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Determining Protein-Induced DNA Bending in Force-Extension
Experiments: Theoretical Analysis

Alexander Vologodskii*
Department of Chemistry, New York University, New York, NY 10003

ABSTRACT Computer simulations were used to investigate the possibility of determining protein-induced DNA bend angles by
measuring the extension of a single DNA molecule. Analysis of the equilibrium sets of DNA conformations showed that short-
ening of DNA extension by a single protein-induced DNA bend can be as large as 35 nm. The shortening has a maximum value
at the extending force of ~0.1 pN. At this force, the DNA extension experiences very large fluctuations that dramatically compli-
cate the measurement. Using Brownian dynamics simulation of a DNA molecule extended by force, we were able to estimate the
observation time needed to obtain the desired accuracy of the extension measurement. Also, the simulation revealed large fluc-
tuations of the force, acting on the attached magnetic bead from the stretched DNA molecule.
doi: 10.1016/j.bpj.2009.02.022
INTRODUCTION

Many DNA-binding proteins bend the double helix upon form-

ing complexes. Such bends can contribute to DNA packing (1),

regulate DNA functioning (2,3), and even affect the outcome

of enzymatic transformations of the DNA topology (4,5).

The bends are observed experimentally by x-ray analysis of

cocrystals (6), by measuring the fluorescence resonance energy

transfer (7), by shift of electrophoretic mobility of the DNA-

protein complexes (8), by measuring the cyclization efficiency

of short DNA fragments (5), by electron and cryoelectron

microscopy (see (9–11), for example), and by the effect of

protein binding on DNA extension (12). All these methods

have certain advantages and limitations for quantitative anal-

ysis of protein-induced DNA bends, and none of them can

address all types of DNA-protein complexes. It is especially

difficult to investigate DNA bends induced by binding proteins

with low specificity to DNA sequence. Thus, new experi-

mental approaches are definitely needed for the quantitative

analysis of the protein-induced DNA bends. One such poten-

tial approach based on single-molecule measurements of

DNA stretching, was suggested recently (13). An alternative,

more straightforward approach, based on the same measure-

ments of DNA extension, is analyzed in this article.

Experimental methods based on DNA stretching are being

developed at an amazing pace (see (14,15) for reviews).

Researchers have learned how to measure increments of

DNA extension corresponding to one basepair of the double

helix (16). Still, the theoretical analysis shows that the

problem of measuring protein-induced DNA bending brings

new challenges that have not been solved. We hope that

accurate simulation of the experiments can help to clarify

and overcome any problems one might experience in

applying this approach for bend-angle determination.
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It is clear that the bending of stretched DNA by a bound

protein should result in a certain decrease of DNA extension.

Due to the high bending rigidity of the double helix, the

protein-induced DNA deformation spreads beyond the

protein binding site, so the shortening could be rather large.

To obtain a quantitative estimate of this effect, we performed

a computer simulation of the system based on the well-tested

model of DNA. We calculated the reduction of DNA exten-

sion for various values of the bend angle and the force

applied to the DNA ends. Although the effect obtained in

the simulation exceeds the precision of the method substan-

tially, it may be very difficult to measure this reduction of

DNA extension. The problem is that the proteins are bound

to DNA for restricted time intervals, and large fluctuations of

the extension have to be well averaged over these intervals.

We analyzed the problem quantitatively by Brownian

dynamics (BD) simulation of the system. This method

provides an accurate description of large-scale DNA

dynamic properties (see (17) for review). It allowed us to

investigate the fluctuations of the molecule extension

directly over various time intervals, and to observe the longi-

tudinal correlation of the extension fluctuations. We also

studied fluctuations of the force acting from the stretched

DNA on the bead attached to the chain end. We estimated

the time intervals needed to measure DNA extension with

the desired precision. The simulation results are compared

with available experimental data.

SIMULATION METHODS

The DNA model used for the BD simulation is based on the discrete worm-

like chain and is similar to one developed originally by Allison et al. (18,19)

and further elaborated on by Langowski and coworkers (20,21) and by our

group (22,23).

