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ABSTRACT AFM has developed into a powerful tool in structural biology, providing topographs of proteins under close-to-
native conditions and featuring an outstanding signal/noise ratio. However, the imaging mechanism exhibits particularities:
fast and slow scan axis represent two independent image acquisition axes. Additionally, unknown tip geometry and tip-sample
interaction render the contrast transfer function nondefinable. Hence, the interpretation of AFM topographs remained difficult.
How can noise and distortions present in AFM images be quantified? How does the number of molecule topographs merged
influence the structural information provided by averages? What is the resolution of topographs? Here, we find that in high-reso-
lution AFM topographs, many molecule images are only slightly disturbed by noise, distortions, and tip-sample interactions. To
identify these high-quality particles, we propose a selection criterion based on the internal symmetry of the imaged protein. We
introduce a novel feature-based resolution analysis and show that AFM topographs of different proteins contain structural infor-
mation beginning at different resolution thresholds: 10 Å (AqpZ), 12 Å (AQP0), 13 Å (AQP2), and 20 Å (light-harvesting-complex-
2). Importantly, we highlight that the best single-molecule images are more accurate molecular representations than ensemble
averages, because averaging downsizes the z-dimension and ‘‘blurs’’ structural details.
INTRODUCTION

AFM in structural biology

AFM (1) has developed into a powerful tool in membrane

research (2). Topographs at submolecular resolution can be

acquired under close-to-native conditions in buffer and under

ambient pressure and temperature on 2D-crystallized (3) or

densely packed (4) membrane proteins, and most recently

on single-component (5) and multicomponent native

membranes (6,7). These images represent a strong basis for

structural models of multiple membrane protein complexes

working together (8,9). Such AFM images are generally

termed ‘‘high-resolution AFM topographs’’.

High resolution in structural biology

The meaning of ‘‘high resolution’’ in structural biology

depends on the technique considered. In NMR studies, a

well-defined structure determines the position of atoms with

an RMSD of ~0.5 Å (F. Cordier, Institut Pasteur de Paris,
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France, personal communication, 2008 (10)). In x-ray crystal-

lography of 3D crystals, the term high-resolution is applied to

a resolution better than 2 Å or, more stringently, when atomic

resolution (~1.2 Å) is achieved (D. Picot, Institut de Biologie

Physico-Chimique, Paris, France, personal communication,

2008) (11). In EM, the term is again applied differently and is

furthermore attributed to distinct nominal resolutions depend-

ing on the subfield: in EM crystallography of 2D crystals, struc-

tures determined to a resolution better than ~3.5 Å are consid-

ered to be at high resolution (12). High resolution in single

particle analysis is achieved at a resolution better than 10 Å

(13), except for the analysis of highly symmetrical particles,

i.e., viruses, where 4 Å were achieved (14). Finally, in biolog-

ical AFM studies, when topographical features smaller than the

protein molecule itself were observed, the term high-resolution

AFM was applied.

The term high resolution is hence purely qualitative, tech-

nique dependent, and changing with time. However, it is note-

worthy that the transposition of structural information among

NMR, x-ray, and EM data is fairly well assessed: NMR and x-

ray structures are successfully rendered to and docked into

lower-resolution EM envelopes (13), because EM densities

have been used to phase x-ray diffraction patterns (15).

AFM data represent an exception to this: so far, AFM topo-

graphic information is used to complement information

from other techniques (8,9,16), the resolution issue is not

well addressed, and comparison with data sets acquired by

other techniques of identical objects evokes considerable

discrepancies in terms of features seen at distinct resolutions.
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Discrepancies between resolution and structure
assessment in EM and AFM

