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A Free-Energy Approach for All-Atom Protein Simulation
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ABSTRACT All-atom free-energy methods offer a promising alternative to kinetic molecular mechanics simulations of protein
folding and association. Here we report an accurate, transferable all-atom biophysical force field (PFF02) that stabilizes the
native conformation of a wide range of proteins as the global optimum of the free-energy landscape. For 32 proteins of the
ROSETTA decoy set and six proteins that we have previously folded with PFF01, we find near-native conformations with an
average backbone RMSD of 2.14 Å to the native conformation and an average Z-score of �3.46 to the corresponding decoy
set. We used nonequilibrium sampling techniques starting from completely extended conformations to exhaustively sample
the energy surface of three nonhomologous hairpin-peptides, a three-stranded b-sheet, the all-helical 40 amino-acid HIV acces-
sory protein, and a zinc-finger bba motif, and find near-native conformations for the minimal energy for each protein. Using a
massively parallel evolutionary algorithm, we also obtain a near-native low-energy conformation for the 54 amino-acid engrailed
homeodomain. Our force field thus stabilized near-native conformations for a total of 20 proteins of all structure classes with an
average RMSD of only 3.06 Å to their respective experimental conformations.
INTRODUCTION

Methods for de novo protein folding and tertiary structure

prediction require accurate, transferable potentials (1).

Molecular-mechanics force fields based on physical interac-

tions promise the greatest degree of transferability and

predictive value. However, presently such force fields play

only a marginal role in protein structure prediction assess-

ments, which are dominated instead by template-based

methods and knowledge-based scoring functions (2,3).

This is due in part to the computational cost of physics-based

models, but also to the lack of transferability of the available

potentials. For medium-sized proteins, de novo folding

studies starting from the unfolded ensemble mostly use

coarse-grained (4) or knowledge-based potentials (5,6) to

overcome the timescale gap between the individual simula-

tion step and the experimental folding time. Kinetic simula-

tions using molecular mechanics force fields have, however,

demonstrated their accuracy for a number of small proteins

and peptides (7,8).

The inherent difficulty to develop transferable, physics-

based potentials arises from the long timescales that must

be sampled to directly parameterize and validate a force field

for a family of proteins. Force fields parameterized for small

molecules with a much wider range of physico-chemical

characteristics are often difficult to transfer to larger biomo-

lecular systems (7) and may have a secondary structure bias

(9–11). There is a complex interplay of many interactions

(electrostatic interactions in a nontrivial dielectric environ-

ment; hydrogen bonding and solvation effects) that all coop-

erate to stabilize one native conformation among a multitude

of competitors.
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Here we pursue an alternate, free-energy approach to

protein simulation, which can be applied to structure predic-

tion and folding. This approach permits a rational, decoy-

based development of an all-atom force field, itself based

on models of the most important biophysical interactions

for family of medium-size proteins (12). It is based on the

thermodynamic hypothesis (13), which stipulates that

many proteins in their native conformation are in thermody-

namic equilibrium with their environment. Based on this

paradigm, the native conformation of a protein corresponds

to the global optimum of its free-energy surface (14,15) in

a suitable biophysical model. Such a model must parame-

terize the internal free energy of a particular backbone

conformation, including side-chain and solvent entropy,

and thus permits the direct comparison of the internal free

energy of different backbone conformations (decoys).

Comparing the energies of large libraries of decoys (16)

with the energy of the native conformation then helps to

select force-field parameters that stabilize the native confor-

mations of many proteins as the optimum of the force field.

A variety of methods can be used with such force fields to

describe protein thermodynamics (17), to analyze the

protein-free energy landscape (14) and the folding kinetics

(18,19). Many recent investigations have shown that implicit

solvent force fields can describe the folding process in agree-

ment with experimental investigations (20,21). The develop-

ment of universal force fields that can treat a wide variety of

proteins remains a significant challenge (20). In this study,

we take one important further step toward the rational and

systematic development of a universal free-energy force field

that can fold a-helical, b-sheet, and mixed secondary struc-

ture proteins. We also demonstrate that free-energy-based

simulation methods are capable to fold medium-sized

proteins using distributed computing strategies. We use

nonequilibrium sampling methods, such as the basin-
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hopping method (22) or its generalizations (23,24), to

exhaustively sample the protein energy landscape starting

with completely unfolded conformation. In all cases reported

here, near-native conformations are uniquely identified as the

lowest energy conformation of the population.

In the first part of this investigation we show that a small

correction to PFF01 (25) permits us to treat three nonhomol-

ogous b-hairpins with 14–17 amino acids to 2.5–3.8 Å back-

bone root mean-square deviation of the respective native

conformations. This advance would be worth little if the

modified force field, PFF02, would destabilize the helical

proteins we have previously investigated. In the second

part of this investigation, using extensive decoy sets

(25–32), we demonstrate that the new force field stabilizes

near-native conformations of all proteins that we have previ-

ously folded. In addition, we show that PFF02 stabilizes

near-native conformations of 32 proteins of the ROSETTA

decoy set, excluding those that are stabilized by external

ligands. With an average Z-score of �3.46, PFF02 has

a higher selectivity than other scoring functions. In a third

part of this investigation, we use nonequilibrium sampling

techniques for four structurally different proteins starting

from completely unfolded conformations. For all proteins

investigated—the 40-amino-acid all-helix HIV accessory

protein, the 20-amino-acid three-strand all-b peptide

(33–35), the 29-amino-acid zinc-finger protein of bba struc-

ture (36), and the 54 amino-acid engrailed homeodomain

(37)—we find near-native conformations with the lowest

energy.

