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ABSTRACT Turnover of mitochondria by autophagy constitutes an essential quality maintenance mechanism. Recent studies
have demonstrated that efficient clearance of damaged mitochondrial components depends on mitochondrial dynamics,
a process characterized by frequent fusion and fission events that enable the redistribution of mitochondrial components across
a population of hundreds of individual mitochondria. The presented simulation identifies kinetic parameters of fusion and fission
that may influence the maintenance of mitochondrial function. The program simulated repetitive cycles of fusion and fission
events in which intact and damaged mitochondrial contents were redistributed between fusion mates. Redistribution impacted
mitochondrial function, thereby influencing the fate of each mitochondrion, to be either destined for a subsequent fusion or elim-
inated by autophagy. Our findings indicate that, when paired with fission, fusion events may serve to accelerate the removal of
damaged mitochondrial components by autophagy. The model predicts the existence of an optimal frequency of fusion and
fission events that can maintain respiratory function at steady-state levels amid the existence of a continuous damaging process
that inactivates mitochondrial components. A further elevation of the fusion frequency can increase the clearance efficiency of
damaged content. However, this requires fusion to be a selective process in which depolarized mitochondria are excluded from
the fusing population. The selectivity of fusion was found to be particularly beneficial in conditions of elevated rate of damage,
because it permits the increase of fusion frequency without compromising the removal of damaged content by autophagy.
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INTRODUCTION

Mitochondria in living cells exist as a dynamic network of indi-

vidual organelles that continuously cycle through fusion-fission

events. Ample clinical and animal model data have shown that

compromising either fusion or fission leads to dysfunction of

neural processes and embryonic development (1–4).

Mitochondrial fusion allows for the transfer of soluble and

membranous components between mitochondria (5–7), and

fusion was therefore recommended as a complementation

mechanism by which damaged or poorly performing mito-

chondria can maintain their function. A solid body of

in vitro (8,9) and in vivo (10) data support this view. However,

recent data have suggested that some criteria define the fusing

pool of mitochondria, leaving more depolarized ones segre-

gated. These data demonstrated that mitochondrial fusion

depends on mitochondrial membrane potential (11–14) and

cannot occur in depolarized mitochondria, despite the prox-

imity of numerous polarized mitochondria to each other

(15). Although depolarized mitochondria cannot fuse with

other mitochondria, they are preferentially targeted by the

degrading organelle, the autophagosome (16,17). The under-

lying mechanism for the membrane potential dependency of

fusion is thought to involve proteolytic cleavage of the fusion

protein, OPA1. Cleavage of OPA1 was shown to be triggered

by reduction in mitochondrial ATP and by mitochondrial

depolarization (18–21).
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The life cycle of mitochondria involves repetitive clusters

of fusion periods, each followed by fission (Fig. 1). After

a fission event, mitochondria enter a solitary state that is

~20-fold longer than the fused period and are available for

subsequent fusion events (15). If a mitochondrion maintains

a polarized membrane potential, it can enter a subsequent

fusion event with another mitochondrion. However, if it

depolarizes, it will remain solitary and eventually be targeted

for autophagy, unless it repolarizes and is then recovered.

The link between mitochondrial fission and autophagy may

simply be attributed to the obvious reduction in mitochondrial

size resulting from fission, which makes it physically digest-

ible for the autophagosome. Remarkably, however, a key

observation has recently shown that fission generates func-
tionally dissimilar daughter units (15,22). This observation

suggests that during fusion events some functional compo-

nents may be redistributing unevenly between the two fusion

mates, resulting in two dissimilar daughter mitochondria

generated by the subsequent fission event. The mechanism

underlying this metabolic asymmetry is not clear, but it might

facilitate the ability of the cell to segregate and remove

damaged mitochondrial material at a much faster rate than

that achieved without such reorganization.

In our investigation we presented a simulation that inte-

grates the effect of fusion, fission, and autophagy in a large

population of mitochondria over extended periods of time.