It has been reported that some AFM topographs had lateral

resolution better than 5 Å (16). Unfortunately, although there

was a scientific basis for such resolution assignments, there

are obvious discrepancies between the structural features

expected to be seen at this resolution (i.e., amino acids) and

what is actually visible in such topographs. The discrepancies

are particularly problematic when the AFM analysis is

compared directly with EM data of the same sample: the AFM

images, although having higher resolution than the EM images

(as determined by DPR (17), the FRC (18), the SSNR (19,20),

or the observation of the outermost diffraction spots in calcu-

lated power spectra of highly ordered 2D crystals (21)), often

display fewer structural features than the latter. As an illustra-

tion, we discuss three examples: Fisrt, bR: the best AFM topo-

graphs on purple membrane, native 2D crystals of bR were

reported to resolve the bR surface to better than 5 Å resolution

(16,22). In these topographs, three features corresponding to

the cytoplasmic loops are visible. In contrast, EM projection

maps of the same sample at 7 Å resolution reveal seven density

features corresponding to the seven transmembrae helices

(23,24). Second, AqpZ: the AFM topography of the extracel-

lular surface of AqpZ was determined to 7 Å resolution and

revealed three features per monomer (25). In contrast, the

EM projection at 8 Å resolution revealed approximately six

density peaks (26). Third, AQP0: the AFM topography of the

extracellular surface of AQP0 was determined to 6.1 Å resolu-

tion. This topography revealed two protrusions per AQP0

monomer (21). The accompanying EM projection map of

the same 2D crystals determined to 6.9 Å resolution revealed

approximately nine densities per AQP0 monomer (21).

For these three examples, the structural information

provided by AFM is poor compared with the EM data, and

with what is expected from the resolution limit reported.

Today, atomic structures of bR (27,28), AqpZ (29), and

AQP0 (30,31) are available and allow comparison with the

lower-resolution EM and AFM data. The above examples

illustrate the need to further analyze in detail the signal, reso-

lution, and significance of structural features reported in AFM

topographs. This knowledge will bring credibility to the AFM

technique, advance the understanding of AFM imaging, and

allow the information contributed by AFM to be integrated

with data from other techniques applied in structural biology.

In this work, we analyze AFM topographs. First, we study

noise and distortions, finding that many molecule images in

high-resolution AFM topographs are only slightly disturbed.

To identify these images, we discuss cross-correlation searches

and propose an image-selection criterion based on the IS of the

protein studied. Next, we propose a novel feature-based reso-

lution assessment method that can be applied to ensemble aver-

ages but also to single molecules. We conclude that significant

structural information can be found in high-resolution AFM

topograph between 10 Å and 20 Å resolution depending on
the sample studied, in agreement with structural analysis per-

formed by other imaging techniques. Finally, we show that

AFM is a real single-molecule analysis technique, because

best single molecules are better structural representations

than ensemble averages.

MATERIALS AND METHODS

AFM

The AFM (1) was operated in contact mode at ambient temperature and pres-

sure. Imaging was performed with a commercial Nanoscope-E AFM

(Veeco, Santa Barbara, CA) equipped with a 150-mm scanner (J-scanner)

and oxide-sharpened Si3N4 cantilevers (length 100 mm; k ¼ 0.09 N/m;

Olympus Ltd., Tokyo, Japan). For imaging, minimal loading forces of

~100 pN were applied, at scan frequencies of 4–7 Hz, using optimized feed-

back parameters. For more details see (21).

Data analysis

All image treatment and analysis of AFM topographs were performed using

a JAVA-based image processing routine integrated in the ImageJ program

(32). All AFM topographs had an image size of 512 � 512 pixels and

were 8-bit gray-scale formatted, resulting in a total range of 256 gray values

for the total z-range.

To quantify the total noise present in AFM topographs, several images con-

taining different amounts of noise were computed by superpositioning

a noise-free artificial AqpZ 2D crystal (in silico assemblage of the unit cell,

113 unit cells in total) with 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%,

or 90% of Gaussian white noise (mean 117 gray values; SD 36 gray values;

average gray value change on pixel: 1, 2, 4, 9, 17, 30, 49, 70, or 94 gray values,

respectively). Furthermore, a noise-free image was superpositioned by

a Gaussian noise gradient ranging from 0% to 80%. To identify single parti-

cles in these images, cross-correlation maps with a noise-free reference image

(i.e., unit cell of the artificial AqpZ 2D crystal) were calculated, and the result-

ing CCV was used as selection criterion for each particle:

CCV ¼

P
i

�
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�
�
�
qðiÞ � q

�
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The difference of the pixel value and the mean gray value of the image is

calculated for each pixel (i) in the reference (p) and the raw data (q) images,

normalized, and integrated, resulting in a CCV at each image position that

will be equal to 1 in case of identity of images compared.