METHODS

With this study, we extend our efforts to develop a method that exploits An-

finsen’s thermodynamic hypothesis (13) to model large-scale structural

changes of proteins in a free-energy approach (12). In this approach, each

protein backbone conformation is assigned an internal free-energy, obtained

by integrating the solvent degrees of freedom, such that the relative occupa-

tion probability of two states i and j with free-energies Ei, Ej, respectively, is

given by

pi

pj

¼ exp
�
� b
�
Ei � Ej

��
:

The advantage of this approach is that it decouples the sampling of the

conformational space from the computation of relative free-energies of

conformations. We can therefore use any sampling technique, including

nonequilibrium methods (38–43), to generate a protein conformational

ensemble—as long as the low-energy region of the free-energy surface,

including the native conformation, is fully reproduced. Nonequilibrium

sampling methods, e.g., Monte Carlo, comprise a move-generation step

and an acceptance criterion. In the following, we only use move-generation

methods that gradually deform the conformation by small changes of the

dihedral angles of the protein, thus generating a nearly continuous protein

trajectory. To accelerate the sampling of the conformational space, we use

a simulated annealing protocol (44) that starts at a high temperature to

generate a new conformation based on the last accepted conformation. At

the end of this move-generation step, we use an acceptance criterion (see

below) (45) to either accept or discard the generated move (22). To clearly

differentiate low-lying metastable conformations, a low final temperature in
Biophysical Journal 96(9) 3483–3494
the annealing simulations is essential. Entropic effects differentiating such

metastable conformations must thus be incorporated into the effective poten-

tial for the microstate.

Force field

A free-energy force field approximates the internal free energy (47) of the

peptide/protein and must therefore account for differential solvation effects

among protein microstates in the folded, the partially folded, and the

unfolded ensemble. Entropic contributions to the hydrophobic effect, i.e.,

changes in the solvent entropy upon exposure of the aliphatic groups of

the protein, are described in an implicit solvation model. In addition, the

electrostatic model must be adapted to account for the nontrivial screening

of electrostatic interactions by the solvent (48).

We extend the all-atom free-energy protein force field (PFF01) (12,25) by

adding terms that differentiate between the backbone dipole alignments

found in different secondary structure elements (49) and a Ramachandran

potential for backbone dihedral angles:

V ¼ VPFF01 þ lbbVbb þ ltorVtor: (1)

The additional electrostatic interaction Vbb was proposed in Avbelj and

Moult (49) to differentiate different types of secondary structure. The

torsional potential is given as

Vtor ¼
X

i

exp
�
� gfðfi � f0Þ

2�gjðji � j0Þ
2
�
; (2)

and was chosen to provide an additional stabilization of the region in the

Ramachandran plot that corresponds to b-sheet formation. The values

4i,ji designate the backbone dihedral angles of amino acid i. We used

f0¼�110�, j0¼ 130� and gf¼ 5� 10�3 deg�2, gj¼ 1.25� 10�3 deg�2

irrespective of any amino-acid propensities; i.e., these values were used for all

amino acids (except proline). The prefactors ltor, lbb control the relative weight

of the correction terms; in PFF02 they are chosen as ltor¼�0.6 kcal/mol and

lbb ¼ 1.0. The full force-field parameterization is provided as Supporting

Material.

Simulation protocols

Basin hopping

We use an adapted version of the basin-hopping technique (22,50–52),

which simplifies the original potential energy surface by replacing the

energy of each conformation with the energy of a nearby local minimum.

In contrast to earlier work (53), we use a simulated annealing (SA) process

(44) for the minimization step. Within each SA simulation, new configura-

tions are accepted according to the Metropolis criterion. The temperature

is decreased geometrically from its starting (chosen randomly from

exponential range of temperatures) to the final value (2 K). The number of

steps in the cycle N increased with the square-root of the cycle number m

(N ¼ 10,000 �
ffiffiffiffi
m
p

). In the folding simulations, a new conformation at

the end of one annealing cycle is accepted if its energy difference to the

current configuration was no higher than a given threshold energy 3T (55).

We used 3T¼ 1 kcal/mol for the b-hairpins and 3T¼ 3 kcal/mol for all larger

proteins.

Evolutionary algorithm

We have generalized the basin-hopping method to a population of size N

(here N ¼ 64), which is iteratively improved by P concurrent dynamical

processes (we used P ¼ 512) (23,43). The whole population is guided

toward the optimum of the free-energy surface with a simple evolutionary

strategy. This strategy must balance energy improvement and diversity of

the population. Conformations are drawn from the population and subjected

to an annealing cycle. At the end of each cycle, the resulting conformation is

either integrated into the active population or discarded maintaining
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FIGURE 1 The top row shows the misfolded structures

of 1A2P, 1E0Q, and 1K43 in PFF01. The bottom row

shows the overlay of the folded (red on the web and upper

curve in print) and the experimental (blue on the web and

dark color in print) conformations of the same peptides

in PFF02.
diversity and achieving lower average energy of the population. Similar

strategies were explored in simulations of the 23 amino-acid BBA5 protein

(57) and 40 amino-acid HIV accessory protein (24,52). This algorithm was

implemented on a distributed master-client model in which idle clients

request a task from the master. The master maintains and updates the pop-

ulation of active conformations of the population and distributes the work

to the clients.