A DNA molecule composed of n Kuhn statistical lengths is modeled as

a chain of kn straight elastic segments of equilibrium length l0. The chain

energy consists of three terms:

1. The stretching energy is computed as
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Es ¼
kBTh

2

Xnk

i¼ 1

ðli � l0Þ2; (1)

where li is the actual length of segment i, h is the stretching rigidity

constant, and kBT is the Boltzmann temperature factor. The energy (Es)

should be considered as a computational device rather than an attempt

to account for the actual stretching elasticity of the double helix. Smaller

values of h allow larger time steps, Dt, in the BD simulations, but also

imply larger departures from l0 (22). To allow larger values of Dt, we

chose h ¼ 100=l20, so that the variance of li was close to l20=100. Although

this value of h is smaller than the actual stretching rigidity of the double

helix (24), it has been shown that such a choice does not affect the simu-

lation results (22).

2. The bending energy (Eb) is specified by angular displacements, qi,

between segments (i þ 1) and i:

Eb ¼
kBTg

2

Xkn

i¼ 1

q2
i : (2)

The bending rigidity constant, g, is defined in such a way that the Kuhn

statistical length corresponds to k rigid segments of the model chain (25).

It has been shown previously that the majority of DNA equilibrium prop-

erties do not change within the accuracy of the simulations if k R 10 (26),

although larger values of k are needed for the simulation of DNA exten-

sion by forces >1 pN (27). The value of k ¼ 10 used here corresponds to

g ¼ 4.81 and l0 ¼ 10 nm when using 100 nm for the Kuhn length (28).

3. The energy of electrostatic intersegment interaction (Ee) is specified by the

Debye-Hückel potential as a sum over all pairs of the point charges located

on the chain segments. The number of point charges placed on each

segment, l, is chosen to approximate well continuous charges with the

same linear density. The value of l should increase as the Debye length,

1/k, decreases. The simulation results presented here were obtained for

[Naþ] ¼ 0.1 M, which requires that l R 5 (22). The Ee is specified as

Ee ¼
n2l2

o

l2D

XN

i;j

exp
�
� krij

�
rij

; (3)

where n is the effective linear charge density of the double helix, D is the

dielectric constant of water, N¼ knl is the total number of point charges,

and rij is the distance between point charges i and j. The value of n is 6.08

e/nm for [Naþ] ¼ 0.1 M (29). This value of n corresponds to the solution

of the Poisson-Boltzmann equation for DNA modeled as a charged

cylinder. It was found by Stigter (29) that this solution can be approxi-

mated well by the Debye-Hückel potential for the charged line. This

approximation requires only a suitable definition of n to match the poten-

tial-distance curve in the overlap region far from the cylindrical surface.

To account for hydrodynamic interactions of the DNA with the solvent,

beads of radius a were placed at each vertex of the chain. These beads are

used only to define the hydrodynamic interaction and thus do not affect equi-

librium properties of the model chain. We used the Rotne-Prager diffusion

tensor to specify the hydrodynamic interaction (30). The value of a was

2.24 nm. This value was chosen to provide experimentally measured values

of the translational diffusion (sedimentation) coefficients of circular DNA

molecules (31–33). In some simulations, a large bead, 1 mm in diameter,

was attached to a DNA end. In this case, we assumed that the hydrodynamic

interaction between the DNA chain and the bead does not affect the bead

motion, so this interaction was ignored.

It was assumed that only one strand of DNA is attached to the bead (and

the supporting pipette), so there is no torsional stress of the double helix in

this setting.

For the majority of the simulation, the time step was 400 ps; for the simu-

lation result shown in Fig. 5 A, the time step was 2 ps.

Although all large-scale equilibrium properties of DNA could be esti-

mated by BD simulation, it can be done much faster by Monte Carlo
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(MC) simulation, which was also used in this study (see (17) for a review

of both kinds of simulation). The DNA model for the MC simulation is

very similar to one described above, with two small distinctions. There is

no need of the segment-stretching potential in the MC simulation, so the

length of the chain segments is always l0 in the model. Also, the Debye-

Hückel potential is replaced by a hard-core potential: each segment is repre-

sented by an impenetrable cylinder of diameter d. The value of d, the DNA

effective diameter (29), accounts for both the geometrical diameter of the

double helix and the electrostatic repulsion between negatively charged

DNA segments. Thus, the value of d is larger than the geometric diameter;

for a [Naþ] of 0.1 M, d ¼ 5.6 nm (29). The concept of effective diameter is

the simplest but sufficiently accurate way to account for the electrostatic

interaction between DNA segments (34).