These in silico measurements of the resemblance (i.e., CCV) of a noise-

free reference compared with images containing defined amounts of noise

were used for a calibration graph. With this standard, we estimated the

average gray value deviation of raw data AFM topographs from an average.

The reference images used to analyze CCV of raw data AFM topographs

were ensemble averages of all molecules present in the image after transla-

tional and rotational alignment.

Averaging of aligned molecule images is addition and normalization of

pixels in the image matrix following:

Ave ¼ 1=N
X�

xij

�
; (2)

where N is the number of molecules averaged, and xij stands for the gray

value of pixel i in particle image j.

Concomitantly, a SD map is calculated as follows.

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=N � 1

X�
xij � xj

�2
q

; (3)
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where N is the number of molecules, xij stands for the gray value of pixel i in

molecule j and, xj for the average gray value of pixel j.

We define the IS as the CCV between a molecule and itself after n-fold

symmetrization. We define the ACV as the CCV between a molecule and

itself after low-pass filtering.

RESULTS AND DISCUSSION

Noise quantification in AFM topographs

Images are a superposition of signal and noise (19). The

signal originates from the object, whereas the noise is appa-

ratus contributed or image acquisition related. The quantity

of these parameters and the manner in which they behave

are technique specific, and knowledge of them is important

for interpretation of data originating from a particular tech-

nique. In AFM topographs, we subdivide noise into noise

and distortions. Noise is apparatus contributed and randomly

distributed on the topographs. On the contrary, distortions

are scanning related, only present in some regions of the

topographs, and generally appear as scan lines. They mainly

originate from different acquisition speeds of the different
Biophysical Journal 96(9) 3822–3831
scan axes, ‘‘parachuting’’ of the AFM probe, or insufficient

or excess force, to name a few reasons. In this section, we

analyze the total amount of noise and distortions.

For this, we compared how well a noise-free reference

finds molecules of its kind by calculating CCVs in 1), images

combining noise-free molecules and known amounts of

noise, and in 2), an AFM topograph (Fig. 1).

We computed (see Materials and Methods) several images

in which noise-free molecules were superpositioned by white

Gaussian noise (Fig. 1 A, left 10 panels). Furthermore, we

computed an image in which noise-free molecules are superpo-

sitioned by a Gaussian noise gradient (Fig. 1 A, right panel).
Depending on the amount of added noise, graphs plotting the

number of molecules found versus CCV (Fig. 1 B) display

horizontal lines corresponding to 100% of molecules detected

until a certain CCV threshold, above which no molecules were

found. The graphs drop almost vertically, because all mole-

cules within each artificial image were superposed by the

same amount of noise and were therefore discriminated at

approximately the same CCV (Fig. 1 B, solid lines). When

a linear gradient of noise was added to an image, the number
FIGURE 1 Total noise assessment in a high-resolution AFM topograph. (A) Superposition of different amounts of Gaussian noise to a noise-free artificial

AqpZ 2D crystal. (B) Graph displaying the number of molecules found in the images shown in A as a function of the CCV used as selection criterion. (C) Raw

data AFM topograph (extract of a larger image, full gray scale: 15 Å). (D) Graph displaying the number of molecules found in the image shown in C by several

references (black to increasingly light gray lines: reference comprising all, 50%, 25% of the molecule images, 3, and 1 molecule image) as a function of CCV

used as selection criterion. (E) Histogram showing the number of molecules found at a given CCV. (F) Calibration graph used to estimate the average change of

gray values on a pixel after the addition of distinct amounts of noise in the images shown in A. The average pixel gray value deviation of the real AFM topo-

graph is estimated to be 14 gray values (i.e., 1 Å) (dashed line).



Resolution and Noise in AFM Imaging 3825
of molecules found as a function of the CCV decreased linearly

(Fig. 1 B, crosses). These in silico measurements of the resem-

blance of a noise-free reference compared with images contain-

ing defined amounts of noise were used for a calibration graph.

With this standard, we estimated the average gray value devi-

ation of raw data AFM topographs from an average (Fig. 1 F).