RESULTS AND DISCUSSION

b-sheet peptides

PFF01 (12) was specifically parameterized for helical proteins

and has shown difficulties with b-hairpins, which is the start-

ing point of this investigation. We have attempted to fold three

nonhomologous hairpin peptides with PFF01 and selected the

highly structured 14-amino-acid synthetic peptide (PDB

code: 1K43), the 17-amino-acid N-terminal mutant peptide

of ubiquitin (PDB code: 1E0Q), and the 17-amino-acid

hairpin of the wild-type barnase (residues 85–102, PDB

code: 1A2P) as representative examples for small, stable

b-sheet peptides easily amenable to our simulation approach.

For each protein we performed 10 independent basin-hopping

simulations (22,43) starting from completely unfolded

conformations. In all simulations, we find no near-native

conformations in the resulting low-energy ensemble gener-

ated by the accepted conformations of the basin-hopping

trajectories (see Fig. 1).

Several studies have attributed the difference in electro-

static stabilization of b-sheet secondary structure over helical

conformations to differences in the alignment of the back-

bone dipoles in both types of conformations (48,58). We

have therefore investigated the local correction to the back-

bone electrostatics (Vbb, see Methods) proposed in Avbelj

and Moult (49) as a possible source of overstabilization of

helical content in PFF01. This correction can be interpreted

as a modification of the short-range dielectric constant/polar-

izability of the participating groups and is easily incorporated

in the model. Using this correction to PFF01 alone (ltor, see
Methods), we repeated the folding simulations for several

increasing values of lbb. For lbb > 0.8, 1K43 folds into

a near-native conformation with a backbone root mean-

square deviation (bRMSD) of 2.8 Å, but five of 10 simula-

tions result in helical conformations with energy differences

that are only 0.5–1.2 kcal/mol higher than their misfolded

competitors. The bRMSD of the lowest energy structure of

the other two peptides remains at 7.14 Å and 5.12 Å for

1E0Q and 1A2P, respectively. Many conformations with

backbone hydrogen-bonding characteristic of a b-sheet

topology emerge, but these conformations are still energeti-

cally higher than the helical conformation. The energetic

difference between the misfolded helical structures and the

near-native hairpin conformations is significantly reduced

in comparison to PFF01, but the local correction alone

appears insufficient to fold the proteins into b-sheet struc-

tures. We have therefore investigated the effect of an addi-

tional backbone torsional potential (Vtor, see Methods),

which can contribute to a differentiation between various

secondary structure classes. In accordance with the prior

development of this approach, this term should contain no

amino-acid specific correction and thus uses only the average

values of b-sheet dihedral angles as a reference point. Again,

we conducted 10 independent basin-hopping simulations for

increasing values of ltor (see Methods).

For ltor > 0.25 kcal/mol, lbb ¼ 1 simulations for all three

peptides converged to conformations close to their respective

native conformations (see Fig. 1). The bRMSDs of the lowest

energy structures to the native conformations were 2.67 Å,

3.47 Å, and 2.53 Å for 1K43, 1E0Q, and 1A2P, respectively.

The overlay of the experimental structure with the lowest

energy conformation found in the simulations is shown in

the bottom panel of Fig. 1. We also find that 2 of 3, 4 of 4,

and 4 of 4 native backbone hydrogen bonds are correctly re-

produced for 1A2P, 1K43, and 1E0Q, respectively. The size

of the correction for b-hairpin stabilization is small, favoring

b-sheet conformations over helices by ~0.3 kcal/mol per
Biophysical Journal 96(9) 3483–3494
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FIGURE 2 (Top panel) Overlay of the best energy

decoys selected by PFF02 from the decoy sets generated

in earlier folding studies (red) and the experimental

(blue) conformations of the villin headpiece (1VII, 36

amino acids), the engrailed homeodomain (1ENH, 57

amino acids), and the bacterial ribosomal protein L20

(1GYZ, 60 amino acids). (Bottom panel) Energy versus

bRMSD for the decoys sets of the three proteins. The black

points indicate decoys generated starting from random

conformations, while the cyan points indicate decoys

generated starting from the folded conformation.
amino acid, where such a difference occurs. By varying

the prefactors, we find only a small window in which both

a-helical and b-sheet secondary structure is stabilized.

Force-field validation

The modified force field is thus a good candidate to stabilize

the native conformation of a larger family of proteins (in

comparison to PFF01) as its global optimum. To validate

the force field we have 1), checked the stability of the helical

proteins we have investigated before; and 2), investigated

decoy sets for a set of larger proteins that cannot be readily

folded with the available computational resources.

Helical proteins

We must insure that the additional terms introduced above

do not destabilize helical proteins. A stringent test is

provided by the decoy sets of the folding studies of the

helical proteins folded with PFF01. Such a test only validates

the relative stability of the native conformation with respect

to the decoy set; only de novo simulations (as reported

below) can determine global stability. We have therefore

collected all conformations generated in previous folding

simulations and ranked them in the new force field. Accord-

ing to the thermodynamic hypothesis, the near-native confor-

mations should have lower energies than nonnative decoy

conformations. Using data from previous investigations

we compiled decoy sets for the engrailed homeodomain

(~900 decoys), the Trp-cage protein (~1200 decoys),

2A3D (~1000 decoys), the villin headpiece (~4000 decoys),

and the bacterial ribosomal protein (~1000 decoys). These

decoys sample the native ensemble as well as many

competing low-energy metastable states. Since many confor-

mations lie just a few kcal/mol in (free) energy above the

native conformation in PFF01, testing the force field against

these decoy sets is a strong test for the selectivity of PFF02.