The model was based on the hypothesis that, when integrated,

fusion, fission, and autophagy form a quality-control mecha-

nism (23). The goal of our simulation was to understand how

factors such as the frequency, selectivity and duration of fusion

events alter the efficiency of the quality-control process and,
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FIGURE 1 Schematic model of the mitochondrion’s life

cycle and the roles of mitochondrial dynamics and autoph-

agy in the segregation of dysfunctional mitochondria. The

mitochondrion shifts repeatedly between a postfusion state

(Network) and a postfission state (Solitary). Fusion is brief

and triggers fission. After a fission event, the daughter

mitochondrion may either maintain intact membrane

potential (red line), or depolarize (green line). If it depolar-

izes, it will unlikely reengage in further fusion events for

the entire depolarization interval. In the case that mitochon-

drial depolarization is transient and Dcm recovers, fusion

capacity is restored (green to red short arrows). Note

that, whereas the scheme includes the possibility of auton-

omous recovery of the depolarized mitochondrion, in the

current simulation mitochondria cannot be self-repaired

and therefore cannot recover in a mitochondrion-autono-

mous fashion.
thereby, mitochondrial function. The model allowed for the

extrapolation of the potential contribution of the integrated

function of fusion, fission, and autophagy into quality mainte-

nance of mitochondria over periods of time beyond those that

can be tested using RNAi or knockout techniques for a variety

of reasons. First, the isolated contribution of mitochondrial

dynamics and autophagy cannot be tested as DNA, and protein

repair cannot be silenced in living cells over days. Second,

moderate changes in the rates of fusion or fission cannot be

accomplished in vivo because of compensatory mechanisms.

The model simulated repetitive cycles of fusion and fission

events in which mitochondrial contents were exchanged, and

it monitored mitochondrial bioenergetic function over time.

The model tested a spectrum of fusion frequencies, fusion-

fission kinetics, and the importance of having fusion as a selec-

tive process in conditions of increased rate of damage.

Our findings indicated that the combination of fusion and

fission contributes to steady-state mitochondrial activity of

the cell in a frequency-dependent manner, displaying a direct

relationship between mitochondrial activity and dynamics

rate. Moreover, the combination of fusion and fission with

the degrading function of autophagy exceeds the contribution

of autophagy alone to quality maintenance. The selective

character of the fusion process prevents a decline in the

steady-state mitochondrial activity under increased fusion

frequencies, during which, under similar conditions, nonse-

lective fusion leads to catastrophic failure. This advantage

of selective fusion is suggested to be essential for survival

under an increased damage rate.

MATERIALS AND METHODS

The model simulated mitochondrial fusion, fission, and autophagy in 100

cells, each containing 300 mitochondria. Mitochondrial activity per cell

was determined in discrete two-minute increments (Fig. 2 a). These values

were based on data obtained from INS1 and COS7 cells. These cell lines

contain several hundreds of discrete mitochondrial structures per cell (24),

which, on average, undergo a cycle of fusion-fission every ~20 min per mito-
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chondrion (15). The following describes the heuristics of the model for the

three major groups of its parameters.

Mitochondrial DNA/protein and activity

Each mitochondrion was set to include 10 copies of mitochondrial material

representing both the mitochondrial DNA (mtDNA), protein, and lipids

required to maintain mitochondrial respiratory function. The reasons for

having multiple copies per mitochondrion were: i), to allow partial exchange

of components as observed in experiments tracking membranous protein

exchange during a fusion event; and ii), to allow the varied parameters of

fusion and fission to generate a wide range of mitochondrial respiratory

functionality. In addition, previous observations in cultured human cells

have shown that a mitochondrion includes in average 2–3 nucleoids, each

containing 115 copies of mtDNA (25–27). We named these copies ‘‘func-

tional hereditary units’’ or FHUs. Each FHU was classified as either ‘‘intact’’

or ‘‘damaged’’ (Fig. 2, a and c). The FHUs are subject to a steady rate of

random damage (Pm) that irreversibly flags them as damaged (nonfunc-

tional). Numerous studies have shown that, under unstressed conditions,

mitochondrial oxidative phosphorylation (indicated by oxygen consump-

tion) functions at ~30% of its maximum, a capacity that maintains both mito-

chondrial membrane potential and cellular functions (28). When respiration

is blocked, mitochondria have the ability to maintain their membrane poten-

tial through a reversed action of ATP synthase. However, at least in the beta

cell under physiological conditions, this accounts for only a negligible frac-

tion of mitochondria (28,29). Accordingly, the number of nondamaged

FHUs was used to deduce the level of mitochondrial activity (Dcm equiva-

lent) on a 0–10 scale. The relationship between the number of undamaged

FHUs and activity is sigmoidal (Fig. 2 e), with an inflection point between

20–30%. At 60%, intact FHU mitochondrial activity is near maximal (90%

of the normal Dcm), and any value below 30% results in a depolarized Dcm

(28). This rule follows results from previous studies showing that, under

normal culture conditions, most cells utilize only ~40% of their respiratory

chain capacity and that reduction of mitochondrial cytochrome oxidase of up

to ~60–70% does not result in mitochondrial depolarization (30). Similarly,

mtDNA mutations that may disable respiratory functions do not impact

mitochondrial function unless they appear in 70% or more of the mtDNA

copies. The plotted cellular mitochondrial activity is generated by summing

the activity of 300 mitochondria in each individual cell and then averaging

the 100 different cells that are simulated in parallel.