The BD and MC simulation procedures have been described in detail

previously (22,27).

RESULTS

Extension of DNA molecules with a protein-
induced bend

We modeled the double helix by the discrete wormlike chain,

which provides a very accurate description of DNA exten-

sion by the stretching force (27). The stretching force (F)

is applied to a bead attached to one end of the chain, with

the other end in a fixed position (Fig. 1). We consider

a system where the value of F does not depend on the

bead position, the case where the bead is placed in a uniform

magnetic field (15). It was assumed that the protein binding

site has length b, and the protein-induced bending by angle 4

is uniformly distributed over the site. It was also assumed,

for simplicity, that the binding site is absolutely rigid when

the protein is bound to the site.

We simulated equilibrium sets of DNA conformations for

the chain without any bound protein and calculated its

average extension, hx0(F)i. Then we calculated the extension

for the same DNA with a bound protein, hx(4,F)i. The

change of the extension due to the protein binding, hDxi ¼
hx0(F)i � hx(4,F)i, is plotted in Fig. 2 for various values

of 4 as a function of F. First, we see that for all angles

hDxi has a maximum near F ¼ 0.1 pN. The reduction of

the extension at this force is quite large: for 4 ¼ 120�, for

example, it reaches 25 nm. The fact that hDxi has a maximum

is easy to understand. At very small forces, the extension is

small regardless of the bend; therefore, hDxi has to be small

FIGURE 1 Extension of DNA molecule with a protein-induced local

bend. The bend is localized at a DNA segment of 6 nm in length (red/

dark). The simulated DNA conformation corresponds to a DNA fragment

of 100 nm in length (much longer model chains were used for the simula-

tions reported here). The DNA conformation shown was obtained for a

stretching force of 0.2 pN.
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as well. At large forces, hDxi is small, because DNA defor-

mation produced by the protein binding has smaller

spreading beyond the protein binding site.

Our calculations also showed that changing the length of

the DNA binding site in the range of 6–10 nm has no signif-

icant effect on the extension (Fig. 2). Nearly identical results

were recently obtained for a different model of protein-

induced DNA bend by a very different theoretical method

(35). The authors of that study analyzed hDxi caused by

DNA bends localized at a single point of the double helix.

The agreement between their results and ours gives additional

confirmation that hDxi depends on the value of 4 only and not

on the size of the binding site. We also observed that the

simulation results do not depend on the length of the model

chain if it is >1000 bp (data not shown). This definitely

simplifies the angle determination, which can be done by

comparing the experimental and theoretical values of hDxi.
A strong stretching force can disturb the structure of the

DNA-protein complex and change the bend angle. There-

fore, a maximum value of hDxi corresponding to a small

force is favored for angle determination. Additional exten-

sion of the DNA after dissociation of the protein from the

binding site would reduce the binding free energy, DGb,

by the value FhDxi. Since hDxi does not exceed 35 nm

(Fig. 2), we learn that for a force of 0.1 pN, FhDxi < kBT,

which is a small fraction of a typical DGb value. Thus,

a stretching force of 0.1 pN has little effect on the protein

FIGURE 2 DNA extension change due to protein-induced DNA bending.

The results of computer simulation were obtained for a discrete wormlike

chain whose length corresponded to a 3000-bp DNA. The protein binding

site was localized in the middle of the chain and its length corresponded

to 6 nm (:) and 10 nm (;). The bend angle (4) was uniformly distributed

along the site. The values of 4 used in the computations are shown near the

corresponding data.
binding affinity and should not disturb the structure of the

DNA-protein complex notably.

