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ABSTRACT The mitogen-activated protein kinase cascade is a conserved signal transduction pathway found in organisms of
complexity spanning from yeast to humans. In many mammalian tissue types, this pathway can correctly transduce signals from
different extracellular messengers, leading to specific and often mutually exclusive cellular responses. The transduced signal is
tuned by a complicated set of positive and negative feedback control mechanisms and fed into a downstream gene expression
network. This network, based on the immediate early gene system, has two possible, mutually exclusive outcomes. Using a math-
ematical model, we study how different stimuli lead to different temporal signal structure. Further, we investigate how each of the
feedback controls contributes to the overall specificity of the gene expression output, and hypothesize that the complicated
nature of the mammalian mitogen-activated protein kinase pathway results in a system able to robustly identify and transduce
the proper signal without investing in two completely separate signal cascades. Finally, we quantify the role of the RKIP protein
in shaping the signal, and propose a novel mechanism of its involvement in cancer metastasis.
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INTRODUCTION

One of the most fascinating questions in cellular biology is

how a signal transduction network with one or more shared

components can accurately transmit multiple independent

signals from the cell surface to their proper targets (nucleus,

vacuoles, cytoskeletal junctions, etc.). Often, the subcellular

localization of the signal target is the same, but the distinct

signals elicit very different outcomes. The best studied of

this phenomenon is the PC-12 model system (1–3). PC-12

cells are rat-derived neural progenitor cells that can be

induced to proliferate upon epidermal growth factor (EGF)

stimulation, or to differentiate upon neural growth factor

(NGF) stimulation (3). In both cases, the signal is transduced

through the mitogen-activated protein kinase cascade

(MAPK) of Raf, Mek, and Erk (4,5). While some of the

biological details about how this pathway works and how

it evolved are still unclear, a general scheme for pathway

specificity has been uncovered. When stimulated with

EGF, PC-12 cells exhibit a transient spike in Raf, Mek,

and Erk activity, which quickly dies out back to background

levels. Induction with NGF causes a transient spike similar in

magnitude and duration, but in contrast to EGF stimulation,

the spike decays only partway, leading to a long-term, stable

level of Erk activity many hours after the initial stimulus

pulse (3,5). In the presence of an NGF signal, there is a posi-

tive feedback force acting from Erk to Raf, stabilizing Raf in

its active confirmation (2,3,6). This feedback mechanism is

suppressed under EGF signaling. The key mediator of this

suppression was identified as RKIP, a known inhibitor of

Raf kinase activity (3,6,7). This protein appears to not only

competitively block Raf’s ability to activate Mek, but also

through steric or other forces block Erk’s ability to phosphor-

ylate Raf. The working hypothesis is that a secondary
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signaling pathway is activated upon NGF stimulation,

leading to a deactivation of RKIP and hence, enhancement

of the positive feedback loop. Several hypotheses concerning

the next step of the process, how the immediate early genes

(IEG) respond to transient and sustained Erk activity, have

also been proposed (8); however, the details of gene expres-

sion in response to the IEG activity are not known.

We hypothesize that signal transduction networks are opti-

mized to maintain the specificity of a given signal input in

a robust manner. An abstract definition of specificity is given

in Komarova et al. (9) to be the ratio of the correct output to

the spurious output of a signaling network relative to a given

input stimulus. This definition was then applied to several

simple network architectures involving multiple inputs and

outputs but at least one shared component can be tuned to

generate specificity under general conditions on the network

connection strengths and the character of the input stimuli.

Later work applied these abstractions to networks involving

scaffolding and cross-network inhibition (10). These defini-

tions have also been used to analyze the yeast pheromone

and stress response pathways (11). In this work, we extend

this concept of specificity to include robustness, which we

define as a network’s ability to properly interpret a wide

range of signal input profiles into the proper temporal output.

There is growing interest in investigating more complex

mammalian signal transduction pathways using theoretical

and computational approaches. The classic Raf-Mek-Erk

MAPK cascade has drawn much interest, especially concern-

ing receptor activation (12,13), internalization (14), and

cross-interactivity with other networks (15,16). These

computationally intensive models have been shown to be

robust in their parameterization (17,18). RKIP has been incor-

porated into several basic MAPK models with the goal of

better quantifying difficult-to-measure in vivo interaction

parameters (13,19). The MAPK/RKIP system has also been

modeled from a stochastic process algebra perspective;
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however, the biological consequences of the model were not

greatly explored (20). Work of a more theoretical nature has

focused on ideas of specificity within pathways with shared

components. The work of Behar et al. (21) demonstrated the

concept of kinetic insulation, based on adaptive feedback

mechanisms (22), in which two sets of enzymatic reactions

upstream of a single shared component interpret a signal for

transduction by transforming that signal into a specific

temporal and kinetic profile. Ueda and Shibata investigated

a simple stochastic model of the chemotactic sensing mecha-

nism of Dictyostelium to quantify the roles of different sour-

ces of noise in signaling processes, and to uncover regimes

of optimal signal/noise transduction (23).

In this work, we formulate and investigate a mathematical

model of both the major proteins involved in the MAPK

cascade (Raf, Mek, Erk, and RKIP) and the downstream

gene expression network that the cascade activates. We

explore how the output of the MAPK cascade ensures spec-

ificity of the IEG network in a robust manner. This expres-

sion network is represented by the canonical IEG protein

Fos and the two potential cell fate programs it can activate,

proliferation and differentiation. We hypothesize a simple

network architecture in which the differentiation program

can inhibit the proliferation program and show that under

proper stimulation input, based on biological observations,

this network is specific for both outputs.