Mitochondria with activity level at or below 3 were removed by autoph-

agy (see below), as seen in the experimental data. In some of the tests run

by the model we applied ‘‘selective fusion’’, in which fusion events could

only occur between two mitochondria with activity level above at or above
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4. The dependence of fusion on mitochondrial activity is in accordance with

numerous studies showing that collapse of mitochondrial membrane poten-

tial prevents mitochondrial fusion and that partial dissipation of the

membrane potential is associated with reduced probability of becoming

involved in a fusion event (15).

Fusion and fission (Fig. 2 b)

Fusion and fission events were reported to be paired (5,15). Therefore, in the

simulation, each mitochondrion was set to be in one of two states: a solitary

state (where it is available for fusion) or a fused state (which can be termi-

nated by fission). Fusion occurs randomly, with a variable probability (Pf).

The efficiency of intermitochondrial exchange of contents seems to vary

between membranous proteins, matrix proteins, and intermembrane

proteins, and is not uniform across cell types (8,31,32). However, for the

purpose of testing the influence of fusion rate and selectivity on mitochon-

drial function, we chose to use a single exchange rate that represents

a component that is not fully equilibrated. This is based on the observation

that fusion events are followed by an asymmetric fission and the generation

of functionally disparate daughter units, indicating that the exchange of

functional components is not complete. In the current simulation, a fusion

event was set to allow each mitochondrion to randomly exchange 2 FHUs

(total of 4 out of 20). Each fusion event lasted 4 min and was followed by

a fission event. The later value was set based on the observation that fusion

duration varied between tens of seconds to several minutes (15).

Mitochondrial autophagy (Fig. 2 d)

Removal of dysfunctional mitochondria (mitochondrial activity < 3) was

a 2-min event. This was immediately followed by the duplication of a mito-

chondrion chosen randomly from within the cell’s remaining population of

‘‘healthy’’ mitochondria (activity > 3), resulting in a constant number of

mitochondria in a cell. We have previously shown that mitochondrial fission

is a prerequisite for mitochondrial autophagy (mitophagy) (15), consistent

with data showing that giant (mega) mitochondria do not undergo autophagy

(33–36). In our simulation the elimination of a mitochondrion by autophagy

was assumed to occur only when it was found in the solitary state.

Construction of the model (Fig. 2, a–e)

The code of the simulation (a simple Monte Carlo model) was divided into

three sections, a main class that manages the whole simulation, a mitochondria

class, and a cell class. The mitochondria class contained an array of

10 Boolean values representing FHU copies, each set to ‘‘damaged’’ or

‘‘intact’’, an activity value representing its metabolic level (no activity ¼ 0;

maximal activity ¼ 10); a Boolean fusion-state value (solitary or fused);

a fusion duration value; and a fusion partner value, which is the index of

the mitochondrion to which it is fused.

The cell class consisted of an array of 300 mitochondria, a fusion mainte-

nance function, a collection of three event functions (fusion, autophagy, and

damage), and a cycle function that, when run, represented 2 min in the life

of the entire cell. When the simulation was begun, an array of 100 cells was

generated in the main class and, for each member of the cell array, its respec-

tive cycle function was called in an iterative loop, until the final member of

the array was reached. This loop itself was run 100,000 times, to represent

200,000 min of activity. The cycle function ran the maintenance function, the

damage function, the fusion function, and the autophagy function, in that order.

In the fusion-maintenance function each mitochondrion was checked for

its fusion state. If the fusion state was ‘‘fused’’, the fusion duration value was

incremented by 2. If the fusion-duration value was then 4 (i.e., 4 min in the

fused state have passed), the fusion duration value was reset to 0 and the

fusion state was set to ‘‘solitary’’.

The damage function executed an iterative loop that proceeded from the

first member of the mitochondrion array to the last. For each iteration of

this loop (i.e., for each mitochondrion), another loop was executed. During

each iteration of this loop, a pseudorandom number was generated between
0 and 1/Pm� 1, and, if the output was not 0, the iteration terminated and the

loop proceeded to the next FHU. Otherwise, ‘‘damage’’ occurs to the FHU;

if its state was ‘‘intact’’, it was set to ‘‘damaged’’, and, if the state was

‘‘damaged’’, it remained in the same state.

