
Biophysical Journal Volume 96 June 2009 4661–4671 4661
Quantitative Detection of Small Molecule/DNA Complexes Employing
a Force-Based and Label-Free DNA-Microarray

Dominik Ho,†‡ Christian Dose,§ Christian H. Albrecht,† Philip Severin,† Katja Falter,† Peter B. Dervan,§

and Hermann E. Gaub†*
†Lehrstuhl für Angewandte Physik and Center for Nanoscience Ludwig-Maximilians-Universität, 80799 Munich, Germany; ‡Munich Center For
Integrated Protein Science (CIPSM) Ludwig-Maximilians-Universität, 81377 Munich, Germany; and §Division of Chemistry and Chemical
Engineering California Institute of Technology, Pasadena, CA 91125

ABSTRACT Force-based ligand detection is a promising method to characterize molecular complexes label-free at physiolog-
ical conditions. Because conventional implementations of this technique, e.g., based on atomic force microscopy or optical traps,
are low-throughput and require extremely sensitive and sophisticated equipment, this approach has to date found only limited
application. We present a low-cost, chip-based assay, which combines high-throughput force-based detection of dsDNA$ligand
interactions with the ease of fluorescence detection. Within the comparative unbinding force assay, many duplicates of a target
DNA duplex are probed against a defined reference DNA duplex each. The fractions of broken target and reference DNA
duplexes are determined via fluorescence. With this assay, we investigated the DNA binding behavior of artificial pyrrole-imid-
azole polyamides. These small compounds can be programmed to target specific dsDNA sequences and distinguish between D-
and L-DNA. We found that titration with polyamides specific for a binding motif, which is present in the target DNA duplex and not
in the reference DNA duplex, reliably resulted in a shift toward larger fractions of broken reference bonds. From the concentration
dependence nanomolar to picomolar dissociation constants of dsDNA$ligand complexes were determined, agreeing well with
prior quantitative DNAase footprinting experiments. This finding corroborates that the forced unbinding of dsDNA in presence
of a ligand is a nonequilibrium process that produces a snapshot of the equilibrium distribution between dsDNA and
dsDNA$ligand complexes.
INTRODUCTION

Small DNA-binding molecules are in the spotlight of many

fields of research. Whether it is genomics, systems biology,

or molecular medicine, the knowledge if and how strong

a molecule interacts with a specific DNA sequence is of

utmost interest. The formation of such complexes is typically

linked to changes in the double-helical structure and may

even result in the displacement or blocking of other mole-

cules. This enables important functions in e.g., transcription,

recombination, and DNA repair (1,2).

Given the importance of understanding the basis of molec-

ular recognition, assays are needed that allow for fast, sensi-

tive, and quantitative detection of dsDNA$ligand complexes.

Traditionally, DNase footprinting experiments are employed

to identify the binding sites of a ligand on dsDNA and also

quantify the respective affinities. Although certainly power-

ful, DNase footprinting is a complex procedure and requires

several days of preparation (3). Very rapid and also label-free

quantification of even minuscule amounts of ligand becomes

possible with microcantilever arrays (4). They suffer,

however, from the costs associated with the fabrication and

chemical modification of large numbers of cantilevers.

It is often of importance to identify the full DNA recogni-

tion profile of a certain DNA binder to understand what kind
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of role the binder plays within a living organism. Chip-based

methods accommodate the need for massively parallel anal-

ysis of dsDNA$ligand interactions: chromatin immunopre-

cipitation-on-chip (ChIP-on-chip) is a widespread technique

allowing for a genome-wide identification of protein-binding

sites (5,6). ChIP-on-chip relies on nonspecific cross-linking

of DNA with a DNA-binding molecule in vivo. Cross-link-

ing efficiencies vary from molecule to molecule, and some

interactions may even be missed (7). In particular, the detec-

tion of small molecules interacting with DNA is nontrivial.

Today, a growing number of in vitro chip-based assays are

available allowing for the analysis of dsDNA$ligand interac-

tions under controlled experimental conditions. In an exper-

iment by Warren et al. (8,9), all permutations of an eight

basepair dsDNA sequence were displayed on a single chip.