We further explore how RKIP controls the long-term

dynamics of MAPK activity and demonstrate how each of

the control mechanisms contributes toward the specificity

of the network. These numerical experiments generate

predictions that can be translated into experimental studies.

Our results indicate that this network is designed to prevent

fluctuations in the temporal nature of the input signal from

spuriously activating the improper pathway without the

need to invest in two separate pathways. We also discuss

this hypothesis in the context of dysfunction of the control

mechanisms brought on by mutation and its consequences

for aberrant signal pathway behavior.

MODEL FORMULATION

MAPK cascade

The classic mammalian MAPK cascade involves a signal

transduced from a cell membrane receptor, such as a receptor

tyrosine kinase, to a membrane-associated intermediate, and

on to a series of protein kinases (24,25). These kinases act in

a sequential manner, each one activated by the kinase

directly upstream of itself and in turn activating the next.

The canonical pathway involves three kinases, Raf, Mek,

and Erk (see Fig. 1). We base this model on the work

summarized in Santos et al. (3). Raf is activated by the small

GTPase Ras upon proper upstream stimulation. Raf phos-

phorylates Mek, which then phosphorylates Erk, which

upon translocation into the nucleus activates a number of
Biophysical Journal 96(9) 3471–3482
transcription factors important in IEG expression. Each

enzyme is inactivated by ubiquitous phosphatases found

throughout the cytoplasm. While the general orientation

and flow of signal information through this pathway has

been well established, recent work has also illustrated several

important feedback control mechanisms in this pathway.

Firstly, active Erk has an inhibitory effect on the signaling

scaffold built around the original receptor tyrosine kinase,

and thus will attenuate signal flowing from the extracellular

space even if the extracellular messenger remains for a pro-

tracted period. Secondly, under certain stimuli, Erk shows

a stabilizing effect on Raf activity. This stabilizing effect

is neutralized by the presence of a known inhibitor of

Raf, RKIP; the hypothesis therefore is that particular sig-

naling events lead to a decrease in RKIP levels or activity,

thus enhancing the feedback stabilization of Raf activity

by Erk.

To model this pathway, we make the following assump-

tions. Firstly, we assume Michaelis-Menten enzyme kinetics

govern flow of signal information down the pathway, as well

as any inhibitory mechanisms which block the flow of signal.

We also assume there are finite concentrations of total Raf,

Mek, and Erk available for activation, and so the pathway

is limited in its ability to continuously amplify a signal.

We also assume there is a finite amount of upstream trans-

duction machinery with a single limiting member. We list

each of the state variables for this system in Table 1.

Extracellular signal is input into the system in the form of

time-dependent functions SE(t) and SN(t). These functions

represent the extracellular concentrations of EGF (SE(t))
and NGF (SN(t)) in the PC12 system (3). The only functional

difference between them is that the SN(t) signal involves the

secondary signaling mechanism, which inactivates the RKIP

inhibitor (see Fig. 1). Both signal inputs activate upstream

signaling machinery at the same rate, dependent upon the

amount of inactive but competent transducer available (Eq. 1

below). Active transducer S(t) in turn activates Raf (R(t),

FIGURE 1 Schematic diagram of the MAPK cascade and IEG expression

network.
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Eq. 3) and decays back into inactive but available transducer

via a first-order process. S(t) can also be inactivated by the

presence of active Erk (E(t)); however, this inactivation

event renders it into a form, SI(t), incompetent to become

active again for a period of time longer than the signal events

under consideration (Eq. 2). Active Raf converts inactive

Mek (M(t), Eq. 4) into its active form, and likewise Mek

converts inactive Erk to its active form (Eq. 5).

Finally, we assume the presence of an inhibitory molecule,

I(t), taken to be RKIP or an associated protein (Eq. 6). This

protein interferes with the pathway at two points. Firstly, it

blocks Raf from activating inactive Mek. Secondly, it

sequesters active Raf and thus prevents active Erk from

stabilizing it (6,7). These effects, while dependent upon the

same physical binding event, are separable from a modeling

perspective. Based on recent studies (3), this protein can be

inactivated by stimulation by NGF, one of the two principal

input mechanisms in the system (represented here by SN(t)).
As in receptor resensitization after inactivation, we do not

consider new inhibitor synthesis, as this will occur on a time-

scale longer than those under study.

The full system of equations governing the dynamics of

the MAPK cascade is

dS

dt
¼ ðSEðtÞ þ SNðtÞÞð1� S� SiÞ � dsð1 þ eEÞS; (1)

dSI

dt
¼ dseES; (2)

dR

dt
¼ ksSð1� RÞ � dRR þ kRE

1� R

ð1 þ IÞKR þ 1� R
; (3)

dM

dt
¼ kMR

1�M

ð1 þ IÞKM þ 1�M
� dMM; (4)

dE

dt
¼ kEM

1� E

KE þ 1� E
� dEE; (5)

dI

dt
¼ �kISNðtÞI: (6)

The model is nondimensional, with each variable describing

the fraction of each enzyme in the signal cascade that is

active, and with time normalized to the rate of signal input

TABLE 1 State variables for the MAPK-IEG network model

Component Variable

Active receptor complex S(t)