For each of the fusion and autophagy functions, an iterative loop pro-

ceeded from each mitochondrion to the next and a pseudorandom integer

between 0 and 1/Pf � 1 (for fusion) and between 0 and 1/Pt � 1 (for autoph-

agy) were generated. If the output was not 0, the current iteration of the loop

terminated and the function proceeded to the next member of the array.

Otherwise, the fusion, or autophagy, process occurred before proceeding

to the next array member.

For the fusion process, the iteration terminated if the mitochondrion was

already in the fused state. Additionally, when the model was set to simulate

selective fusions, the iteration also terminated if the activity level of the

mitochondrion was <4. Otherwise (i.e., if the mitochondrion was at the

‘‘solitary’’ state), pseudorandom integers between 0 and 300 were iteratively

generated until the output number equaled the index of a member of the

mitochondrion array whose state was also ‘‘solitary’’, so that an ‘‘available’’

fusion partner was obtained. (Note that solitary mitochondria were the only

ones available for fusion, because of the provision that mitochondria may

only fuse in pairs.)

Next, the fusion-state property for both mitochondria was set to ‘‘fused’’,

and the fusion partner value of each mitochondrion was set to the index of

the other mitochondrion. At this point, two pairs of distinct integers between

0 and 9 were psuedorandomly generated (representing the indices of two

pairs of FHUs from the FHU array of the original mitochondrion and its

fusion partner, respectively).

The damage state values of the FHU (in the original mitochondrion) at an

index of the first integer in the first integer pair and FHU (in the fusion partner)

with an index of the first integer in the second pair were then swapped. This

was repeated for the two FHUs, with indices of the second integer of the first

pair and the second integer of the second pair. In this way, two distinct FHUs

in the first mitochondrion were ‘‘swapped’’ with two distinct FHUs from its

fusion partner. If, for example, the first pair of FHU (A, an FHU in the first

mitochondrion, and B, one in its partner), were ‘‘damaged’’ and ‘‘intact’’,

respectively, A was set to ‘‘intact’’ and B was set to ‘‘damaged’’.

For the autophagy process, if the activity level of a mitochondrion was

R3, the iteration terminated. If the activity was < 3, the mitochondrion

was eliminated and replaced by a duplicate of another mitochondrion in

the cell. To select the parent (template) of the duplicate, pseudorandom inte-

gers between 0 and 100 were generated until one was output not equal to the

index of the current mitochondrion (i.e., the index of a distinct mitochon-

drion). Each value in the FHU array of the current mitochondrion was

then set to the value of the corresponding member of the FHU array in

the mitochondrion whose index was equal to the aforementioned pseudo-

random integer (i.e., the current mitochondrion is eliminated from the pop-

ulation and replaced by a duplicate of another mitochondrion).

Finally, the main class consisted of an array of 100 cells, and a loop,

which iteratively executes the cycle function of each cell class and that is

executed 100,000 times (i.e., 200,000 min). Note that all pseudorandom

number-generating functions are seeded against time, ensuring that the

behavior of each cell, and each mitochondrion in those cells, is different.

The values used in the model are given in Table 1. The values for Pt and Pm

were set to 1/25, and 1/50 events per cycle, respectively, so that autophagy

occurred with a probability of once every 50 min and damage once every

100 min unless mentioned otherwise. Fusion occurred every 2 min to once

every 18,000 min (i.e., Pf ranged from 1 to 1/9500).

The simulation was also run for the two extreme cases in which either fusion

or fission were silenced. To silence fusion, the fusion-maintenance and fusion

function were omitted from the cycle function of the cell class, so that a cycle

would proceed from ‘‘damage’’ to ‘‘autophagy’’ only. To silence fission, the

fusion-maintenance function was omitted, so that no process would unfuse the

mitochondria after a certain amount of time had passed.