Ligand binding was detected directly by fluorescence and

the cognate sites were ranked in the order of increasing

affinity. However, fluorescence trades fast and sensitive

readout for a labeled ligand, and the label may alter the

sequence specificity profile of the ligand in an unbiased

manner. A widespread label-free detection method is surface

plasmon resonance imaging. Due to the small change in

refractive index, the detection of small molecules with

surface plasmon resonance imaging is complicated and

requires larger features compared to fluorescence-based

techniques (10,11). Depending on the application, the back-

ground signal caused by unwanted adsorption imposes

a substantially challenge to all chip-based methods. The
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FIGURE 1 (a) Conventional, AFM-

based single molecule force spectros-

copy, in which the force required to

unbind a molecular bond, such as

a target DNA duplex, is measured with

a cantilever spring. (b) A ligand bound

to the target DNA duplex alters the

force required for unbinding. (c) Single

molecule force spectroscopy data are

typically presented as force-extension

traces. From two absolute force mea-

surements, the consequences of ligand

binding can be investigated. (d) The

CUFA replaces the cantilever spring

by a known reference bond. Upon

loading the chain of target DNA duplex

and reference DNA duplex, the weaker

of the two bonds has a higher proba-

bility of unbinding than the stronger

one. (e) In case a ligand forms a complex

with the target DNA duplex and stabi-

lizes it, significantly more fluorophores

end up on the side of the target DNA

duplex after separation of the two

surfaces.
fabrication of inert surfaces is even considered as the main

bottleneck for further development of the latter (12).

Here, we present a microarray compatible dsDNA$ligand

complex detection format, which is based on the comparative

unbinding force assay (CUFA). CUFA has already been

applied to detect single nucleotide polymorphisms (13), to

study differences of antibody/antigen interactions (14), to

eliminate cross-reactions on protein microarrays (15), and

to investigate the chiral selectivity of small peptides (16).

For dsDNA$ligand interaction detection, CUFA relies on

the alteration of the unbinding forces of a target dsDNA as

a result of ligand binding (17–19). This effect was demon-

strated in single molecule experiments employing atomic

force microscopy (AFM) (20) (21,22), optical tweezers (23),

and magnetic tweezers (24) (Fig. 1, a–c).

Instead of a microscopic, spring-like object, e.g., a canti-

lever or a trapped bead, CUFA employs a precisely defined

molecular bond as force sensor. Thereby, the target DNA

duplex is directly compared against a reference DNA duplex

and merely fluorescence is required to readout the experiment

(Fig. 1, d and e). In comparison with conventional force-based

measurements, many of the experimental uncertainties are

removed. With no calibration offsets or instrument drift the

comparative unbinding force experiments are more accurate

and independent of the experimental apparatus. Naturally,

such experiments are primed to be carried out in parallel by

using a chip format with many duplicates (in the order of

104/mm2) of the same experiment contributing to the excellent
Biophysical Journal 96(11) 4661–4671
sensitivity of the measurement. The resulting assay is fluores-

cence based; however, it does not require a labeled ligand.

Only the DNA linker between the target and reference DNA

duplex is conjugated to a fluorophore at a noninteracting base-

pair. Rather than detecting the mere presence of the ligand, the

change of unbinding forces of the target DNA duplex due to

ligand binding is detected. By this means the assay is insensi-

tive to nonspecific adsorption and deals with one of the major

bottlenecks of current biochips.

As a model system, we investigated sequence program-

mable pyrrole-imidazole hairpin polyamides (25). These

molecules recognize the minor groove of DNA with affini-

ties and specificities comparable to naturally occurring

DNA-binding proteins (26,27). The sequence specificity

arises from interactions of pairs of the aromatic amino acids

N-methylpyrrole (Py), N-methylimidazole (Im), and N-meth-

ylhydroxypyrrole (Hp) with the edges of the Watson-Crick

DNA basepairs. A pairing of Im opposite to Py targets

a G$C basepair, and Py/Im recognizes a C$G basepair,

whereas a Py/Py pair comprises a preference for both A$T

and T$A (28). The discrimination of T$A from A$T using

Hp/Py pairs completes the four basepair letter code (29).

Eight-ring hairpin polyamides provide a good compromise

between synthetic ease and molecular recognition properties.