Disabled receptor complex SI(t)

Active Raf fraction R(t)

Active Mek fraction M(t)
Active Erk fraction E(t)

RKIP protein level I(t)

c-Fos protein level F(t)
Proliferation program level P(t)

Differentiation program level D(t)
into the system. Following with the Michaelis-Menten

kinetics assumption, the action of the inhibitor will modify

the Michaelis-Menten rate equation dP=dT ¼ S=ðKapp
M þ SÞ

with the form Kapp
M ¼ ð1þ I=KIÞKM. We nondimensionalize

the inhibitor concentration by its binding affinity, which

leads to the functional terms (1 þ I)KR and (1 þ I)KM

seen in Eqs. 3 and 4, respectively. Parameters and their

values are listed in Table 2.

IEG expression network

The second module consists of the gene expression cassettes

induced by the transient and long-term activity of the MAPK

cascade (see Fig. 1, lower portion). The principle gene

product under consideration is c-Fos (F(t), Eq. 7), a member

of the IEG family of transcription factors. These genes are

quickly induced by Erk activity. Once translated, the proteins

typically have a very short half-life, and their levels quickly

fall back to background. However, in the presence of sus-

tained Erk activity, IEG gene products become stable,

leading to long-term transcription activation activity and

a secondary set of gene products being induced. This

secondary set of genes activates a separate cell fate program,

suppressing the activity of the first program. We take as our

model system the PC-12 neuronal differentiation model, and

therefore the competing outcomes are proliferation (P(t), Eq.

8) and differentiation (D(t), Eq. 9). We assume F(t) is

induced linearly by active E(t) and decays via a first-order

process; likewise, the cell fate products are induced linearly

via F(t) and decay with first-order kinetics. In addition, we

assume that the activity of the differentiation program,

D(t), is able to suppress the activity of the proliferation

TABLE 2 Parameters for the MAPK network model

Parameter Role Value Reference

ds Upstream signal inactivation rate 2 Estimate

3 Erk-mediated upstream

attenuation factor

1 Estimate

ks Receptor-mediated

Raf activation rate

1 (14)

kR Erk-mediated Raf activation rate 1.5 (14)

kM Raf-mediated Mek activation rate 2.9 (14)

kE Mek-mediated Erk activation rate 5.7 (14)

KR Michaelis-Menten constant

for Erk-Raf interaction

1.5 (14,28)

KM Michaelis-Menten constant

for Raf-Mek interaction

0.01 (14)

KE Michaelis-Menten constant

for Mek-Erk interaction

0.05 (14)

dR Raf inactivation rate 1 Estimated from

]Schoeberl et al. (14)

dM Mek inactivation rate 2 Estimated from

Schoeberl et al. (14)

dE Erk inactivation rate 2 Estimated from

Schoeberl et al. (14)

References are provided for parameters when available; otherwise parame-

ters are marked as estimates. Representative values used in simulations

are provided as well.
Biophysical Journal 96(9) 3471–3482
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program. This assumption is based on the mechanisms of

cell-cycle arrest in differentiation found in the literature

(26,27) while maintaining the idea that P and D are the

net activities of the respective programs, and not any one

representative effector. If we assume E(t) follows the

dynamics described above, then the model for the second

module is

dF

dt
¼ kFE� dFF; (7)

dP

dt
¼ kPF� dPð1 þ dDÞP; (8)

dD

dt
¼ kDF� dDD: (9)

Parameters for this module are listed in Table 3.

Specificity

We define specificity as in the literature (9,10), in which the

specificity of a pathway relative to a given input is the total

amount of proper pathway output divided by the spurious

pathway output. We introduce the notation that PE(t) is the

amount of proliferation product at time t in response to the

SE(t) signal; likewise, PN(t) is the amount of proliferation

product in response to the SN(t) signal. Then the specificity

of the pathway in response to an EGF stimulus is

TABLE 3 Estimated parameters for the IEG network model

Parameter Role Estimated value

kF Erk-mediated Fos production rate 1

dF Fos inactivation rate 1.5

kP Fos-mediated proliferation induction rate 10

dP Proliferation program inactivation rate 1

kD Fos-mediated differentiation induction rate 0.04

dD Differentiation program inactivation rate 0.01

d D-mediated P inhibition factor 10
SP ¼
R

PEðtÞdtR
DEðtÞdt

; (10)

while in the presence of NGF, the specificity is

SD ¼
R

DNðtÞdtR
PNðtÞdt

: (11)

We will also use the idea of mutual specificity in analyzing

this pathway. Mutual specificity of degree k is defined as

the regime of possible architectures (inputs and connection

strengths) in which all possible outputs of a pathway with

shared components demonstrate specificity >k (9).

Simulations

All simulations were performed in MATLAB R14 (The

MathWorks, Natick, MA) using the ODE15s integrator.