The code was written in C# and executed on a Pentium D 830 computer,

using the open-source Mono framework.
Biophysical Journal 96(9) 3509–3518



FIGURE 2 Construction of the simulation. (a) Cycle algorithm. The cycle algorithm controls the fusion, damage, and autophagy algorithms. Pf, frequency of

fusion for single mitochondria; Pm, frequency of damage to FHUs of single mitochondria; Pt, frequency of autophagy for single mitochondria. (b) Fusion

algorithm. Each mitochondrion is selected as a fusion candidate with a likelihood of Pf. If the candidate mitochondrion is not already fused, it is paired to

another unfused mitochondrion that is randomly selected, and both are then labeled as ‘‘fused’’. Two FHUs in each of the fused mitochondria are randomly

selected and exchanged. A background procedure verifies that each fused mitochondrion is set to be unfused after 4 min to allow fission occur. In the case of

selective fusion an additive condition is an activity level R 4. (c) Damage algorithm. Each FHU is classified in a binary manner as either ‘‘intact’’ or

‘‘damaged’’. The FHUs are subject to a fixed rate of random damage (Pm) that irreversibly flags the FHUs as damaged (nonfunctional). This value was

kept constant at 1 per 100 min. (d) Autophagy algorithm. Removal of damaged mitochondria (mitochondrial activity < 3) is a 2-min event that is immediately

Biophysical Journal 96(9) 3509–3518
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TABLE 1 Simulation parameters and their values

Parameter symbol Description Value

Pf Frequency of fusion and fission events for

single mitochondria per min

Variable (1/2–1/9500 min�1)

Pm Rate of damage to FHUs per single mitochondria

(activity/ min)

Variable (1/50, 1/100, or 1/200 min�1)

Pt Rate of autophagy for single mitochondria Constant (1/100 min�1)

Threshold for fusion (fusion was either selective

or nonselective in any given simulation)

Selective fusion: 40% of maximum Dcm (equivalent to

mitochondrial activity ¼ 4); Nonselective fusion: 0% of

the maximum Dcm (mitochondrial activity ¼ 0).

Threshold for autophagy 30% of maximum Dcm (mitochondrial activity ¼ 3)
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RESULTS

Contribution of the combination of fusion
and fission to quality maintenance

To determine the contribution of fusion and fission to the

steady-state mitochondrial activity, we simulated mitochon-

drial activity of a cell with 300 mitochondria over time. These

mitochondria underwent fusion-fission events at variable

rates, exchanged their FHU content, and were subject to vari-

able damage rate and autophagy (see Methods section for

details). In this model, autophagy acted solely as a removal

mechanism of low-activity mitochondria (30% of maximum

and lower) that are generated by a random damage algorithm.

Running the model at any given rate of fusion-fission re-

sulted in a drop in the level of mitochondrial activity from

an initial level (maximal, where none of the FHUs are

damaged) to a certain plateau, as shown in Fig. 3 a. Reducing

the fusion rate to 0 tested a condition in which all mitochon-

dria were constantly solitary and resulted in a steady-state

activity of 32% of its initial value (Fig. 3 a, No Fusion). Under

this condition, autophagy serves as a threshold mechanism

that removes mitochondria once their activity drops to 30%

or below. When a mitochondrion is removed, a random mito-

chondrion within the population is duplicated. As expected,

the system stabilizes just above the autophagy threshold.

A condition in which mitochondria are constantly in the

fused state (Fig. 3 a, Permanent fusion) was characterized by

a fast drop of mitochondrial activity to zero. In the constant

fused state mitochondria are unavailable for autophagy, which

can occur only when mitochondria are in a solitary state.

Because, in the simulation, mitochondria were being subjected

to a baseline damage rate, the prevention of autophagy resulted

in the accumulation of damaged mitochondrial components

and a drop in activity. Experimental support for this link is

based on the observation that increased fission is accompanied

with an increase in mitochondrial autophagy (22), whereas

silencing of the fission machinery prolongs fusion interval,

inhibits selectively mitochondrial autophagy, and leads to
accumulation of damaged units, despite lower reactive oxygen

species production rate (15). Accumulation of damaged (low-

activity) mitochondria results in a decline of cellular mitochon-

drial activity, eventually reaching a steady state of zero activity.

When 4-min fusion events were allowed to occur nonse-

lectively at a rate of 55 events per mitochondrion per day,

mitochondrial activity stabilized at 75% of its initial level.

Further increase in the frequency diminished the beneficial

effect of fusion and fission. The dependency of the steady-

state activity values on the frequency of fusion-fission clus-

ters is shown in Fig. 3 b.