Cross-correlation analyses of references with an AFM

topograph (Fig. 1 C) are documented by graphs displaying

the number of molecules found as function of the CCV

(Fig. 1 D). In such a realistic case, the CCV graphs have three

sections: the first part of the curve is approximately horizontal

between a low CCV threshold of 0.1, where 100% of the

molecules (127) were found, and a CCV of 0.6, where 90%

were found. In other words, 10% of the molecules in the image

were of low quality. In the second area in the graph, molecules

with CCVs between 0.6 and 0.85 were discriminated. Another

40% of molecules cross-correlated between these values and

hence still contained an increased amount of noise compared

with the best ones identified in the third region (Fig. 1 D). In

this third region, 50% of all molecules were found with CCVs

of 0.85 to 0.92 (Fig. 1 E).

From this analysis, we draw three important conclusions.

First, in the analyzed topograph, the rejection of 50% of the

molecule images is favorable for structure analysis, and the

remaining best 50% of molecules images are only minimally

disturbed. Second, using the computational noise-gradient

analysis as standard, we found that each pixel in the AFM topo-

graph deviated on average by 14 gray values from a noise-free

average (Fig. 1 F). Because gray values correspond to height

information, this deviation corresponds to a height noise of

1 Å per pixel. Third, regardless of whether single-molecule
or average images were used as a reference, the resulting

curves were similar (see Fig. 1 D). Because best single mole-

cules have a CCV of ~0.9, they cross-correlated with other

molecules in the image, as well as the ensemble averages.

IS as a molecule image selection criterion

As shown above, it is crucial to identify the molecule images

with the highest quality. Here, we propose to use IS of n-fold

symmetrical molecules as selection criterion. The IS is a direct

measure of the image quality, because an oligomer of n times

the biochemically identical unit is expected to have good

n-fold symmetry. This is a key consideration for AFM, because

topographs may reveal scan lines or directional deformation of

molecules in the fast- and slow-scan axes and the imperfect

adjustment of loading forces or feedback parameters. Analysis

of the IS makes sense for a technique with a high SNR.

First, we analyzed how the IS of average images and SD

maps depend on the quality and number of images merged

(Fig. 2 A). The analysis of the IS of averages revealed that

an average of all molecules is not most symmetrical (Fig. 2 B,

right). In agreement with Fig. 1 D, it appeared that 50% of the

molecules in the topograph had been significantly disturbed.

Once these images were excluded from the average, the IS

was 0.965. This high value indicates that the remaining

good molecule images are basically free of distortions. The

IS remained at this high level even when only the three best

molecule images were averaged. The best single-molecule

image still had a striking IS of 0.95 (Fig. 2 B, left), a strong

argument for the quality of single-molecule images. SD

maps reveal the structure in the image where pixel values
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FIGURE 2 IS. (A) Averages have

higher IS than SD maps (averages

~0.96; SD maps ~0.90). (B) Averages

calculated from a few (2 or 3) molecule

images are as symmetrical (0.965) as

averages calculated from up to 65 mole-

cule images. However inclusion of all

molecules in an average drops the IS

as the quality of merged images

decreases. Best single-molecule images

have an IS of ~0.95. (C) For topographs

acquired under similar conditions and

displaying similar image quality as the

topograph analyzed here, SD maps,

emphasizing nonpreserved features in

the molecule images, must contain at

least ~30 molecule images to reveal

a highest IS of ~0.90. Low-quality

images contain object-unrelated distor-

tions, and the integration of these drops

the IS of the SD maps. (D) Graph dis-

playing the number of molecules

selected in the image shown in Fig. 1

C as a function of IS used as criterion.

The gray line documents the number

of molecules found as a function of the CCV. (E) Histograms of all molecules found in the image versus the IS peaking at 0.90 � 0.02 and the CCV peaking

at 0.88 � 0.02. (inset) 360-fold symmetrized particle used as reference for defining the molecules’ oligomeric center.
Biophysical Journal 96(9) 3822–3831
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deviate between molecules and have therefore been inter-

preted as documenting protein flexibility (33,34). As the SD

maps emphasize the nonconstant structure factors in images,

the IS of SD maps is lower than that of averages and decreases

strongly as the number of molecule images merged is

below 30 (Fig. 2 C, left). The IS of the SD maps increased

to a maximum of 0.90 when between 30 (~25%) and 90 mole-

cules (~75%) were merged, and dropped when all molecules

were integrated (Fig. 2 C, right). We consider the IS to be

a quality control of SD maps, because the movements of

each of the subunits of the tetrameric AqpZ is thought to be

equivalent and independent. AFM images contain noise and

distortions. The noise is equally distributed on the four

AqpZ subunits, and therefore the IS gets better when more

molecules are merged. In contrast, scan-related distortions

merged in averages and SD maps drop the IS, illustrating

the ternary character of AFM images comprising signal,

noise, and distortion.