Simulations were computed to Tf ¼ 100 min post signal

input time. For the given input signal,

SEðtÞ ¼
S0 0 < t < T0

0 T0%t < Tf
;

�

with some value of signal strength S0 and duration T0, then

the specificity SP is

SP ¼
R Tf

0
PðtÞdtR Tf

0
DðtÞdt

;

and likewise for a SN(t) input. Specificities (Figs. 2, 4, and 8–

10) were computed numerically by integrating the complete

time series solutions according to the definitions in Bardwell

et al. (10) using the MATLAB quadl function. For Fig. 5, T1

is measured as the width of the primary peak at half-height

above the long-term steady-state value of F. In Fig. 6, F1

is computed as the average value of the F signal up to the

computed T1 point. And, in Fig. 7, F2 is the steady-state

height of the F signal past the peak (be it zero or nonzero).
FIGURE 2 Representative simulations of the MAPK

model (top row) and IEG network (bottom row) with

SE(t) (left) or SN(t) (right) stimulation input. Computed

specificity (Eqs. 10 and 11) of each IEG network output

is included. Both input pulses are of magnitude 1 and dura-

tion 15 min.

Biophysical Journal 96(9) 3471–3482
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T2 is the difference between the duration of the input signal

and T1.

The MAPK cascade

The temporal signal structure

Representative simulations of the complete model, Eqs. 1–9,

are shown in Fig. 2 for SE(t) and SN(t) input, along with plots

of the resulting P(t) and D(t) production and the computed

specificity for each case. All simulations were performed

using the ODE15s solver routine from MATLAB.

As is observed experimentally, upon SE(t) stimulation

there is a transient rise in MAPK activity levels, which

then decay back to background levels. This transient spike

induces sharp production of the P(t) genetic program and

only lesser amounts of the D(t) program, leading to speci-

ficity favoring the former. In the case of SN(t) induction,

the transient spike is still observed; however, it decays

only partially and settles instead into a long-term sustained

activity level. This long-term activity is successful in switch-

ing the specificity of the downstream expression network to

favor the D(t) product.

The twofold role of RKIP in shaping the output signal

We first study numerically how changes in the inhibitor level

affects the long-term dynamics of the Erk signal. We adjust

the model slightly by treating the inhibitor as a constant and

perform a bifurcation analysis (i.e., we remove Eq. 6 from

the system and instead treat I(t) h i). The results of this anal-

ysis are shown in Fig. 3. Since there are, in principle, two

mechanisms of control, even though they are linked by

a single binding event, we investigate the effects each one

has independent of the other on the system, and then we

combine them. As seen in Fig. 3, the RKIP effect of seques-

tration of Raf is far more important from the standpoint of

long-term Erk signal suppression than interruption of the

signal flow from Raf to Mek. Moreover, combining the

two mechanisms leads to only a very modest improvement

in signal suppression. Thus, we hypothesize that the two-

phase nature of the system evolved around the steric inhibi-

tory effects the large molecule inhibitor RKIP has on Raf

FIGURE 3 Steady-state magnitude of E(t) as a function of inhibitor (i)

level. Plots represent a purely forward inhibitory role, a purely feedback

sequestration role, or both mechanisms (as marked).
kinase, and that direct Raf-to-Mek signal interruption by

RKIP is important in other contexts.

We can gain insight into the cause of the disparity between

these two control mechanisms by studying the steady-state

equations for the MAPK pathway. Since there are no control

mechanisms acting directly upon Erk, we make the same

approximation as before (the linear approximation to Mi-

chaelis-Menten kinetics and the quasi-steady state assump-

tion), and thus, have nonlinear steady-state equations for

Raf and Mek only,

0 ¼ �dRR þ kREðMÞ 1� R

ð1 þ iÞKR þ 1� R

0 ¼ kMR
1�M

ð1 þ iÞKM þ 1�M
� dMM:

These equations seem, at first glance, nearly symmetric, and

thus, one might expect each of the two control points to exert

equal influence on the pathway outcome. However, the

symmetry is broken by the nondimensional parameters KR

and KM. While each enzyme in question, Erk and Raf,

have similar affinities for their targets, the large disparity

in expression number between the substrates implies

KR>>KM. In particular, it has been observed that the kinetic

parameter values for Raf, Mek, and Erk are nearly the same

(28). On the other hand, the abundance of the Raf protein is

much lower relative to that of Mek and Erk (14). Therefore,

the value for the scaled parameter KR is much higher relative

to the others. Thus, a similar amount of inhibitor will be able to

change the dynamics of the Raf stabilization reaction to

a much greater extent than the Mek activation reaction. This

leads us to the hypothesis that RKIP’s role in the modulation

of Erk’s long-term dynamics evolved separately from its role

as a direct inhibitor of Raf activity.

IEG network driven by the MAPK pathway

Specificity in the IEG network

We begin by analyzing the potential specificity mechanisms

of the gene expression network relative to the temporal

activation profiles observed in the in vitro experiments. A

network with a similar basic architecture was analyzed previ-

ously (10). It was found that mutual specificity could be

attained when the stimuli were simple square pulses whose

durations were longer than the timescale of inactivation for

each network member. This assumption allowed the authors

to make a quasi-steady-state approximation on the levels of

active network elements and derive specificity criteria based

on the model parameters. We now extend this analysis to

consider a biphasic input pulse similar to that produced by

the upstream MAPK cascade.