In this binding motif, a g-aminobutyric acid residue connects

the carboxylic terminus of one strand to the amino terminus

of the other (30). The turn residue also serves as a DNA

recognition element for A$T and T$A basepairs. Further,



A Force-Based DNA-Microarray 4663
FIGURE 2 (a) Chemical structures of matched hairpin

polyamides P1, (R)-2, and (S)-2 as well as single basepair

mismatched compounds (R)-P3 and (S)-P3. The ball and

stick model represents imidazole and pyrrole as solid and

open circles, respectively. The b-alanine residue is shown

as a diamond, and the dimethylaminopropylamide tail is

shown as a half circle with a plus. The chiral diaminobuty-

ric acid turn residue is represented as a turn, to which

a semicircle with a plus is linked. R and S chirality is indi-

cated by a solid and dashed connection of the semicircle to

the turn, respectively. (b) Ball and stick representation for

the three different hairpin motifs bound to the same target

DNA sequence. P1 binds sequence specific to the target

DNA sequence. (R)-2 is modified with a chiral diaminobu-

tyric acid turn, which increases the overall binding affinity.

(R)-3 is also modified with a chiral diaminobutyric acid

turn, however contains a single basepair mismatch that

reduces the overall binding affinity.
a b-alanine residue and a dimethylaminopropylamide tail at

the C-terminus each confer a specificity for A$T and T$A

basepairs (31). This general addressability of the DNA minor

groove is supported by x-ray and NMR structure studies

(32,33) and has been utilized in several applications,

including, for example, DNA nanostructures (34,35), recruit-

ment of DNA-binding proteins (36,37), and the inhibition of

gene expression within living cells (38–40).

Here we report the application of CUFA to accurately

determine the thermal dissociation constant KD of three

different dsDNA$polyamide interactions (Fig. 2 a). In partic-

ular, we investigated the influence of a chiral turn as well as

a single mismatch to the overall affinity of an eight-ring

hairpin polyamide to the same target DNA sequence

(Fig. 2 b).

MATERIALS AND METHODS

DNA constructs

DNA oligomers 1: NH2-(hexaethyleneglycol)5-50-TTT TTT TTT TCA GTC

GCT GAC CAA CCT CGT-30, 2: 30-GTC AGC GAC TGG TTG GAG CAC

TTT T(Cy3)-50-50- TTT TTC TGC TCC AAC CAG TCG CTG AC -30, 3:

Biotin-50-TTT TTT TTT TGT CAGCGACTGGTTGGAGCA, 4: 30-GTC
AGC GAC TGG TTG GAG CAC TTT T(Cy3)-50-50-TTT TTC ACG AGG
TTG GTC AGC GAC TG-30, and 5: Biotin-50-TTT TTT TTT TCA GTC

GCT GAC CAA CCT CGT-30 were purchased HPLC grade from IBA

GmbH (Goettingen, Germany). Italic letters in oligomers 4 and 5 represent

L-DNA bases. In upside-down experiments the NH2-(hexaethyleneglycol)5

(HEGL) and biotin modifications were exchanged.

Molecular setup preparation (DNA slide)

Each individual molecular chain consisting of a reference and a target DNA

duplex is referred to as a ‘‘molecular setup’’. Oligomer 1 is amine-modified

at the 50 end and allows covalent attachment to an aldehyde-functionalized

glass slide (Schott GmbH, Jena, Germany). Two microliter drops of 5�
phosphate buffered saline (PBS; Roche GmbH, Grenzach, Germany) con-

taining 25 mM oligomer 1 were spotted on an aldehyde glass slide in

a 4 � 4 pattern and were incubated in a saturated NaCl ddH2O atmosphere

overnight. After washing the slide with ddH2O containing 0.2% sodium

dodecyl sulfate (VWR Scientific GmbH, Darmstadt, Germany) and thoroughly

rinsing the slide in ddH2O, the resulting Schiff bases were reduced with 1%

aqueous NaBH4 (VWR Scientific GmbH, Darmstadt, Germany) for 20 min.

After thoroughly rinsing the slide in ddH2O, the slides were blocked in 1�
PBS containing 4% bovine serum albumin (Sigma-Aldrich GmbH, Munich,

Germany) for 30 min. A custom-made 16-well silicone isolator (Grace-

Biolabs, OR) was placed on the top of the immobilized DNA oligomer 1

spots. Three microliters of 1� PBS containing 1 mM oligomer 2 and 2 mM

oligomer 3 were added to each well and incubated for 1 h, completing the

1$2$3 molecular setups. Then, the slide was washed with 1� PBS containing

0.05% sodium dodecyl sulfate and thoroughly rinsed with 1� PBS. The
Biophysical Journal 96(11) 4661–4671
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silicon isolator remained on the slide throughout the experiment, and care

was taken that after hybridization the slide always remained immersed

in 1� PBS. The 1$4$5 and upside-down molecular setups were prepared

accordingly.