After having found that only high-quality molecule images

should be merged in averages and SD maps, we evaluated how

IS can be used as selection criterion. For this, we analyzed the

IS of all molecules in a raw data topograph (see Fig. 1 C) using

the following approach: First, we used a 360-fold symmetrized

molecule image as a reference (Fig. 2 E, inset) for peak search

(any artificial object that defines the molecules’ oligomeric

centers is suitable). Second, the IS of all molecule images

found was calculated. We plotted the number of molecules

found versus the IS used as criterion (Fig. 2 D). The IS graph

strongly resembles the CCV graph (see also Fig. 1 D). An IS

histogram peaked at 0.90, showing that the best 50% of mole-

cules are highly symmetrical (Fig. 2 E). The IS, as well as the

CCV histograms, were well fitted by Gaussians, except for the

shoulders toward low IS and CCV. These findings showed that

the use of IS as a molecule image selection criterion led to

similar results as the CCV approach. However, artifact-sub-

jected molecules cannot necessarily be discriminated using

a CCV approach, because the majority of molecules may be

subject to the same irregularities, and a high similarity

(CCV) between a reference and molecules may be found.

Hence, the IS is a better particle selection criterion for AFM.

A novel feature-based lateral resolution analysis

To assess the imaging resolution in AFM, classical resolution

determination methods developed for EM were used widely.

However, as we show in this section, the results from these

resolution assessments are problematic. Here, we propose

a novel feature-based lateral resolution analysis method.

Classical single particle EM resolution determination

methods are the DPR (17), the FRC (18), FSC for 3D data

sets, and the SSNR (19,20). The DPR method divides the

particles into two equal classes, averages each class, and

compares the average phase in spatial frequency ranges—

the resolution cutoff is defined as the spatial frequency where

the phase discrepancy exceeds 45�. The FRC method also
Biophysical Journal 96(9) 3822–3831
divides the particles into two equal classes, averages each

class, and compares the cross-correlation of annular samplings

of spatial frequency ranges of the two averages; the resolution

cutoff is defined as the spatial frequency where the cross-corre-

lation is negligible. The SSNR method is based on measuring

the SNR as a function of the spatial frequency by comparing

each particle with the ensemble average; the resolution cutoff

is defined as the spatial frequency where the SNR is unaccept-

ably low, for example, 4. AFM raw data images have a tremen-

dous SNR, and therefore these criteria often provided doubtful

results, indicating structural information to the Nyquist

frequency (21). As shown above, many individual molecules

have CCVs of ~0.9 compared with averages, and two indepen-

dently calculated averages, even if both comprise only a few

molecules, are essentially the same (CCV ~0.99). Therefore,

EM single particle resolution determination methods find

that high-quality AFM topographs are basically noise free

and contain information to the Nyquist frequency. However,

this does not necessarily mean high lateral resolution. In

AFM imaging, the limiting factor is not noise but the effects

of tip-contouring and tip-sample interaction.

Alternatively, often the observation of outermost diffrac-

tion spots in calculated power spectra was used to estimate

the AFM imaging resolution of highly ordered 2D crystals

(21). Unfortunately, phase reliability and completeness of

high-frequency power spectra spots were never assessed

thoroughly. A solitary visible reflection on the reciprocal

lattice is likely to give an overly optimistic value of resolu-

tion (19). Additionally, this approach adapted from electron

crystallography is limited in AFM because of the unknown

CTF. Furthermore, tip contouring on a periodic sample

may account for the appearance of high-frequency diffrac-

tion spots in calculated power spectra that do not correspond

to structural details (Fig. 3); as an example, a tip of realistic

diameter (Fig. 3 A) contours surface features separated by

a distance slightly larger than the tip (Fig. 3 B, top). As the

tip scans these features, a topography trace is recorded

(Fig. 3 B, bottom). The interspace between the features

may be small and may appear as high-frequency structure

factors in calculated power spectra (Fig. 3 C). The illustra-

tion (Fig. 3) does not account for local effects (surface chem-

istry, charge, hydration); however, these effects do not

change the described rationale: the schematic surface presen-

tation can be understood as an iso-force surface structure.