Selective fusion benefits from higher
fusion-fission frequencies

Fig. 3 b compares the steady-state values of mitochondrial

activity when fusion is selective (only mitochondria with

activity R 40% are allowed to fuse) or nonselective (fusion

occurs independent of mitochondrial activity). In the nonselec-

tive fusion group, steady-state activity peaks at 75%, and

steeply drops to zero for frequencies > 100 events/mitochon-

drion/day. In the selective fusion group, however, steady-state

activity rises for any increments in frequency. The peak

activity of selective fusion reached 94% of maximum at 720

fusion-fission events/day (the highest frequency tested). At

a fusion-fission frequency of ~70 events/mitochondrion/day,

the frequency reported in INS1 and COS7 cells, mitochondrial

activity was 86% and 70% for the selective and nonselective

fusion groups, respectively. These data indicate an additive

positive metabolic contribution by selectivity of the fusion

machinery.

Stabilization of mitochondrial activity
performance under increased damage rate with
selective fusion

Overproduction of free radicals, a decrease in the activity of

DNA and protein repair mechanisms, or a decrease in radical

scavenging capacity can increase mitochondrial baseline
followed by the duplication of a mitochondrion chosen randomly from within the cell’s mitochondrial population. Therefore, the total number of mitochondria

in a cell remains constant. For any particular mitochondrion, likelihood of autophagy is fixed at 1 per 50 min (Pt). (e) Relationship between mitochondrial

activity and numbers of FHUs. The ratio between the two follows a sigmoidal relationship, with a mitochondrion activity of 50% when 5.0 intact FHUs

are present.

Biophysical Journal 96(9) 3509–3518
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damage rate. Here we tested whether increment frequencies of

selective or nonselective fusion facilitate maintenance of mito-

chondria activity when the damage rate is doubled or halved

(Pm ¼ 1/50 min and 1/200 min, respectively) (Fig. 4). When

the damage rate is doubled, mitochondrial activity is attenuated

for any fusion-fission frequency in a frequency-dependent

manner. Increasing fusion frequency can restore mitochondrial

activity as long as fusion is selective. As shown in Fig. 4, when

fusion is nonselective, the optimal frequency (the one that

a

b

FIGURE 3 Dependence of mitochondrial activity on the frequency of fusion

and fission. The integrated mitochondrial activity (Dcm relative to maximum)

of 100 cells, each containing 300 mitochondria, is shown. The duration of each

fusion event is 4 min; Pt¼ 1/50, Pm¼ 1/100 events per minute. (a) Changes of

mitochondrial activity over time with nonselective fusion. At t ¼ 0 all mito-

chondria start at maximal activity, which gradually reduces because of the

accumulation of damage. Mitochondrial activity is shown for conditions of

no fusion (0), no fission (permanent fused state, N), and two frequencies of

fusion events: 55 events/mitochondrion/day and 240 events/mitochondrion/

day. (b) Effect of the selectivity of fusion on the steady-state mitochondrial

activity. Selective (black) and nonselective (white) fusion are shown.
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yields highest steady-state activity) depends on the rate of

damage; optimal fusion frequency is decreased when damage

rate is increased. Even at optimal fusion frequency, mitochon-

dria undergoing nonselective fusion are severely impacted by

the increased damage rate. Selective fusion, on the other hand,

benefited from very high fusion event frequencies, resulting in

a near complete restoration of mitochondrial activity under

a

b

FIGURE 4 Effect of increased damage rate on the steady-state mitochon-

drial activity at different frequencies of fusion events. Selective and nonse-

lective fusion are compared under (a) high (Pm ¼ 1/50) and (b) low (Pm ¼
1/200) damage rates. The values of Pt, Pf, and duration of fusion event are

identical to those used in Fig. 3. Note that, under increased levels of damage,

mitochondrial activity is severely reduced when fusion is nonselective.

Dotted lines demonstrate that, under increased damage rate, increased

frequency of fusion-fission clustering is needed to reach a certain steady-

state mitochondrial activity.



Mitochondrial Fusion-Fission Simulation 3515
increased damage rate. At high damage rate and low fusion

frequency, mitochondrial activity of both selective and nonse-

lective fusion stabilizes at zero. At low fusion rates, redistribu-

tion of damaged FHUs does not occur, and, therefore, the

activity is derived from the balance between damage infliction

and damage removal rates. Whereas, at low damage rate, the

frequency of damage equals that of autophagy, in the case of

increased damage rate, the frequency of damage is fivefold

the frequency of the autophagy module.