The values of hDxi plotted in Fig. 2 are the average values

that can be computed with any desirable accuracy. In the real

experiment, the situation is more complicated, however,

because the extension fluctuations are large, especially at

small forces. We computed the amplitude of these fluctua-

tions, sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2i � hxi2

q
, for two different values of F

(Fig. 3). These data show that sx increases sharply when

the extending force decreases, and for a value of F ¼ 0.1 pN

and DNA length of 3000 bp, sx becomes much larger than

hDxi (Fig. 2). These large fluctuations impose a serious diffi-

culty for the measurement of hDxi.
There is no problem measuring hx0(F)i with sufficient

accuracy, since the magnitude of the extension can be re-

corded and averaged over a sufficiently large time interval,

Dt. The situation is more complex for DNA molecules

with bound proteins. These proteins, dissolved in the

surrounding solution, bind the DNA molecule and dissociate

from it. We assume that the protein concentration in the solu-

tion is sufficiently low that the great majority of the time

there are no bound protein molecules, or only one protein

molecule is, bound to the stretched DNA. Under normal

circumstances, the only way to detect the protein binding

is to observe the reduction of the DNA extension. Therefore,

the time interval Dt for the extension averaging should be

sufficient to distinguish between the naked and the protein-

bound states of DNA (Fig. 4). Clearly, large and slow fluctu-

ations of the extension create an obstacle there, since larger

Dt is required for the estimation of hxi. On the other hand, Dt

FIGURE 3 The average amplitude of the extension fluctuations (sx) as

a function of DNA length (L). For chains of a few Kuhn statistical lengths

or longer the value of s2
x is proportional to L. The values of F used in the

computation are shown near the corresponding data.
Biophysical Journal 96(9) 3591–3599
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should be essentially smaller than the average lifetime of the

bound state of the protein, htbi. Thus, the condition Dt <<
htbi is a necessary condition for the successful measurement

of hDxi. To analyze this condition in detail, we need to

analyze the dynamics of the extension fluctuations in the

stretched DNA molecules. Some problems addressed in

our analysis were analyzed recently by Wallin et al. (36).

Dynamics of the extension fluctuations

It seems clear that the fluctuations do not depend essentially

on the presence of a single DNA bend, so we consider below

the dynamic properties of intrinsically straight molecules in

the absence of bound proteins. It is shown in Fig. 3 that fluc-

tuations of DNA extension in this system are very large at the

low-force regime. We investigated dynamic properties of the

system by BD simulation of the stretched DNA molecule. It

has been shown that the method provides an accurate

description of large-scale DNA dynamics (37). The DNA

model used in the BD simulations is similar to that used

for the Monte Carlo simulations (see Methods), and the

same DNA equilibrium properties can be obtained by BD

simulations, although many times more computer time is

needed for this (17). In the majority of the simulation results

shown below, we did not account for the large magnetic bead

attached to the chain end, although its effect will be consid-

ered at the end of this section.

The force acting on the bead from the polymer chain is

entropic in nature, originating from the fact that there are

many more compact, coiled chain conformations than

extended ones. The chain, however, has no memory of this,

and at each particular moment the value of the force is

FIGURE 4 Diagram illustrating the fluctuations of DNA extension under

a constant force as a function of time. The time intervals shown correspond

to the DNA molecule without (gray) and with (black) bound proteins.

Although the average extension is changed substantially by the protein-

induced bend, there is no way to extract this shortening from the data shown,

since the moments of the protein binding and dissociation are masked by the

extension fluctuations. A much longer lifetime of the bound state is needed

for quantitative analysis of the extension change.
Biophysical Journal 96(9) 3591–3599
random, with very broad distribution. A constant force is

observed only when its actual values are averaged over

a substantial time interval. The simulated oscillations of the

force acting on the chain end from the fluctuating polymer

FIGURE 5 Fluctuations of the force, acting from the DNA on a very small

bead attached to its end. The force was averaged over time intervals of 10 ps

(A), 0.1 ms (B), and 1 ms (C). The average value of the force was 0.5 pN. The

length of the model chain corresponds to 1.5 kb DNA.
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chain are shown in Fig. 5 (we assumed that a very small imag-

inary bead is attached to the chain end and that external force F
is applied to this bead). The value of the force was averaged

over various time intervals, Dt, which were in the range 10

ps to 1 ms. One can see from the figure that the force fluctua-

tions for Dt of 10 ps are many times larger than the average

value of the force, 0.5 pN. Only when the force is averaged

over a 1 ms time interval do the fluctuations become relatively

small. The oscillations of F only weakly depend on the

average value of the force and do not depend on DNA length

if it is >1 kb (Fig. 6). The latter observation means that the

force fluctuations are determined by fluctuations of a relatively

short part of the fluctuating chain close to the chain end.