In light of the above outlined criticisms, we suggest a novel

feature-based approach to assess the lateral resolution of

AFM topographs, applicable to ensemble averages and to

single-molecule images.

The rationale is the following: An average or single-mole-

cule image is low-pass filtered Fourier ring by Fourier ring

from the highest (Nyquist) frequency toward low frequency

(Fig. 4, step 1). From each filtering round, a back-transforma-

tion is calculated and correlated with the original image

(Fig. 4, step 2). The ACVs are plotted as a function of the

low-pass cut-off. We hypothesized that the ACV drops
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FIGURE 3 Tip size and tip contouring on periodic

samples may account for high-frequency diffraction spots.

(A) The tip radius r can be estimated through measuring the

depth d inside barrel-shaped molecules (e.g., LH2 (34,41))

with diameter D. (B) Two surface features are separated by

a distance slightly larger than the tip diameter. As the tip

scans these features (consecutive tip positions are displayed

by asterisks), a topography trace is recorded. The tip diam-

eter of ~50 Å and the distance between features of ~60 Å

are realistic values (note the unit cells of many 2D crystals

are in this range; BR: 62.5 Å (42), AQP0: 65 Å (21)). (C)

The interspace between features in the recorded topog-

raphy may be small and appear as high-frequency structure

factors in calculated power spectra even though the sample

structure does not contain such small interspaces.
significantly in resolution regimes when significant topo-

graphical features are cut off. This is observable by kinks in

the ACV versus resolution graph (Fig. 4, inset). To highlight

these kinks, we calculated the first derivative of the graph.

Here, we performed the above-described procedure (Fig. 4)

using the 10 best single-molecule images of AqpZ (selected in

Fig. 1 C following the IS criteria described in Fig. 2 D) and the

average of these 10 molecule images (Fig. 5 A). The ACVs

between the image and its low-pass filtered counterparts

decreased rather slowly until ~10 Å (0.10 Å-1), when its slope

got steeper and finally peaked in a maximum of the first deriv-

ative of the ACV plot at 11 Å (0.09 Å-1). In other words, the

cross correlation between the image and its low-pass filtered

counterpart does not change significantly until a minimal

feature size of ~10 Å is reached. Therefore, we conclude that

AqpZ images studied here do not contain significant structural
information smaller than 10 Å. We define the resolution cut-off

to the highest frequency where the ACV drops significantly.

The frequency ranges where the ACV dropped contained

structural information (Fig. 5 B, gray shaded). This informa-

tion is repartitioned in resolution ranges: 50 Å–100 Å (approx-

imately the size of AqpZ tetramer), 25 Å–38 Å (approximately

the size of protein monomer), 16 Å–22 Å (approximately the

size of surface loops), and 10–to 14 Å (approximately the

size of fine details).

Single-molecule versus average images

To assess the structural information in AFM topographs as

a function of the number of molecule images averaged, we

first analyzed the total height range of single-molecule and

average images. Second, we compared the structural
FIGURE 4 Feature-based lateral resolution analysis. Workflow of resolution analysis: (1) Low-pass filtering of input image corresponding to the maximal

resolution pass shown underneath the back-transformed images. (2) Calculation of ACVs of each low-pass filtered image with the input image allows plotting

an ACV versus resolution graph.
Biophysical Journal 96(9) 3822–3831
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information revealed by single-molecule and average images

with the atomic structure of AqpZ derived from x-ray diffrac-

tion of 3D crystals (29).

We examined the height ranges of averages calculated

through merging different numbers of single-molecule

images. We found that the gray-scale range, i.e., height scale,

increased significantly when less molecule images were

merged (Fig. 6 A). The height range resulted in 8.5 Å for

the ensemble average of all 127 molecules, 9 Å when 64

(~50%) molecules were averaged, 11 Å when only 3 molecule

images were merged, and 12 � 1 Å on the best single mole-

cules (Fig. 6 C). The gray-scale range of the SD maps

(Fig. 6 B), i.e., SD value range, is 2 Å when between ~30

and all molecules were merged (Fig. 6 C). If <30 molecules

FIGURE 5 Resolution assessment for high-resolution AFM topographs of

AqpZ. (A) Plot of ACV versus minimal feature size pass filtering (black:

average image of the 10 best single molecules; gray: single molecules).