The gene network receives two distinct input signals: a

transient spike that decays quickly to zero, induced by

EGF; and a similar transient spike that decays quickly to a

nonzero, long-term active state, induced by NGF. These sig-

nal inputs can be represented qualitatively by a combination
Biophysical Journal 96(9) 3471–3482
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FIGURE 4 Comparison between numerically deter-

mined specificity and the strict analytic bound for various

initial pulse durations and pulse amplitude ratios. (Left)

An idealized schematic representation of the two observed

temporal profiles of c-Fos. The upper plot shows c-Fos

dynamics under a typical EGF input signal, in which the

protein is quickly induced and then quickly falls back to

baseline; whereas the lower plot shows c-Fos dynamics

after a typical NGF signal, in which the protein is quickly

induced and then falls to a long-term intermediate level

before returning to baseline. (Right) Contours of network

specificity levels subject to the constraint that mutual spec-

ificity is >1 are plotted, along with the region determined

by conditions 12 and 13. Parameters as listed in Table 3.
of square-wave pulses. Both situations involve a pulse of

amplitude F1 and duration T1. In the EGF case, this is the

only signal input into the expression network. However, in

the NGF case, there is an additional square-wave pulse of

amplitude F2, which terminates at time T2. We make the

restrictions that F1 > F2 and T2 – T1 > T1; that is, the first

signal pulse is strong, but of much shorter duration, than the

second (see Fig. 4, left panel).
It is not possible to compute the integrals in the definition

of specificity analytically for the equations given for the IEG

network. However, we can compute bounds that can be

useful for defining regimes in which specificity for both path-

ways is possible. We first consider the specificity of the EGF

signal (Eq. 10). For a given square-wave input pulse, we can

directly compute from Eq. 9 that DðtÞ ¼ F1kD=dDð1�
e�dDtÞ. Since F1 > 0 only when t < T1, the maximum value

for D(t) is D1 ¼ DðT1Þ ¼ F1kD=dDð1� e�dDT1Þ. Substitu-

ting this value into Eq. 8 in place of the D(t) nonlinearity

yields a linear equation. We can then compute the total

amounts of each network output and determine the speci-

ficity to be

SP ¼
kPdD

dPkDð1 þ dD1Þ
:

Rearranging this condition under the goal of specificity >1

yields

kP

dP

� kD

dD

>
kD

dD

dD1 ¼ d

�
kD

dD

�2

F1

�
1� e�dDT1

�
: (12)

We perform a similar analysis in the context of the two-step

signal, to yield the following condition for specificity

(Eq. 11):
This condition is cumbersome, but under the assumptions

that T2 >> T1 and F1 ¼ 1 (that is, we normalize the first

signal pulse), it reduces to

SD ¼
kDdP

�
1 þ dkD

dD
F2

�
dDkP

;

which we can rearrange to yield a condition to provide spec-

ificity >1:

kP

dP

� kD

dD

< dF2

�
kD

dD

�2

: (13)

We can combine Eqs. 12 and 13 into a single compatibility

condition for mutual specificity for both pathways under

both input regimes:

T1 < �
1

dD

ln

�
1� F2

F1

�
¼ 1

dD

ln

�
F1

F1 � F2

�
: (14)

Thus, we obtain an upper bound for the duration of the

initial, high intensity pulse as a function of the lifetime of

the D class gene products and the ratio of the amplitudes

between the initial and long-term signal inputs. Also note

that if F2 ¼ 0, mutual specificity is impossible; this is very

reasonable, as the D program is designed to gain specificity

only in the presence of the second pulse.

Since these bounds were derived by making stricter

assumptions than necessary, we compare the analytic

condition required for mutual specificity to a numerical

experiment in which the first pulse time, T1, and ratio of

second to first pulse amplitude, F2=F1, are varied for fixed

values of d, dD, and kP=dP � kD=dD. These results are

summarized in Fig. 4. In this figure, we present a contour

plot of the network specificity, S ¼ SPSN, in regimes of
SD ¼

�
ðF1 � F2Þ

kD

dD

T1 þ F2

kD

dD

T2

��
1 þ ðF1 þ F2Þd

kD

dD

þ
�

d
kD

dD

�2

F1F2

�

kP

dP

ðF1 � F2ÞT1 þ F2T2

�
1 þ d

kD

dD

�
kP

dD

:
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mutual specificity, SP > 1 and SN > 1. In regimes without

mutual specificity, we set network specificity to 0 for

contrast. We also plot the theoretical bounds for T1 and

F2 determined under the strict assumptions discussed in

the preceding section.

As seen in Fig. 4, the system exhibits mutual specificity in

a regime bounded above by T1 ~10 for a wide range of

F2=F1. The analytic bound on F2 is very accurate, whereas

the bound for T1 is much stronger than necessary, which is

to be expected given the assumptions made to compute it.

However, the results clearly indicate the need to bound the

duration of the high intensity pulse so that specificity may

be achieved. We also observe how T1 and F2 relate in

providing for mutual specificity for P(t) and D(t) output.

We see that, up to a threshold for T1, mutual specificity for

a system with fixed T1 can be increased by increasing F2

(which provides more input strength into the D program).

Conversely, for a system with fixed F2, mutual specificity

can be increased by decreasing T1 (which more clearly delin-

eates the separation between P and D).

Given these conditions, we can now return to the model of

the MAPK pathway, and investigate how the complex

connections affect the key parameters, which themselves

determine specificity. We consider the full model introduced

above, and perform numerical experiments to study why

such a complex interweaving of control systems may be

necessary by removing key feedback control loops and

assessing their impact.