We find that PFF02 stabilizes near-native conformations

of all investigated proteins against the decoy sets. The
Biophysical Journal 96(9) 3483–3494
bRMSD of the lowest energy conformation deviates by

2.33 Å, 2.42 Å, 2.68 Å, 4.59 Å, and 3.76 Å from the native

conformation for the Trp-cage protein (1L2Y), engrailed

homeodomain protein (1ENH), 2A3D (a designed three-

helical bundle), the villin headpiece (1VII), and the bacterial

ribosomal protein L20 (1GYZ), respectively. It is encour-

aging that the native conformation of the bacterial ribosomal

protein L20 is stabilized despite the fact that it has a long

loop region (Gly27-Leu35). The overlays of the native confor-

mation with the lowest energy conformation for the villin

headpiece, the engrailed homeodomain protein, and the

bacterial ribosomal protein L20, are shown in the top panel

of Fig. 2. The bottom panel shows energy versus bRMSD

plots for the respective proteins.

Rosetta decoy sets

The all-atom ROSETTA decoy sets (59) were specifically

designed for the evaluation of force fields and scoring func-

tions. They provide a set of ~2000 conformations for a large,

structurally diverse family of proteins ranging from 30–85

amino acids in size. The ROSETTA scoring function, as

well as individual components of standard molecular-

mechanics force fields (Lennard-Jones interactions, electro-

statics, etc.), fail to differentiate native from near-native

decoys in these datasets. Several knowledge-based scoring

functions, such as RAPDF (60) or DFIRE (61), in contrast,

perform very well. The use of these decoy sets is thus a chal-

lenging test for the selectivity of scoring functions for protein

structure prediction. In this investigation, we excluded

proteins that are stabilized by transition metal clusters or

other ligands, as such interactions are not implemented in

this force field.

The Z-score (the difference between energies of near-

native decoys to the mean energy of the decoy set in units

of its standard deviation) gives a quantitative measure of

the selectivity of the force field. We generated near-native

conformations for 32 proteins of the latest ROSETTA decoy
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FIGURE 3 Z-Scores (inset) measure the energetic differ-

ence of near-native conformations to the average energy of

the decoy set in units of its standard deviation. The vertical

axis arranges the ROSETTA decoy sets in order of

increasing size. The upper-horizontal axis gives the

bRMSD of the lowest energy decoy to native for the lowest

energy decoy in the decoy set; obviously this approach can

select only among the decoys in the database. The lower-

half of the main figure shows the Z-scores of the native

ensemble for decoy sets (more negative is better).
library, which generally deviate, at most, 4 Å from the exper-

imental conformation. Exceptions are 1AM3 and 1UTG,

where deviations of 4.05 Å and 5.4 Å, respectively, are

observed (top panel of Fig. 3, Table 1 for all data). These

deviations arise because both proteins are dimeric in their

biological conformation, but included in isolation in the

decoy set.

To arrive at a meaningful comparison of the energies, we

relaxed the ~2000 decoys for each of the proteins in the

decoy library in PFF02 (one simulated annealing simulation,

50,000 steps, geometrically cooling from T ¼ 200 K to T ¼
3 K). This procedure maps each decoy to a local minimum of

the force field; the average change in bRMSD between the

starting and relaxed conformation is <0.2 Å.

For all proteins, PFF02, with the exception of 1UTG,

selects near-native decoys with a bRMSD of <4 Å as the

lowest energy structure (see Fig. 3). The average deviation

between the experimental and near-native conformation in

the force field for the set of 32 proteins was 2.14 Å. Fig. 3

TABLE 1 Z-scores and lowest energy bRMSD values for the 32

proteins of the ROSETTA decoy set studied in PFF02

PDB ID Z-Score RMSD (Å) PDB ID Z-Score RMSD (Å)

1a32 3.72 1.57 1nre 4.19 2.69

1aa3 3.08 1.71 1orc 3.49 3.82

1afi 2.41 1.13 1pgx 3.26 0.98

1ail 5.73 1.49 1pou 4.72 1.58

1am3 5.32 4.05 1r69 5.57 1.48

1bw6 2.98 3.32 1res 3.47 2.25

1cei 4.19 1.17 1sro 0.43 1.51

1csp 4.01 1.00 1uba 3.19 3.96

1ctf 4.93 1.10 1utg 4.47 5.41

1dol 3.54 2.04 1uxd 3.00 1.35

1gab 3.16 1.81 1vif 2.00 1.01

1hyp 4.49 3.59 2ezh 3.56 3.70

1kjs 2.02 3.32 2fow 1.43 1.94

1lfb 3.69 2.80 2fxb 3.09 1.37

1mzm 3.75 2.75 2pdd 3.69 2.74

1nkl 4.77 2.28 5pti 0.58 1.68
also indicates that there is little correlation between the

size of the protein and the accuracy with which the local

minimum of the force field agrees with the experimental

conformation. Of the resulting Z-scores (lower panel of

Fig. 3), 29 of 32 are<�2, indicating a good selectivity of the

force field for these proteins. The average score of �3.46 is

lower than the Z-scores computed for previously reported

scoring functions for the same decoy sets. Only for 5PTI

do we find a positive Z-score, indicating that the near-native

conformation is near the mean energy of the decoy set. This

is explained by the fact that 5PTI has long unstructured

regions stabilized by two disulfide bridges, which are not

accounted for in this force field. Since the ROSETTA decoys

were specifically generated to span a wide range of confor-

mations for each protein, these data indicate that PFF02

stabilizes near-native conformations of a large family of

small- and medium-size proteins of all secondary structure

classes.