At ~0.1 Å-1 (10 Å) the slope increases (gray shade). (B) Plot of first deriv-

ative of ACV versus minimal feature size. Structural information is con-

tained in the gray-shaded resolution regimes (between 0.100 Å-1 (10 Å)

and 0.072 Å-1 (14 Å), between 0.064 Å-1 (16 Å) and 0.046 Å-1 (22 Å),

between 0.040 Å-1 (25 Å) and 0.026 Å-1 (38 Å), and between 0.020 Å-1

(50 Å) and 0.010 Å-1 (100 Å)).
Biophysical Journal 96(9) 3822–3831
were merged, the SD range increases up to 4 Å; however,

the SD-map of only a few images has low IS (see Fig. 2)

and no significance.

Why is the full height range of the ensemble average

compressed by ~30% compared with the average of the

full height ranges of individual molecules? A protein surface

that is not exposed to a loading force has a full height range

h(real) between the top protruding domains and the limiting

bilayer surface (see Fig. S1 in the Supporting Material).

Because of the tip geometry that often prohibits the penetra-

tion of the tip between densely located protrusions, a theoret-

ical reduced height range h(theo) is measured. When loading

forces are applied, protruding domains are squeezed (34),

and again, reduced height range h(mes) is measured. In

some rare cases, molecules are contoured at minimal loading

forces, or at least some of their protrusions, and the tip pene-

trates to the bilayer. However, averaging of aligned mole-

cules will merge full protrusions with squeezed protrusions

and lipid bilayer depth with prohibited penetration and result

in a reduced nonrealistic height range.

To evaluate the result of the height analysis, we compared the

AFM measure of the surface hydrophilicity/hydrophobicity

profile normal with the membrane plane of the AqpZ atomic

structure (PDB 1RC2 (29)). For this, we colored the hydro-

phobic amino acids in red and hydrophilic amino acids in

blue on the AqpZ surface (Fig. 7 A) and plotted their normalized

surface coverage as a function of distance from the extracellular

surface (Fig. 7 B). We found that the predominance of hydro-

philic and hydrophobic surface properties changes at a height

of ~12 Å, the supposed level of the lipid bilayer surface. This

is in agreement with the protrusion measurements on single

molecules, represented on the AqpZ structure (Fig. 7 C). We

conclude that the precise AFM height measure of a biomolecule

is the average of the height ranges of the best molecules and not

the height range of the average of the molecules.

After having seen that averaging downsizes the z-dimen-

sion of AFM topographs, we analyzed whether averaging

has an impact on the resolution of structural details visible

in x- and y-dimensions. We compared single-molecule and

average images. The more images were merged, the more

the structural details were blurred (Fig. 8 A). This was prob-

ably because structurally flexible protein details were not at

the same position in all single-molecule images. A simple

method to assess the variability of the images is to calculate

the CCV between single molecules or independent averages

merged from different numbers of molecules. The more mole-

cules were merged, the higher the similarity (CCV) of the

independent averages (1 molecule: 0.86; 3 molecules: 0.94;

5 molecules: 0.96; 10 molecules: 0.97; 50 molecules: 0.99).

To evaluate what structural details are visible in AFM topo-

graphs, we compared the high-resolution AFM surface of

AqpZ (25) with the atomic structure from x-ray diffraction

of 3D crystals (29) (Fig. 8 B). The AqpZ structure, colored

from bright to dark as a function of the z-axis position of the

atoms similar to AFM topographs, reveals three major
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A B C FIGURE 6 Height range of averages

and SD value range of SD maps. (A)

Gray value histograms of 8-bit gray-

scale tiff averages (calculated from an

image with 15 Å full gray scale, see

Fig. 1 C) of all molecules images

(black) to one single-molecule image

(light gray). The more molecule images

are merged, the narrower the gray value

range of the average image (bars under-

neath the images). (B) Gray value histo-

grams of 8-bit gray-scale tiff SD maps

(calculated from the same image as the

averages in A of all molecule images

(black) to three molecule images (light
gray). The more molecule images are

merged, the narrower the gray value

range of the SD image (bars underneath the images). (C) Graph displaying base and top (average images: light gray diamonds; SD images: light gray circles),

and the full height/value range (average images: dark gray diamonds; SD images: dark gray circles) as a function of the number of molecule images merged.
features per monomer on the extracellular surface (Fig. 8 C):

the a-loop peaking at Pro30 and the c-loop that is strongly

protruding at the beginning Gly108 and at the end Glu123.