The role of input signal strength and duration
in shaping c-Fos dynamics

Equation 14 shows how the magnitude and duration of the

two input pulses into the IEG expression network effect

the mutual specificity of the network output. We next explore

how factors that are controllable in the in vitro laboratory

experiments, namely the strength and duration of exposure

to the extracellular messengers, affect the signal inputs into

the gene expression system. We measure the magnitude of

the transient and long-term F(t) signals, and compute the

duration of the F1 phase as the width of the transient peak
at half-height above the steady-state F(t) magnitude. (We

experimented with different methods to obtain F1 and T1

and found no qualitative differences in the results. F1 can

also be computed by taking it to be the maximum value of

the initial F signal peak, and then T1 by approximating the

area under the F peak as a rectangle with height F1 and width

T1. These results were virtually identical to those given in the

text.)

We first study the impact of extracellular signal strength

and duration on the duration of the initial c-Fos expression

pulse, T1. The results of this experiment are found in

Fig. 5. The simulation demonstrates that the system’s

intrinsic shutdown mechanism, presumed to be caused by

the negative feedback loop from Erk to the receptor complex,

is strongly dependent upon the magnitude of the incoming

signal, and that a threshold amount of stimulus must be

exerted to activate it. Further, there is little distinction

between the two input stimuli, implying the duration of the

initial IEG expression burst is independent of which receptor

has been activated.

The magnitude of the Fos transient under both SE(t) and

SN(t) stimulation is shown in Fig. 6. This response is surpris-

ingly insensitive to input duration, suggesting the upstream

machinery becomes quickly saturated upon stimulation.

The system also displays saturation kinetics as a function

of input magnitude. We note that the SN(t) signal allows

for a steeper climb to threshold as a function of input magni-

tude than the SE(t) input, and the steepness is itself time-

dependent. This is likely due to the slow degradation of

RKIP caused by the SN(t), but not SE(t), signal.

As shown in Fig. 7, no combinations of input signal dura-

tion or strength allow the SE(t) signal to generate a long-term

Fos signal, in accordance with experiments. Moreover, even

at high input strengths, there is a minimum signal time neces-

sary for the SN(t) input to generate a long-term Fos response.

This correlates very well with the observation that, in PC-12

cells, the NGF-specific signal profile can be disrupted by

interfering with its receptor, but only up to a critical time

point; after this time, the NGF signal pattern is established

and further loss of the receptor or extracellular signal does

not collapse the internal response.
FIGURE 5 T1 duration as computed from the MAPK

model as a function of input signal strength for specified

signal durations (T0) (left column) or of input signal dura-

tion for specified signal strengths (S0) (right column) of

SE (top row) or SN (bottom row) input.
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FIGURE 6 F1 magnitude as computed from the MAPK

model as a function of input signal strength for specified

signal durations (T0) (left column) or of input signal dura-

tion for specified signal strengths (S0) (right column) of

SE (top row) or SN (bottom row) input.
Robustness of the MAPK-IEG network

We next explore the relative contributions to mutual speci-

ficity each feedback control mechanism provides to each

input signal. We investigate three possible modifications to

the MAPK model, by removing the positive feedback loop

from E to R (kR ¼ 0), removing the negative feedback

loop from E to S (3 ¼ 0), or both. We summarize the charac-

teristics of these four models in Table 4.

We numerically simulated each of these four possibilities

over a wide range of extracellular messenger stimulation

strengths and times, to assess regimes of input signal in

which each achieves both maximum individual specificity

as well as maximum mutual specificity for the network.

Since both stimuli activate the same pathway, we seek to

measure what role, if any, the dynamic nature of the stimulus

input has in determining the pathway output. Pathways in

which the temporal nature of the stimulus (i.e., signal

strength and magnitude) can itself strongly determine the

outcome without regard to the identity of the stimulus will

be very sensitive to fluctuations in the extracellular

messenger. Individual output specificities for each model

network are shown in Figs. 8 and 9 for the SE(t) and SN(t)
inputs, respectively.

Fig. 8 clearly demonstrates that the Erk-to-Raf positive

feedback plays no role in properly interpreting the SE(t)
signal (compare models 2 and 4). However, loss of the Erk

to S negative feedback (models 1 and 3) severely limits the
ability of the system to transduce a wide range of SE(t)
stimuli. Loss of this mechanism leads to a decrease in spec-

ificity during long duration stimulation for all but very weak

signal stimuli, which implies a spurious long-term Erk signal

is being generated and thus, forcing the IEG network toward

the differentiation output.

As seen in Fig. 9, all models also show a lower bound for

input duration necessary for proper signal integration, in

accordance with the biological literature. Loss of the Erk-

mediated receptor attenuation mechanism (models 1 and 3,

respectively) both enhances the specificity of the SN(t) input

and allows for a broader range of properly interpreted input

signals. However, comparisons between Figs. 8 and 9 for

models 1–3 show minimal regions of overlap between their

respective areas of high specificity for each signal input.

The results for model 1 also confirm the analysis per-

formed earlier on a network with the same architecture as

the IEG system here (10). In their steady-state analysis, the

authors found mutual specificity could be attained in this

system only if two different types of input stimuli were

considered: one long but weak, the other strong but short.

