

Naþ 80 �4 �4 — — þ1 �41 �8 �2 þ2 þ6

Cl� 80 þ1 — — �3 �1 — — — — —

Kþ 80 — — — — þ1 �2 — — þ4 þ10

Current/pA 80 �1.60 �1.28 0 0.96 0.96 �13.7 �2.6 �0.64 1.92 5.13

Numbers of observed translocation events are listed for each ion (Naþ, Kþ and Cl�); here ‘‘�’’ indicates inward ion movement (from extracellular to intra-

cellular), and ‘‘þ’’ indicates outward movement. Currents were calculated from the net charge transferred divided by the simulation time. Translocation of

divalent cations was not observed.

DE, delectric constant of water.
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cryo-EM structure may not precisely depict the resting state.

We are unable to distinguish between these possibilities on

the basis of our findings. Nevertheless, anion translocation

was not detected in the post-TMD model, further implying

that the open-like structural model is reliable.

Second, the accelerated method of TMD simulation may not

be an ideal way to generate an open-state structural model.

Force was applied to the C-loop to mimic the effect of agonist

binding. Without knowledge of the AChR structure in the open

state, the possibility remains that the post-TMD structure could

be intermediate between the closed and open states. Indeed, the

upper half of the channel of the post-TMD model is slightly

narrower than that of the GLIC structure in the apparent

open state (Fig. 2 A). That may explain why the simulated

single-channel conductance is smaller than observed experi-

mentally. Nevertheless, the TMD simulation provides a plau-

sible hypothesis for the conformational change that underlies

transduction of agonist binding into channel opening.

Third, the BioMOCA simulations were applied to static

protein structures. Because the receptor protein is not a rigid

body but undergoes dynamic motions essential to its function,

slight structural differences from different frames of the TMD

simulation snapshot may affect the outcome of the simulated

single-channel conductance. To overcome this limitation in

future work, we can apply BioMOCA to multiple structural

frames and obtain an average single-channel current amplitude.

The latest software development achieved at the University of

Illinois at Urbana-Champaign increases the speed of Bio-

MOCA simulations by 8 to 20 times, which will enable appli-

cation of BioMOCA to large-scale studies of ion channels.

Finally, the dielectric constant of water inside an ion

channel could be much lower than the value under bulk condi-

tions. Using a lower dielectric constant for water could make

two contributions to charge transport: the dielectric boundary

force and charge-charge interactions. First, when the differ-

ence in permittivity between the bulk and protein is reduced,

the dielectric boundary force barrier is reduced. However,

a drop in this barrier does not necessarily translate to more ion

translocation. Second, when ions are less shielded by water,

Coulombic forces become stronger, enhancing charge-charge

interactions between ions, or between ions in narrow regions

of the channel and permanent charges on channel lumen.

In summary, closure of the C-loop at the nAChR binding

sites triggers conformational changes of the channel that

produce a single-channel conductance similar to that deter-

mined experimentally. This combination of all-atom TMD

simulation with coarse-grained BioMOCA simulation has

potential applications in computational studies of other ion

channels, such as GLIC in an apparent open state. As we

seek to understand the structure of the biologically active state,

it will be essential to determine whether candidate structures

conduct cations at the appropriate rate. By using BioMOCA

to simulate ion translocation rate and ion selectivity, we can

guide future investigations of how agonist binding triggers

channel opening. Also, our previous studies predicted that
negatively charged residues in the extracellular vestibule

contribute to cation selectivity (15). By using BioMOCA

simulation combined with virtual side-chain mutations, we

can further examine how the structure of the ion translocation

pathway impacts channel conductance and selectivity.
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