Fluctuations of DNA extension are different from force

fluctuations. In general, to obtain the average value of the

extension with good accuracy, a much longer observation

time is required. Fig. 7 illustrates this issue for the simulated

extension of 1.5 kb DNA under 0.1 pN force. One can see

from the figure that the extension fluctuations averaged

over a Dt of 0.4 ms remain very large, whereas the fluctua-

tions of the averaged force are nearly negligible (Fig. 5).

The extension fluctuations are reduced greatly for a Dt of

25 ms but remain large for this extending force, even for

short DNA molecules (Fig. 7 B).

The simulation showed that the extension fluctuations

strongly depend on the value of F when F < 0.5 pN. The

amplitude of the extension fluctuations, averaged over a Dt

of sx (Dt), is shown in Fig. 8. Again, this is sharply different

from the force fluctuations (Fig. 6). It is clear that the fluctu-

ations should increase with increasing DNA length. If the

DNA length is larger than the correlation length for the

extension fluctuations, sx (Dt) should be proportional to

the square root of the DNA length, according to the central

limit theorem (38).

Using the BD simulation we investigated the correlation

length for the extension fluctuations at different points of

the chain contour,

where Dx(L� s, Dt) is the displacement of the chain element

with coordinate L � s along the contour over time interval

Dt, and L refers to the free end of the chain. The correlation

functions for different values of Dt are well described by an

exponential decay (Fig. 9):

CðsÞ ¼ expð � s=s0Þ; (5)

where s0 is the correlation length. We found that the value of

s0 increases when Dt increases, but even for the largest Dt
accessible in the simulations, 50 ms, s0 was only 1000 nm,

or 10 Kuhn statistical segments of double-stranded DNA.

FIGURE 6 Fluctuations of the force, acting from the DNA on the bead

attached to the molecule end. The amplitude of the fluctuations is plotted

as a function of DNA length for different values of applied force. There

was no preliminary averaging of the force values in this calculation. It

was found that the results of BD simulations of the force fluctuations do

not depend on the length of the model chain if it corresponds to DNA mole-

cules >1 kb in length.

FIGURE 7 Fluctuations of DNA extension. The length of the model chain

corresponds to 1.5 kb DNA. The extension was averaged over time intervals

of 0.4 ms (A) and 25 ms (B). The stretching force was equal to 0.1 pN.

CðsÞ ¼ hDxðL;DtÞDxðL� s;DtÞi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var½DxðL;DtÞ�var½DxðL� s;DtÞ�

p
; (4)
Biophysical Journal 96(9) 3591–3599
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We see that the greater the separation between extension

fluctuations at different points of the chain, measured along

the contour, the smaller the correlation between them. This

result is consistent with the finding that force fluctuations

do not depend on DNA length if the length exceeds 1 kb

(Fig. 6).

The BD simulation makes it possible to determine the time

interval for extension averaging, which is sufficient for reli-

able determination of the bend angle f. To do this, we

plotted sx (Dt) as a function of Dt (Fig. 10). If Dt is suffi-

ciently large, the values of extension averaged over succes-

sive time intervals are not correlated, and sx (Dt) should

be proportional to 1=
ffiffiffiffiffi
Dt
p

. One can see from the data shown

in Fig. 10 that in the absence of the end magnetic bead such

a critical value of Dt is close to 10 ms. The proportionality of

sx (Dt) to 1=
ffiffiffiffiffi
Dt
p

allows us to extrapolate the plot to very

large values of Dt, which are not accessible by the simula-

tion. In this way, we estimated the value of Dt that should

give the desired accuracy of the extension measurement.