Duration of fusion events

Inhibitors of mitochondrial fission are commonly used in the

study of mitochondrial dynamics and metabolism. Here we

a

b

FIGURE 5 Effect of duration of mitochondrial fusion on steady- state mito-

chondrial activity at different frequencies of fusion events. Simulations of (a)

selective and (b) nonselective fusion are compared. Short (4 min) and long

(120 min) fusion events were simulated. Pt ¼ 1/50, Pm ¼ 1/100 events per

minute. For comparison, a smooth continuous line in part b marks the curve

of ‘‘Long Selective Fusion’’ from part a of this figure. The x axis expresses

the maximal frequency of fusion events permitted. In the condition of long

fusion, the actual frequency of fusion events is lower, because most mitochon-

dria are occupied. Above 10 events per min, mitochondria in the long-fusion

condition spend virtually no time in solitary state. Note that long-fusion events

affect mitochondrial activity if fusions are nonselective and more so in higher

and physiological fusion frequencies (~70–100 events/mitochondrion/day).
simulated a condition in which the probability of fission is

diminished, resulting in extended duration of the fused state.

Fig. 5 shows the consequences of increasing the duration of

the fused state from 4 to 120 min. This prolongation resulted

in a decrease of mitochondrial activity for mid- and high-

range fusion frequencies, regardless of fusion selectivity.

Extending fusion duration to 4 h caused mitochondrial

activity to slowly decline to zero (data not shown). These

data indicate that extension of mitochondrial fusion interval

results in a drop in mitochondrial activity similar to results

reported under silencing of Fis-1 and Drp-1 (3,15,35–38).

DISCUSSION

A vast amount of clinical and experimental evidence has

demonstrated that both mitochondrial fusion and mitochon-

drial fission are essential for mitochondrial function (1,2).

However, the benefit of having repetitive and frequent clus-

ters of fusion-fission events has not been addressed thus far.

The goal of the current simulation was to dissect the contri-

bution of kinetic parameters of mitochondrial dynamics to

the maintenance of mitochondrial function.

Contribution of fusion to quality maintenance

Our model took into account recent results demonstrating

that, whereas fusion events allow for exchange of mitochon-

drial membranous and matrix material (6,39), it also results

in the generation of dissimilar daughter units (15,22). This

indicated that either not all of the material is equally distrib-

uted between the two fusion mates or that an active process

of redistribution segregates inactive components into one of

the daughters. In the presented study, this was simulated by

a random exchange of 2 random FHUs out of the total 10

FHUs, resulting in random occurrence of uneven daughters.

Using these features, we tested the possibility that, when

combined, fusion, fission, and autophagy may be able to

maintain high levels of steady- state mitochondrial activity

without repair. Remarkably, the simulation showed that

placing fusion and fission clusters upstream of autophagy

results in a net benefit in mitochondrial activity, even when

fusion is allowed to occur nonselectively. This benefit

exceeds the outcome of autophagy alone that functions as

a threshold-based quality-control mechanism. Furthermore,

it indicated that, in the absence of repair mechanisms, fusion,

fission, and autophagy may be sufficient for the restoration of

mitochondrial function. This is of importance for cases in

which the damage is of a permanent nature (mutation/dele-

tion) and cannot be repaired.

The simulation demonstrated that fusion allows for faster

removal of damaged FHUs because of the redistribution

feature. For example, in a single iteration, two mitochondria

with 40% activity may go through a fusion-fission cluster

and randomly generate two daughters of 30% and 50%

activity. The one with 30% activity will be available for
Biophysical Journal 96(9) 3509–3518
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autophagy. This will remove 7 damaged FHUs from the system

and will create one mitochondrion that has higher activity

compared to that of each of the original two.

Simulation of increased damage rate demonstrated that the

frequency might be an essential variable determining the

ability of the system to cope with increased damage. Faster

damage requires faster iterations that remove the damaged

material in a faster rate than its generation. This finding

stresses the importance of the absolute frequency of fusion

and fission, rather than the sole balance between them.

Mitochondrial fusion as a recombination-like
mechanism

The results obtained from the model demonstrated the

advantage of redistribution of FHUs at each fusion event.