Sampling the energy landscape

Simulations starting from completely extended structures

offer the most stringent validation of the free-energy method-

ology. In the following we report simulations for four

proteins with completely different secondary structure: For

the 40 amino-acid three-helix bundle HIV accessory protein

(1F4I), the 20-amino-acid three-stranded GSGS peptide, and

a 29-amino-acid bba zinc finger protein (1RIK), we gener-

ated 20 independent trajectories with the basin-hopping

method (see Methods). For the larger 54-amino-acid

engrailed homeodomain protein (1ENH), we used

a massively distributed computational architecture to demon-

strate convergence to a near-native conformation from

completely unfolded conformations in ~24 h. Each simula-

tion started from a completely unfolded conformation with

a bRMSD of 37 Å (1F4I), 10 Å (GSGS), 23 Å (1RIK),

and 53 Å (1ENH) for the four proteins, respectively. The

results of these simulations are summarized in Fig. 4.
Biophysical Journal 96(9) 3483–3494



3488 Verma and Wenzel
FIGURE 4 (Top row) Overlay of the lowest-energy (red) and the experimental (blue) conformations of the HIV accessory protein, the GSGS peptide the

zinc-finger protein 1RIK, and the engrailed homeodomain protein 1ENH. (Bottom row) Energy versus bRMSD for all accepted conformations generated in the

simulations. These plots indicate the existence of a single stable native minimum for all three peptides. For the three-helix bundle, there is one metastable

conformation with a bRMSD of ~6 Å; for the b-sheet protein, one conformation at 4.3 Å. The bba zinc finger protein has a single folding funnel that is broader

than for the other two systems. The engrailed homeodomain protein has a metastable conformation at ~10 Å.
Three-helix bundle

For the HIV accessory protein (Fig. 4 a), the lowest energy

structure (overall bRMSD 3.29 Å) shows a perfect alignment

of all secondary structure elements and only small deviations

in the loops connecting the defined secondary structure

elements. The second helix (Glu16 to Phe24) of the lowest-

energy structure of the HIV accessory protein occurs at the

same position of the amino-acid sequence as in the native

conformation but has a slightly different tertiary alignment

with the other helices, because of the succeeding loop

(Ala25 to Glu30) folds in a different direction. Considered

independently, the helical segments (Lys3 to Leu12; Glu16

to Phe24; and Asn31 to Ser39) deviate only by 0.36 Å, 1.11 Å,
Biophysical Journal 96(9) 3483–3494
and 0.53 Å from their native conformation, respectively. The

overlay illustrates that helices H1 and H3 align very well,

while the alignment of H2 with either of the other two helices

is less pronounced, presumably because of the variation in

the turn region. This is also illustrated in the Cb-Cb distance

difference map in Fig. 5 a. The bottom row of Fig. 4 demon-

strates the reproducible and predictive folding of the protein:

There is a well-defined single low-energy ensemble with

bRMSD 3.29 Å and two sets of metastable conformations

with a bRMSD of ~6 Å and 8 Å to the native conformation.

These conformations have an energy difference of 2.6

kcal/mol and 2.4 kcal/mol, respectively, to the native confor-

mation. Interestingly, these conformations have nearly the
FIGURE 5 (a–d) Cb-Cb distance difference maps of the lowest energy conformation for the HIV accessory protein (1F4I), GSGS peptide, zinc finger protein

(1RIK), and Engrailed Homeodomain protein (1ENH). A pixel in row i and column j of the grayscale distance map indicates the difference in the Cb-Cb

distances of the native and the folded structures. Solid (shaded) squares indicate that the Cb-Cb distances of the native and other structure differ by <3.0

(6.0) Å, respectively. Open squares indicate larger deviations.
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same secondary structure, but a different tertiary arrange-

ment than the native conformation (mirror image problem),

indicating that PFF02 is capable of selecting the right tertiary

arrangement.

Three-stranded b-sheet

We have performed 20 independent basin-hopping simula-

tions on the 20-amino-acid GSGS peptide, which was exten-

sively investigated with phenomenological and all-atom

molecular dynamics studies (33). We find that three of the

four lowest energy trajectories converge to near-native

conformations with a bRMSD to the native conformation

of 2.19, 2.26, and 2.67 Å, respectively. The lowest-energy

conformation of the GSGS peptide (Fig. 4 b, overall

RMSD 2.19 Å) shows a perfect alignment of the three

secondary structure elements and only small deviations in

the loops connecting the defined secondary structure

elements.

Aligned independently, the b-sheet the regions from Thr1

to Asn5, Thr8 to Asn13, and Thr16 to Tyr19 agree to within

0.50 Å, 0.55 Å, and 0.55 Å with the experimental conforma-

tion. The Cb-Cb distance difference map shown in Fig. 5 b
for the GSGS peptide indicates perfect alignment to within

experimental resolution. The energy versus bRMSD map

(bottom row of Fig. 4) demonstrates that a near-native

conformations is lowest, but indicates a secondary meta-

stable minimum at 4.6 Å bRMSD with an energy difference

of 2.6 kcal/mol. The associated conformation also corre-

sponds to an all-b structure with different hydrogen-bond

pairings.