Since the MAPK network presented here without any feed-

back mechanisms (i.e., model 1) merely serves as an ampli-

fier that responds to each input source equally, we expect

specificity to depend entirely on the temporal nature of the

input signal, and for mutual specificity, to a single type of

input from both sources (same strength, same duration) to

be incapable of ever providing mutual specificity.
FIGURE 7 F2 magnitude as computed from the MAPK

model as a function of input signal strength for specified

signal durations (T0) (left column) or of input signal dura-

tion for specified signal strengths (S0) (right column) of

SE (top row) or SN (bottom row) input.
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This result is more apparent in an analysis of the total

network specificity, shown in Fig. 10. Here too we plot the

specificity of the full MAPK-IEG network only in regions

of mutual specificity. The role of the feedback mechanisms

is striking. The systems with no positive feedback (models
1 and 2) show no mutual specificity at all, while model 3

shows an extremely small regime of mutual specificity.

Conversely, the full MAPK model gives mutual specificity

>1 over a vast range of possible input strengths and dura-

tions. It indicates a minimum signal strength and duration

necessary for both pathways to be specific, in accordance

with the F1 and T1 studies presented above. Thus, we

hypothesize that the feedback control mechanisms allow

the system to properly interpret the nature of the input signal

by greatly reducing the impact any fluctuations in signal

delivery may have on the downstream pathways, without

the need to maintain two completely separate pathways.

Mutual specificity implies that there is a regime of input

signal dynamics for which the proper signal is transmitted

without excess spurious output. Thus, the mechanisms

ensure that a long EGF signal that acts like an NGF signal

does not induce an NGF response; only the character of

the signal (EGF versus NGF) is important.

Fig. 10 shows the boundaries for mutual specificity for

signal inputs of identical dynamics (i.e., strength and dura-

tion) but different nature (i.e., EGF versus NGF). Our

hypothesis is in part that the various feedback mechanisms

could at least partially insulate the system from temporal

variations in the original input signal. Comparing the

lower-left and upper-right panels of Figs. 8 and 9 show

this is the case: in the presence of a fully functional feedback

system, the P program gains specificity even under pro-

tracted signal inputs at the cost of specificity for the D

TABLE 4 Listing of alternate models to the system of Eqs. 1–9

Model Characteristic Implementation

1 No feedback kR ¼ 0, Eq. 3; 3 ¼ 0, Eqs. 1 and 2

2 No positive feedback kR ¼ 0, Eq. 3

3 No negative feedback 3 ¼ 0, Eqs. 1 and 2

4 Original MAPK model Eqs. 1–9
program only over a small regime of short signal input.

Taken together, these simulations show that the feedback

system provides a measure of insensitivity to dynamics of

the input signal.

While Fig. 10 demonstrates how loss of any of the control

mechanism completely ablates specificity in the system, it is

also important to note that the data in Fig. 4 coupled with

Figs. 5–7 clearly demonstrate that the system has higher

specificity. Fig. 5 shows the how the mutual specificity of

the IEG system depends on the temporal structure of its input

(via c-Fos), and yields a large regime of mutual specificity of

~6 or greater; while Figs. 5–7 demonstrate how input into the

MAPK system determine the structure of the c-Fos response.

In general, mutual specificity is increased with longer input

pulses, which allows the D(t) program to more clearly distin-

guish itself from the P(t) program.

DISCUSSION

The central questions in qualitatively analyzing the mamma-

lian MAPK cascade are how the cell maintains the integrity

of the pathway when it is used in transducing very different

signals, and how differences in activity states of the pathway

in response to different stimuli can lead to very different

genetic responses. In this work, we have shown how a single

pathway with one auxiliary protein, which is differentially

controlled based on signal inputs, can lead to two very

different cell fates by driving a relatively simple gene expres-

sion network. The signal network is designed to provide

robust interpretation of the extracellular signal into one of

two distinct temporal profiles independent of the temporal

profile of the input signal itself. The expression network is

tuned to these profiles so that upon the eventual termination

of the signal, the proper product is dominant.

Theoretical and empirical connections

The results presented here lend themselves quite naturally to

experimental exploration. Firstly, we have hypothesized that

the purpose of the joint network is to insulate the genetic

response from fluctuations in the input signals to the greatest
FIGURE 8 Specificity of the model networks in

response to the SE(t) input signal. Parameters as in Tables

2 and 3, except as noted in Table 4.
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FIGURE 9 Specificity of the model networks in

response to the SN(t) input signal. Parameters as in Tables

2 and 3, except as noted in Table 4.
extent possible. The temporal profiles of the Fos signal are

quite stable over a wide range of extracellular stimuli

(Figs. 5–7). Each of the features of this profile, namely the

length and magnitude of the initial transient as well as the

magnitude of the long-term signal, can be measured

in vitro under varied stimulation scenarios. Also, specific

intervention in the feedback control loops, for example via

point mutation ablation of the Erk-mediated receptor

complex inactivation, can be used to confirm or refute the

hypotheses generated by the reduced models (e.g., Fig. 8),

and show how loss of these control mechanisms leads to

changes in the joint network specificities.

This analysis also lends insight into how changes in the

members of this pathway may lead to aberrant signal pro-

cessing. As seen in Fig. 3, a mutation leading to either

a loss of expression or a truncation of the inhibitor protein,

so that it is only competent to perform the direct Raf inhib-

itory effects (but not the sequestration effects), would render

the cell incapable of properly transducing a signal to generate

a transient Erk activity spike but no long-term activity. This

phenomenon also has implications in the development of
small molecule inhibitors of Raf activity (29). Fig. 3 demon-

strates that a small molecule inhibitor, which blocks only Raf

activity, will not fully rescue the loss of RKIP activity.