To measure the bend angle introduced by a bound protein

molecule with reasonable accuracy, we need sx (Dt) z 2

nm. This condition is satisfied for Dt z 1 s (Fig. 10).

The results of BD simulation on the extension fluctuations

shown above do not account for the fact that a large bead is

attached to one end of the DNA molecule in the experimental

setting (15). The radius of this bead is 0.5–2 mm, so it corre-

sponds to the contour length of 1.5–6 kb DNA. This bead

strongly affects the timescale of the extension fluctuations.

As a result, much larger values of Dt are required to obtain

the average values of the extension with sufficient accuracy.

FIGURE 8 Fluctuations of DNA extension at different values of applied

force. The length of the model chain corresponds to 1.5 kb DNA. The ampli-

tudes of the extension fluctuations were calculated for the extension aver-

aged over a time interval of 10 ms.
Biophysical Journal 96(9) 3591–3599
We repeated the previous analysis of the required averaging

interval for the model chain with the attached bead of 1 mm

in diameter. The data (Fig. 10) show that the same standard

deviation of 2 nm can be achieved for Dt z 20 s for a DNA

fragment of 1.5 kb in length. The averaged extension has to

be recorded at least 20–30 times during a single experiment,

so its total length, texp, cannot be <10 min. For DNA mole-

cules of N bp in length, where the length exceeds 1.5 kb, the

minimal texp in minutes can be estimated as

texpz10

ffiffiffiffiffiffiffiffiffiffi
N

1500

r
: (6)

DISCUSSION

We found that a protein-induced bend can strongly affect

DNA extension at low extending force. This result is in

full quantitative agreement with theoretical calculations by

Nelson and co-workers (35). The shortening has a maximum

at a force of 0.08 pN, which is low enough to preserve the

structure of the DNA-protein complex. However, the

measurement of the extension change at such low force

represents a great challenge due to very large fluctuations

in the system in the low-force regime. We investigated this

issue in detail by direct BD simulation of the system

dynamics. Our analysis shows that even for a short DNA

molecule 1500 bp in length, the extension has to be averaged

FIGURE 9 Correlation of the extension fluctuations between different

points of the chain. The correlation function (Eq. 4) was calculated by BD

simulation for DNA molecules 3 kb in length stretched by 1 pN force

(Extension of the model chain was 0.85 of its contour length under this

force.) The data were obtained for the displacements over different time

intervals, Dt, shown in the plot.
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over ~1 min to obtain ~1 nm precision in the measurement at

a force of 0.1 pN. This can be a serious problem, since the

averaging interval, Dt, should be much shorter than the life-

time of the DNA-protein complex. The majority of DNA-

protein complexes do not have such long lifetimes.

The above estimation accounts for a large bead attached to

the DNA end. The bead slows down the fluctuation dramat-

ically. In the absence of such a bead, the averaging time can

be reduced to 1 s for 1500-bp DNA. It is clear that a reduction

in the bead size can help greatly in this situation.

The extension fluctuations strongly depend on the applied

force. At a force of 1 pN, the value of Dt needed to obtain

sufficient precision of the extension measurement is 10 times

smaller than at a force of 0.1 pN (Fig. 8). However, this force

can disturb the complex structure and increase the complex

dissociation rate.

We also found very large fluctuations of the force acting

from the extended DNA molecule on the attached bead

(Figs. 5 and 6). The amplitude of these fluctuations grows

slightly when the applied force increases. Although the force

fluctuations are averaged well over a 1-ms time interval, they

can be important in studies focusing on the response of

a molecular system to applied force (16,39). One basepair

translocation of a molecular complex along a DNA molecule

FIGURE 10 Fluctuations of DNA extension averaged over time interval

Dt. The amplitudes of the extension fluctuations, sx (Dt), were obtained in the

BD simulation for the model chain with attached bead of 1 mm in diameter

(;) and without any bead (:). The stretching force was equal to 0.1 pN.