bba protein

Zinc fingers number among the most abundant proteins in

eukaryotic genomes, and occur in many DNA binding

domains and transcription factors (62). They function in

DNA recognition, RNA packaging, transcriptional activation

protein folding, and assembly and apoptosis. Many zinc

fingers contain a Cys2His2 binding motif that coordinates

the Zn-ion in a bba-framework (63). Because of their

many functions, much effort has been directed toward the

engineering of novel Cys2His2 zinc fingers (64). Their

minimal bba motif makes such proteins excellent test cases

to study mixed secondary structure proteins. Here we inves-

tigated 1RIK, a 29-amino-acid zinc finger protein, as a repre-

sentative member of this class. As the bottom panel of Fig. 4

indicates, there is a single, relatively broad funnel of confor-

mations that all have the native a-helical and sheetlike

segments. The minimum of the energy corresponds to

a conformation with 4.15 Å bRMSD to the experimental

conformation (see overlay), which agrees in the helical

section (Arg14-Asn27) to within 0.88 Å of the native confor-

mation. The overlay of the lowest energy conformation with

the experimental conformation is shown in Fig. 4 c and the

respective Cb-Cb distance difference map is shown in

Fig. 5 c. Both turns connecting the helical with the first sheet-
like segments and the two sheet regions are predicted

correctly. There is a large set of conformations with even

smaller bRMSD and nearly the same energy, which all

have the same secondary structure but differ in their align-

ment of the helix and the b-sheet regions. In the absence

of the stabilizing ion, the crucial enthalpy contribution stabi-

lizing one single conformation from this ensemble is missing

in PFF02, which explains the occurrence of this relatively

broad isoenergetic family of conformations.

Engrailed homeodomain

The engrailed homeodomain has served as a model system in

a large number of experimental (37,65) and theoretical

studies of protein folding, but was never previously folded

in a biophysical all-atom force field. Here we performed

20 cycles of the evolutionary algorithm (1.5 � 109 energy

evaluations in 566 CPU days on 512 3 GHz off-the-shelf

processors; see Methods) starting from a single unfolded

conformation (bRMSD 53 Å). The energy versus backbone

RMSD plot (bottom panel of Fig. 4 d) falls into two broad

low-energy ensembles that are separated by 1.4 kcal/mol in

energy. The metastable state has the same fraction of helical

content as in the native state and all three helices are

correctly predicted including the N-terminal unstructured

loop. Completely different tertiary arrangement of the

helices is responsible for the high bRMSD of this state.

Note that the evolutionary algorithm does not sample confor-

mations according to their thermodynamic probabilities, but

is a nonequilibrium multiconfigurational approach. The

number of times a particular conformation is visited in the

simulation is thus not indicative of its thermodynamic popu-

lation, which is solely determined by the energy difference to

the native (lowest energy) conformation.

The good agreement of the experimental and the lowest-

energy simulated conformation is illustrated in the top panel

of Fig. 4 d. Considering the whole molecule, the lowest

energy conformation had a bRMSD of 4.28 Å to the native

conformation, which underestimates the performance of

PFF02, because the amino acids (Arg1-Ser7) are unstructured

in the experimental ensemble. Excluding this region, the best

energy conformation has a bRMSD of 3.45 Å to the native

conformation, while the individual helices (H1, Ser8-Glu20;

H2, Glu26-Leu36; and H3, Glu40-Lys53) have a bRMSD of

0.35, 0.30, and 0.44 Å to their experimental counterparts,

respectively. This is also illustrated in the Cb-Cb distance

difference map in Fig. 5 d.

The convergence of the energy as a function of the total

number of simulated annealing cycles is shown in Fig. 6.

The best energy converges quickly to a near-optimal value

with the total number of simulated annealing cycles. The

average energy trails the best energy with a finite energy

difference, which will remain indefinitely by construction,

because the algorithm is designed to balance diversity

and energy convergence. The convergence of the RMSD

with the number of cycles indicates a rapid collapse into
Biophysical Journal 96(9) 3483–3494
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a preformed ensemble that slowly settles into the native and

nonnative populations. The convergence to the native

conformation is driven by helix formation and hydrophobic

packing, as illustrated in Fig. 7. The lowest energy structure

attains its energy optimum by combining maximal energetic

contributions from backbone hydrogen bonding with almost

complete solvent exclusion of the hydrophobic residues

Phe6, Phe18, Phe47, Leu11, Leu14, Leu24, Leu32, Leu36,

Leu38, and Ile43. In agreement with the experimental obser-

vation, the figure illustrates the large flexibility of the protein

in the first eight amino acids of the N-terminal region The

gradual convergence into the native conformation is illus-

trated in Fig. 8, where we show the structural elements of

the six lowest-energy conformations, which share nearly

the same secondary structure.

DISCUSSION

The free-energy methodology offers a complementary

approach to explore large-scale protein structural changes

at the all-atom level. Its great advantage lies in the fact that

nonequilibrium simulation methods can be used to generate

the complete low-energy structural ensemble without

recourse to the detailed kinetics of the folding process.

Such methods are orders-of-magnitude faster than the kinetic

simulations, but unfortunately discard the information on the

short-term kinetics of the folding process. The results of this

study demonstrate the existence of a transferable free-energy

force field based on physical interactions that stabilizes the

FIGURE 6 Simulations of 1ENH using the evolutionary algorithm. (Top

panel) Instantaneous (red on the web and light color in print), average (blue
on the web and the upper curve in print), and lowest (black) energy of the

conformations that are returned asynchronously from the client nodes to

the master. (Bottom panel) The RMSD of the conformation with the lowest

energy in the population, indicating convergence of the simulation.
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native conformations of a variety of proteins as the respec-

tive global optimum of their free-energy landscapes. Our

decoy-based studies demonstrate a high selectivity of the

force field with respect to challenging decoys sets for a large,

structurally diverse family of proteins. The results obtained

in the free-modeling section of the competitive assessment

of protein structure prediction (CASP7) (http://www.

predictioncenter.org/, group P033) (66) suggest that this

result holds beyond the 45 proteins investigated here.