PDMS stamp

The polydimethylsiloxane (PDMS) stamp was fabricated by casting 10:1

(base/crosslinker) (Sylgard, Dow Corning, MI) into a custom-made micro-

and millistructured silicon wafer (HSG-IMIT, Villingen-Schwenningen,

Germany) (41). After curing was complete, the PDMS was taken out of

the mold and cut into a 4 � 4 pillar arrangement. Each pillar is 1 mm diam-

eter, is 1 mm high, and carries a microstructure on the flat surface: 100 �
100 mm2 pads are separated by 41 mm wide and 5 mm deep trenches allowing

for liquid drainage during the contact and separation process. Free polymers

were extracted in toluene for at least 1 day (42). The PDMS was activated

overnight in 12.5% hydrochloric acid and subsequently derivatized with

(3-glycidoxypropyl)-trimethoxysilane (ABCR, Karlsruhe, Germany) to

generate epoxide groups. NH2-PEG-Biotin (3400 g/mol; Rapp Polymere,

Tübingen, Germany) was melted at 80�C, and ~1 mL was spotted on each

pillar followed by overnight incubation in argon atmosphere at 80�C. The

excess polymers were thoroughly removed with ddH2O. Shortly before

the experiment, the PDMS was incubated with 1 mg/ml streptavidin (Thermo

Fisher Scientific, Bonn, Germany) in 1� PBS and 0.4% bovine serum

albumin for 30 min, washed with 1� PBS containing 0.05% Tween 20

(VWR Scientific GmbH, Darmstadt, Germany), with 1� PBS and gently

dried with N2 gas.

Ligand incubation

Sixteen-well silicone isolators allowed the addition of up to 16 different

concentrations of the dsDNA ligands within a single experiment. Because

of technical convenience, we restricted ourselves to the addition of eight

different concentrations. Fifty millileters volume of polyamides in 1�
PBS was circulated through each well for at least 2 h using a self-made

fluidic system driven by a 16-channel peristaltic pump (Ismatec GmbH,

Wertheim-Mondfeld, Germany).

Coupling and separation

The streptavidin functionalized PDMS stamp was approached to the DNA

slide using high-precision stepper motors (OWIS GmbH, Staufen, Germany)

and a piezo actuator (Piezo Systems Jena, Jena, Germany), monitored by

reflection interference contrast microscopy (43). The biotinylated molecular

complexes and the multivalent streptavidin coated PDMS stamp were

allowed to couple via a biotin$streptavidin$biotin complex for 10 min, fol-

lowed by retraction of the PDMS stamp at a velocity of 5 mm/s. Biotin$strep-

tavidin is an extremely strong molecular interaction and is of significantly

greater stability than short dsDNA at the applied separation velocity

(44,45). In separate controls, we determined that no noteworthy amount of

fluorescently labeled streptavidin was transferred from the PDMS to the

DNA array during an experiment.

Analysis

Fluorescence images of the DNA slide were recorded in solution using

a confocal scanner with 4 mm resolution (Tecan Austria GmbH, Austria)

before and after the contact. The fluorescence per unit area was assumed

to be proportional to the fluorescently labeled species per unit area (see

Fig. S1 in the Supporting Material). The normalized fluorescence intensity

(NF) is defined as the number of broken reference bonds normalized to the

total number of individual molecular setups that have been under load. For

the 1$2$3 molecular setups, it was determined as follows: initially, all

molecular setups are present in the state S0 and were detected via the Cy3

labeled oligomer 2 (Fig. 3 a). After separation, the molecular setups on

the glass slide exist in three different states, S0 (1$2$3), S1 (1$2), and S2

Biophysical Journal 96(11) 4661–4671
(1), as shown in Fig. 3 b. An unbinding force was applied only to the molec-

ular setups in state S1 and S2. Molecular setups in state S0 did not couple to

the PDMS streptavidin surface and therefore retained the biotinylated olig-

omer 3. Because S1 and S0 cannot be distinguished, the latter was labeled

with the spectrally distinct fluorescent marker streptavidin Alexa Fluor

647 (AF; Fig. 3 c). The labeling was performed subsequent to the Cy3

readout to avoid quenching or fluorescence resonance energy transfer

effects. The Cy3 and AF fluorescence images allow the quantification of

the relative amounts of S0, S1, and S2 (Fig. 3, d and e). The Cy3 and AF

fluorescence images recorded after contact contain square-like features cor-

responding to the contacted area. From each square-like feature the Cy3Rem

and AFRem were determined individually. Cy3Initial and AFInitial were deter-

mined from the noncontacted regions adjacent to each square-like feature.