The metastatic site selection hypothesis

While in the model system of this work, the PC-12 system,

loss of RKIP activity leads to a loss of proliferative potential,

in other cell systems long-term Erk activity is a driving force

for proliferation, in which the transient spike leads to a non-

proliferative state (8). Thus, such an occurrence would have

the potential to drive cells into an unnatural proliferative state

by transforming a nonmitogenic signal into a mitogenic one.

It is well established that the MAPK pathway itself plays

a prominent role in many forms of cancer (29,30). Loss of

RKIP activity itself has been identified as a marker of malig-

nancy in hepatocellular carcinoma, via aberrant signal pro-

cessing through the IGF-1/MAPK system. Furthermore, it

has been observed that RKIP is a suppressor of metastasis

in several tumor types (31,32); however, the mechanism

underlying this observation is unknown. Conversely, recent
FIGURE 10 Network specificity in regions of mutual

specificity for IEG output of MAPK pathways. Parameters

as in Tables 2 and 3, except as noted in Table 4.
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work has indicated a direct, positive role for RKIP in upregu-

lation of migration in MDCK cells (33,34).

The results presented here offer a novel hypothesis for yet

another mechanism by which RKIP might affect metastasis.

The predicted misinterpretation of extracellular signals (Figs.

8 and 9 and (3)) to a loss of RKIP activity might indicate that

cells with ablated RKIP activity have more potential regions

in which they can successfully colonize and form secondary

tumors. Factors native to those regions, which might be

suppressive to cells with active RKIP, may now induce

permissive signals due to aberrant signal transduction. This

suggests that RKIP-deficient strains will undergo positive

selection in tissue regions rich with cytokines and other

factors which trigger an abnormal proliferative signal,

whereas strains with full, normal RKIP find those same

regions as unsupportive of colonization. We summarize

this metastatic site selection hypothesis in Fig. 11.

This hypothesis is testable. The factors native to the

known preferential metastatic targets of RKIP positive and

RKIP negative tumor strains can be examined. In the

RKIP negative strains, any receptor-cytokine pairing capable

of activating the MAPK pathway would lead to a sustained

ERK, pro-growth signal. However, in the RKIP positive

cells, only those receptors that also activate the secondary

pathway (such as the SN(t) signal in Fig. 1) would lead to

a sustained ERK signal, and thus we would expect to observe

enrichment of those receptors at the metastatic site.

Further on, it would be interesting to investigate the selec-

tive environment of the primary tumor sites. Are there selec-

tive pressures for or against the expression of RKIP? Or is it

a neutral trait in the primary tumor? In the latter case, the

following simple calculation is possible (see (35,36)). If

the mutation rate by which RKIP negative mutants are

created is given by u, and N is the size of the primary tumor,

FIGURE 11 Schematic representation of the metastasis site selection

hypothesis, in which strains bearing a loss of RKIP activity have preferential

site selection and competitive exclusion advantages over strains still contain-

ing RKIP.
then (in the absence of deaths in the colony of cells), the frac-

tion of mutant cells in the tumor is given roughly by u log N.

It follows that if the mutation rate is ~10�7 RKIP mutations

per cell division, then the fraction of mutants in a tumor of

size N ¼ 108 is ~1.8 � 10�6. This means that only a negli-

gible fraction of cells contains mutations in the RKIP gene,

and given that the process of metastases is extremely ineffi-

cient (see (37)), such cells would hardly make a difference in

creating new colonies. Also, this estimate is at odds with

experimental data suggesting that the level of RKIP expres-

sion is low even at the primary tumor locations (38). There

are two ways to resolve this inconsistency:

1. RKIP mutants have a selective advantage at the primary

site.

2. The mutation rate is higher than the basic rate quoted

above, as a result of genetic instability.

There is evidence that both chromosomal instability (39)

and microsatellite instability (40) are observed in hepatocel-

lular carcinomas, and that they are correlated with metastases

(41). Thus, an experimental test of hypothesis 1, directly

above, would greatly aid in our understanding of the internal

dynamics of RKIP mutants at the primary site.

Presently we are developing a stochastic model of mutant

generation that will take in the information on the mutation

rate and selective pressures inside the tumor. The goal is to

create a theoretical method to evaluate the probability distri-

bution for the number of mutants in a colony of a given size,

in a system where the mutations confer a selective advan-

tage. We are also working on developing tools to answer

the following question: how early does the tumor adaptation

have to start to make metastases possible at later stages?

CONCLUSION

We have generated a mathematical model of the MAPK-IEG

network system in the context of the PC-12 proliferation/

differentiation model. While the feedback mechanisms

modeled in this article are well established in recent experi-

mental results (3), our goal in this work was to explore how

these regulatory mechanisms effect the specificity of the

pathway. Further, we investigated how the theoretical foun-

dations of specificity could be used to explain the effects of

malfunctions in these mechanisms, and understand how they

lead to the results that are observed in experiments. The

combined pathway, which contains both MAPK and IEG

networks, has never been considered. Since the entire core

pathway is shared in this system, and the only difference

lies in the auxiliary feedback mechanisms, this is a new class

of pathway in which the concepts of specificity have been

applied. Our analysis further demonstrates how specificity

can be useful in generating hypotheses concerning broader

consequences from the localized failures in a particular

segment of a network. In particular, we present a hypothesis

about the role of RKIP in metastatic site selection.
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