The effect of redistribution on the increased ability to remove

damaged FHUs from the population is very similar to the

effect of genomic recombination combined with positive

Darwinian selection. DNA recombination that occurs during

sexual proliferation is characterized by the assembly of

a new genomic material made by the contribution of both

parents. Both processes, DNA recombination and mitochon-

drial fusion, involve the engagement of two parental units

that will go through a step of redistribution of their compo-

nents. Both fusion and recombination allow functional and

damaged components that coexisted in one parental unit

(chromosome or mitochondrion) to disengage and reorga-

nize in a way that forms an offspring that is better than either

parent. Whereas the process of enrichment through fusion

and fission has parallels to the effect of recombination, it

does not represent a form of mtDNA recombination. This

would require a biochemical mechanism that reorganizes

DNA at the level of the single nucleoid, a process that was

not yet identified. Therefore, mutations are expected to accu-

mulate in mitochondrial genomes through the random loss of

less-mutated genomes (a process also referred to as Muller’s

ratchet) (40). The beneficial effect of fusion on removal of

FHUs may therefore represent the removal of mitochondrial

genomes, which appear at 1–10 copies per mitochondrion.

Selectivity of fusion

Whereas fusion may recruit dysfunctional mitochondria into

the active pool, autophagy targets depolarized mitochondria

for digestion and elimination. This places autophagy and

fusion as competing fates of the depolarized mitochondria.

However, the numerous reports indicating that mitochondrial

fusion is dependent on membrane potential or respiratory

function make fusion a selective process (11–13,41–43). A

principal conclusion of our simulation is that selectivity of

the fusion machinery makes fusion and autophagy comple-

mentary processes rather than competing ones.

Segregation of the damaged units from the fusing popula-

tion prevents the mixing of damaged mitochondria with
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more active mitochondria, but also, and equally important,

leaves them available to autophagy. This property becomes

more apparent under high fusion rate or prolonged fusion

time. Under these conditions, the duration spent in the soli-

tary state is shortened, and, thereby, the probability of

autophagy of depolarized mitochondria is reduced, leading

to the collapse in mitochondrial activity observed at high

fusion frequencies or durations. When fusion is selective,

prolonged fusion durations or high fusion frequencies do

not affect the removal of damaged mitochondria, because

these mitochondria avoid fusion and are therefore available

for autophagy at all times. However, when fusion is nonse-

lective, autophagy is indirectly inhibited by the occurrence

of most units in the fused state and results in the accumula-

tion of low-activity units. Selectivity of fusion appears to

strongly impact mitochondrial activity when high rates of

damage are tested. Here, selective fusion permits the increase

of fusion frequency without compromising autophagy,

thereby allowing faster removal of damaged material. There-

fore, selectivity of mitochondrial fusion is important, not

only as an intramitochondrial complementary route (9,10),

but also as an isolation step preceding autophagy.

To conclude, the presented simulation stresses the impor-

tance of the frequency and selectivity of mitochondrial

fusion for mitochondrial activity. The combination of the

two suggests that mitochondrial fusion is a relevant compo-

nent of a quality maintenance mechanism under conditions

of increased damage, in addition to its benefit as intermito-

chondrial complementation route. Our findings emphasized

that fusion selectivity is a property that indirectly speeds

the removal of damaged mitochondria by autophagy and

also as a property that allows for increased fusion frequency

without compromising the removal rate of dysfunctional

mitochondria by autophagy.

Considerations that may benefit future
development of the model

Whereas the values used in the simulation were based on

experimental findings, the output of the model was expressed

in arbitrary units and could only be used to assess the relative

contribution of the parameters tested. Those included the

mitochondrial activity, the number of copies of mitochon-

drial material, the extent of damage, the site of damage

and the Dcm drop required for triggering autophagy. The

model was therefore qualitatively testing the potential

capacity of fusion, fission, and autophagy to generate

a quality-control mechanism and maintain metabolic func-

tion under continuous damage of mitochondrial material.

For that reason, we chose to ignore that autophagy and mito-

genesis occur as independent events that can further change

under various damage and possibly dynamics rates. The

simulation did not take into account the dependence between

rate of damage and metabolic activity. As it is generally

understood, increased mitochondrial function can lead to
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breakdown of the electron transport chain, and, thereby,

higher abundance of reactive oxygen species, which is

known to cause mtDNA mutations (28). In our model, this

interplay manifested solely as the damage rate.

The correlation between likelihood of selective fusion and

metabolic activity and likelihood of autophagy and meta-

bolic activity were represented as strict thresholds. These

would be better represented by a more continuous correla-

tion, but more experimental data are needed to develop the

necessary equations. Finally, the behavior of mitochondrial

fusion used in the presented model represented its occur-

rence in the most frequent forms. For simplicity of the

model, we chose to ignore rare dynamics events such as

a repetitive fusion event (without any fission event between

them) (15) or a fusion event that involves more than two

mitochondria (O. Shirihai, unpublished data).
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