Combined with complementary results from other investi-

gations, in particular regarding kinetic and thermodynamic

stability, these data demonstrate a wide applicability of the

PFF02 force field. Using a variety of different simulation

techniques, we have found near-native lowest energy confor-

mations for 20 proteins with this approach (67) with an

average RMSD of only 3.06 Å to the respective native

conformation, as summarized in Table 2. The decoy-based,

force-field development approach (20) used here is rational,

systematic, and extensive. The development of PFF02 is thus

an important step toward the development of universal

free-energy-based simulation methodology for protein simu-

lation. Because free-energy estimates for near-native confor-

mations are computationally inexpensive, the free-energy

approach can more easily differentiate between force field

and sampling failures than can kinetic techniques (68).

With PFF02 in hand, it is possible to develop more

efficient folding methods, particularly for the reconstruction

of folding dynamics and the transition state ensemble.

FIGURE 7 Color-coded helix content illustrated on the native conforma-

tion for 1ENH (web only: red, high helix content; yellow, intermediate; blue,

low) averaged over all conformations of the final ensemble. The hydro-

phobic side chains are shown in orange on web.

http://www.predictioncenter.org/
http://www.predictioncenter.org/
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Promising candidates for such methods exist based on Monte

Carlo simulation (5,6,69) and network models (18,19,70).

The development of a transferable all-atom force field thus

opens many new opportunities to study protein folding,

aggregation, and structure prediction.

The physical origin of the correction terms in PFF02,

particularly of the torsional potential, also needs further inves-

tigation. Torsional terms are used in several existing protein-

force fields, but the complex interplay of different terms to

stabilize one type of secondary structure over the other is

not easy to resolve into unique contributions. This is partly

because each of these terms is only an approximation of the

physical reality of the underlying interactions. Free-energy

force fields approximate the internal free-energy of the

peptide, but cannot directly account for backbone conforma-

tional entropy, because only a single backbone conformation

is considered, thus differential entropic contributions between

different secondary structure conformations may play a role in

addition to terms also encountered in force fields for the

internal energy of the protein (e.g., quantum effects for dihe-

dral bonding not accounted for by the steric interactions of the

peptide backbone). Several studies have investigated the

impact of dynamic flexibility on backbone propensity of

a-helix and b-sheet proteins, suggesting a larger flexibility

of b-sheet conformations (71–74), but these findings are not

undisputed. Further complementary studies are thus required

to help us better understand the torsional correction term.

FIGURE 8 Overlay (top left) of the six low-energy conformations of the

final ensemble for 1ENH (web-only: blue, unstructured region; red, H1; green,

H2; and orange, H3, as defined in the text). It can be seen that the lowest-

energy conformations from the ensemble have the same secondary structure.
TABLE 2 List of proteins stabilized by PFF02 in simulations

starting from completely extended conformations

PDB ID #AA Topology RMSD(Å) Structure Overlay

Helical 1L2Y 20 a 3.11

1RIJ 23 a 4.36

1WQE 23 aa 2.33

1F4I 40 aaa 3.29

1ENH 54 aaa 3.40

1EDK 56 aaa 4.05

Sheet 1LE0 12 bb 1.50

(Continued)
Biophysical Journal 96(9) 3483–3494
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TABLE 2. Continued

PDB ID #AA Topology RMSD(Å) Structure Overlay

1LE1 12 bb 1.96

2EVQ 12 bb 2.62

1J4M 14 bb 2.46

1K43 14 bb 2.67

1NIZ 14 bb 2.04

1PG1 16 bb 1.67

1U6U 17 bb 4.57
Biophysical Journal 96(9) 3483–3494
CONCLUSIONS

We developed an atomistic free-energy force field for proteins

based on the biophysical interactions governing protein

conformational changes. Using this approach, we have been

able to demonstrate for a wide variety of proteins, with all

types of secondary structure, that near-native conformations

TABLE 2. Continued

PDB ID #AA Topology RMSD(Å) Structure Overlay

1E0Q 17 bb 3.47

1A2P 17 bb 2.53

GSGS 20 bbb 2.19

Mixed 1T8J 23 bba 4.69

1RIK 29 bba 4.15

1BHI 29 abb 4.11

Overlays of lowest energy conformation (red on the web and light color in

print) show the structural agreement with the native conformation (blue on

the web and dark color in print).
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are lowest in energy. For a total of 20 proteins, ranging 12–56

amino acids in size, the lowest energy conformations differ by

an average RMSD of 3.06 Å to their native conformations.

However, it should be noted that the efficiency of this simu-

lation approach is rooted in the neglect of the details of the

short-time kinetics of the underlying biophysical process

and the crossing of kinetic barriers is accelerated in nonequi-

librium simulation methods. Further studies must demon-

strate the thermodynamic stability of the proteins. In addition,

it is important to develop methods that can recover detailed

kinetic information based on the conformational ensembles

generated in the free-energy approach (8,19,70).

SUPPORTING MATERIAL

A detailed force field description is available at http://www.biophysj.org/

biophysj/supplemental/S0006-3495(09)00387-7.

Parts of the simulations were performed at the KIST teraflop cluster and at

the Barcelona Supercomputer Center.

We thank the Deutsche Forschungsgemeinschaft (grant Nos. WE 1863/10-2

and WE 1863/14-1) and Landesstiftung Baden-Würtemmberg for financial
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6. Irbäck, A., and S. Mohanty. 2006. PROFASI: a Monte Carlo simulation
package for protein folding and aggregation. J. Comput. Chem.
27:1548–1555.

7. Simmerling, C., B. Strockbine, and A. E. Roitberg. 2002. All-atom
structure prediction and folding simulations of a stable protein. J. Am.
Chem. Soc. 124:11258–11259.

8. Snow, C. D., L. Qiu, D. Du, F. Gai, S. J. Hagen, et al. 2004. Trp zipper
folding kinetics by molecular dynamics and temperature-jump spectros-
copy. Proc. Natl. Acad. Sci. USA. 101:4077–4082.