For a sufficiently large value of Dt, the average values of extension for adja-

cent time intervals are not correlated, so the value of sx (Dt) has to be propor-

tional to 1=
ffiffiffiffiffi
Dt
p

(this dependence is shown by the dotted line). The simulated

dependences satisfy this condition for Dt > 10 ms and Dt > 100 ms for the

chains without and with the bead, respectively. This consideration allows

extrapolation of the simulated results to larger values of Dt that are not acces-

sible in the simulation directly.
(16) can occur on the microsecond timescale, and during this

time the complex may experience substantially lower force

than its average value.

Force fluctuations do not notably affect the fluctuations of

DNA extension, however. The reason for this is simple:

thermal motion of the solvent molecules that collide with

the bead creates a much larger fluctuating force. Although

there is no way to specify this force, we can estimate the

average displacement of the end bead (hDri) by different

forces over the time step in the BD integration procedure,

which is 0.4 ns. For a bead of 1 mm in diameter, >99% of

the total value of hDri is due to thermal motion of the solu-

tion molecules, and even for a very small bead of 5 nm in

diameter the contribution of thermal motion to hDri remains

close to 90%. At low force (when F is a few pN or less), these

estimations do not depend on the external force acting on the

bead.

It is interesting to compare our simulation results with pub-

lished experimental data. To the best of our knowledge, there

is only one study on DNA extension shortening due to

binding with a single protein (40). The authors observed an

8-nm change in DNA extension due to binding of a single

IHF protein, and a time interval needed for sufficiently accu-

rate averaging of the extension consisted of a few seconds in

their experiments. Unfortunately, a quantitative analysis of

these data in terms of the bend-angle value is not possible

because of the very short length of the DNA molecule used

in that study (74 bp). In such a setting, the bead is located

so close to the surface that there is substantial electrostatic

and entropic repulsion between the surface and the bead,

which depend on the distance between the bead and the

surface. Also, unknown flexibility at a DNA attachment point

becomes an important factor for such short fragments. We can

only say that the experimental results are in semiquantitative

agreement with the simulations described here. In general, too

short a DNA tether complicates the analysis, so the tether

length should not be <1 kb. On the other hand, the tether

length should not be much larger than 1 kb since increasing

the tether length increases the extension fluctuations.

We can also compare the simulated amplitude of the

extension fluctuations with available experimental data.

We analyzed the time course of the extension fluctuations

published recently by Lia et al. (41). One can estimate

from Fig. 1 d in that work that for 3.6 kb DNA, in the

absence of any bound proteins, sx (Dt) z 10 nm for a Dt
of 1 s, a bead diameter of 2.4 mm, and a force of 0.9 pN.

We performed simulations in exactly the same setting, and

found that sx (Dt ¼ 1 s) should be 1.5 nm. There are at least

two possible reasons for the discrepancy. It is possible that

DNA supercoiling, which was introduced into the stretched

DNA in the experiment, increases the extension fluctuation.

Also, the discrepancy between the simulated and experi-

mental data may be due to low accuracy of the extension

measurements at 1 pN force in the experimental setting

used by Lia et al. ((41), and see (42)). The variance of row
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data, recorded without any preliminary averaging, was

~50 nm in the experiment and also exceeded the theoretical

value, which is only 20 nm. The latter value seems very reli-

able since it was obtained using three different methods:

Monte Carlo and BD simulations, and the equipartition

theorem combined with the force-extension equation for

the wormlike chain (see (42,43)).

Another experimental study, related to the work presented

here, describes the correlation between fluctuating forces

applied to the ends of a long DNA molecule (44). In the

experimental setting, the beads were attached to each end

of phage l DNA and stretched with a dual-beam optical

tweezers. The authors reported a correlation between Brow-

nian motion of the beads. The cross-correlation functions

measured in their study had relaxation times in the milli-

second timescale. The experimental results were obtained

for bead displacements over 50 ms (44). We found that the

longitudinal correlation length measured for the same time

interval is ~1000 nm (Fig. 9). Thus, the simulation results

exclude any correlation between fluctuations of beads

attached to the ends of a DNA molecule ~15,000 nm in

length. The reasons for this discrepancy between the simula-

tion and the experimental data are not yet known.

This work was supported by grant GM54215 from the National Institutes of

Health.
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