Close inspection of the x-ray structure showed that the

elongated c-loop protrudes also in its middle at Ala113.

Comparison of the best single-molecule topograph (Fig. 8

D) and the ensemble average (Fig. 8 E) showed once more

that averaging blurs out structural features. Indeed, probably

because of the flexibility of the proteins imaged at room

temperature and in buffer solution, merging of no more than

three molecules rendered the detection of the central c-loop

protrusion at Ala113 difficult, whereas this protrusion is

visible in best single molecules.

CONCLUSIONS

The detailed analyses of noise and distortions, IS, resolution,

and averaging have been applied to high-resolution AFM

topographs of different proteins, AqpZ (Figs. 1,2,5,6),

AQP0 (6,35,36), AQP2 (37), and LH2 (7,38) (Figs. S2–S4),

thereby showing the general applicability of the methods

introduced here.

AFM is, to date, the only technique that is able to visualize

the supramolecular assemblies of proteins directly in native

membranes (6,7,40). However, often, AFM data is criticized

because of its invasive tip-scanning mechanism. Skeptical

researchers may think that the tip-sample interaction disturbs

the molecular structure. Here, we showed this is not the case:
best images from single n-oligomeric molecules have n-fold

IS of up to 0.95. We also found that good single-molecule

images are only minimally overlaid by noise. This makes

AFM a unique tool for visualizing individual molecules.

High CCV with the ensemble reference is a useful mole-

cule-selection criterion, but we present high IS to be the pref-

erable approach to select best molecules in high-resolution

topographs, because this approach allows distinguishing

imaging artifacts like scan lines or directional deformation.

Because the use of resolution determination methods

taken over from EM is problematic for AFM, in this work

we suggest a novel feature-based analysis that can be used

on single-molecule images with high signal. The lateral reso-

lution values found range from 10 Å to 20 Å, depending on

the proteins. The structural information-based resolution

assessment is in agreement with data from other techniques.

Studying the effects of averaging on AFM topographs, we

found that averaging compresses the protrusion dimension.

Additionally, averaging blurs structural details. We conclude

that best single-molecule images contain more structural

information and reflect the protrusion height better than aver-

ages. This makes the AFM once more a key technique for

single-molecule analysis.

SUPPORTING MATERIAL

Four figures are available at http://www.biophysj.org/biophysj/

supplemental/S0006-3495(09)00552-9.
FIGURE 7 Membrane protruding

domains in the AqpZ atomic structure

(PDB 1RC2 (29)). (A) Surface represen-

tation of the atomic structure with

hydrophilic and hydrophobic surface

exposed amino acids colored in blue

and red, respectively. (B) Plot of the

relative surface coverage of hydrophilic

and hydrophobic amino acids, indicating 12 Å hydrophilic membrane protruding protein structure on the extracellular surface. (C) Surface representation of the

atomic structure with AFM color code covering the imaged area protruding 12 Å from black to gold.
Biophysical Journal 96(9) 3822–3831

http://www.biophysj.org/biophysj/supplemental/S0006-3495(09)00552-9
http://www.biophysj.org/biophysj/supplemental/S0006-3495(09)00552-9
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FIGURE 8 Structural features of single-molecule and average images of AqpZ. (A) Averaging of images may result in blurring of structural details (from top

to bottom: single molecule to ensemble average images (left), fourfold symmetrized images (right)). (B) Surface representation of the atomic structure (PDB

1RC2 (29)). The top 12 Å of the model surface on the extracellular surface are colored from white to black following the z-coordinates. (C) Close view of one

monomer in B, with the amino acids labeled. (D) The best single molecule. (E) Ensemble average. The protrusion around Ala113 in the middle of the c-loop is

not detectable.
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