9. Yoda, T., Y. Sugita, and Y. Okamoto. 2004. Comparisons of force fields
for proteins by generalized-ensemble simulations. Chem. Phys. Lett.
386:460–467.

10. Wang, T., and R. C. Wade. 2006. Force field effects on a b-sheet protein
domain structure in thermal unfolding simulations. J. Chem. Theory
Comput. 2:140–148.

11. Hornak, V., R. Abel, A. Okur, B. Strockbine, A. Roitberg, et al. 2006.
Comparison of multiple AMBER force fields and development of
improved protein backbone parameters. Proteins. Struct. Funct. Bioin-
form. 65:712–725.

12. Herges, T., and W. Wenzel. 2004. An all-atom force field for tertiary
structure prediction of helical proteins. Biophys. J. 87:3100–3109.
13. Anfinsen, C. B. 1973. Principles that govern the folding of protein

chains. Science. 181:223–230.

14. Brooks III, C. L., J. N. Onuchic, and D. J. Wales. 2001. Taking a walk

on a landscape. Science. 293:612–613.

15. Onuchic, J. N., Z. Luthey-Schulten, and P. G. Wolynes. 1997. Theory of

protein folding: the energy landscape perspective. Annu. Rev. Phys.
Chem. 48:545–600.

16. Park, B., and M. Levitt. 1996. Energy functions that discriminate x-ray

and near-native folds from well-constructed decoys. J. Mol. Biol.
258:367–392.

17. Lin, C.-Y., C.-K. Hu, and U. H. E. Hansmann. 2003. Parallel tempering

simulations of HP-36. Proteins Struct. Funct. Genet. 52:436–445.

18. Berezhkovskii, A., and A. Szabo. 2004. Ensemble of transition states for

two-state protein folding from the eigenvectors of rate matrices.

J. Chem. Phys. 121:9186–9187.

19. Andrec, M., A. K. Felts, E. Gallicchio, and R. M. Levy. 2005. Chemical

theory and computation special feature: protein folding pathways from

replica exchange simulations and a kinetic network model. Proc. Natl.
Acad. Sci. USA. 102:6801–6806.

20. Chen, J., W. Im, and C. L. Brooks. 2006. Balancing solvation and intra-

molecular interactions: toward a consistent Generalized Born force

field. J. Am. Chem. Soc. 128:3728–3736.

21. Pitera, J. W., and W. Swope. 2003. Understanding folding and design:

replica-exchange simulations of ‘‘Trp-cage’’ miniproteins. Proc. Natl.
Acad. Sci. USA. 100:7587–7592.

22. Verma, A., A. Schug, K. H. Lee, and W. Wenzel. 2006. Basin hopping

simulations for all-atom protein folding. J. Chem. Phys. 124:44515.

23. Schug, A., and W. Wenzel. 2006. An evolutionary strategy for all-atom

folding of the sixty amino acid bacterial ribosomal protein L20. Bio-
phys. J. 90:4273–4280.

24. Verma, A., S. M. Gopal, J. S. Oh, K. H. Lee, and W. Wenzel. 2007.

All-atom de novo protein folding with a scalable evolutionary algo-

rithm. J. Comput. Chem. 28:2552–2558.

25. Herges, T., and W. Wenzel. 2005. In silico folding of a three helix

protein and characterization of its free-energy landscape in an all-

atom force field. Phys. Rev. Lett. 94:018101.

26. Herges, T., A. Schug, and W. Wenzel. 2004. Exploration of the free-

energy surface of a three-helix peptide with stochastic optimization

methods. Int. J. Quantum Chem. 99:854–863.

27. Herges, T., A. Schug, and W. Wenzel. 2004. Protein structure prediction

with stochastic optimization methods: folding and misfolding the villin

headpiece. In Lecture Notes in Computer Science. A. Lagana,

M. L. Gavrilova, V. Kumar, Y. Mun, and C. J. K. Tan, et al., editors.

Springer, New York 454–464.

28. Schug, A., T. Herges, and W. Wenzel. 2003. Reproducible protein

folding with the stochastic tunneling method. Phys. Rev. Lett.
91:158102.

29. Schug, A., and W. Wenzel. 2004. All-atom folding of the Trp-cage

protein with an adaptive parallel tempering method. Europhys. Lett.
67:307–313.

30. Schug, A., T. Herges, and W. Wenzel. 2004. All-atom folding of the

three-helix HIV accessory protein with an adaptive parallel tempering

method. Proteins. Struct. Funct. Bioinform. 57:792–798.

31. Schug, A., and W. Wenzel. 2004. Predictive in silico all-atom folding of

a four-helix protein with a free-energy model. J. Am. Chem. Soc.
126:16736–16737.

32. Herges, T., and W. Wenzel. 2005. Free-energy landscape of the villin

headpiece in an all-atom force field. Structure. 13:661–668.

33. Ferrara, P., and A. Caflisch. 2000. Folding simulations of a three-

stranded antiparallel b-sheet peptide. Proc. Natl. Acad. Sci. USA.
97:10780–10785.

34. Cavalli, A., M. Vendruscolo, and E. Paci. 2005. Comparison of

sequence-based and structure-based energy functions for the reversible

folding of a peptide. Biophys. J. 88:3158–3166.
Biophysical Journal 96(9) 3483–3494

http://www.biophysj.org/biophysj/supplemental/S0006-3495(09)00387-7
http://www.biophysj.org/biophysj/supplemental/S0006-3495(09)00387-7


3494 Verma and Wenzel
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