S0 ¼ AFRatio (1)

S1 ¼ Cy3Ratio � AFRatio (2)

S2 ¼ 1� Cy3Ratio (3)

Cy3Ratio ¼
Cy3Rem

Cy3Initial

; (4A)

AFRatio ¼
AFRem

AFInitial

(4B)

S0, S1, and S2 are normalized such that the relation S0 þ S1 þ S2 ¼ 1 is

always true. As defined above, the NF is given by the number of broken

2$3 bonds (S1) normalized to the number of bonds that have been under

load (S1 þ S2):

NF ¼ S1

S1 þ S2
¼ Cy3Ratio � AFRatio

1� AFRatio

: (5)

The NF directly reflects the relative mechanical stability, a physical quantity

inherent to a pair of molecular complexes, and is not influenced by the

amount of molecules under load. The NF should not be confused with the

Cy3Ratio. For a fixed mechanical stability, the latter depends on the number

of coupled molecular complexes, whereas the NF does not. The NFs pre-

sented in this work are the averages of the NFs determined from all

square-like features of an experiment. The 1$4$5 and upside-down molec-

ular setups were analyzed accordingly.

Polyamide synthesis

Polyamide conjugates were synthesized on solid-phase using published

Boc-based protocols and purified by reverse-phase HPLC (R95% purity)

(46). Ultraviolet-visible spectra were recorded in water on a Hewlett-Packard

Model 8452 A diode array spectrophotometer. All polyamide concentrations

were determined using an extinction coefficient of 69,200 M�1cm�1 at lmax

near 310 nm. Matrix-assisted, LASER desorption/ionization time-of-flight

mass spectrometry (MALDI-TOF MS) was performed using an Applied Bio-

systems Voyager DR Pro spectrometer. Polyamide P1: MALDI-TOF

[MþH]þ calcd for C57H71N22O10
þ ¼ 1223.6, observed ¼ 1223.4, (R)-P2:

MALDI-TOF [MþH]þ calcd for C57H72N23O10
þ ¼ 1238.6, observed ¼

1238.6, (S)-P2: MALDI-TOF [MþH]þ calcd for C57H72N23O10
þ ¼

1238.6, observed ¼ 1238.5, (R)-P3: MALDI-TOF [MþH]þ calcd for

C58H73N22O10
þ ¼ 1237.6, observed ¼ 1237.3, (S)-P3: MALDI-TOF

[MþH]þ calcd for C58H73N22O10
þ ¼ 1237.6, observed ¼ 1237.5.

Melting temperature analysis

Melting temperatures were monitored on a Beckman ultraviolet-visible

spectrometer at 260 nm within 25–90�C by applying a heating rate of
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FIGURE 3 Comparative unbinding

force experiment on the molecular level.

(a) Before separation of the two

surfaces, all molecular setups are in

the state S0. (b) After separation, either

target (state S2) or reference (state S1)

bond is broken or no coupling (state

S0) occurred. (c) Because states S0

and S1 cannot be distinguished by fluo-

rescence, the free biotin of state S0 is

labeled with streptavidin Alexa Fluor

647 (AF). (d) Fluorescence images of

the glass slide before and after separa-

tion as well as after incubation with

AF. The dark square-like features corre-

spond to the area contacted with

a microstructured PDMS stamp. (e)

Corresponding line plots. From the fluo-

rescence intensities the relative amounts

of the states S0, S1, and S2 can be deter-

mined.
0.5�C/min. Measurements were performed in a degassed buffer containing 2

mM DNA duplex/polyamide (1:1), 10 mM NaCl, and 100 mM NaH2PO4 at

pH 7.0. Tm-values are defined as the maximum of the first derivative of the

melting curve.

RESULTS AND DISCUSSION

Force-based ligand detection relies on the alteration of

unbinding forces due to dsDNA$ligand complex formation.

In the course of conventional single molecule experiments,

one strand of a DNA duplex is immobilized to solid support

via a polyethyleneglycole (PEG) linker. In the same way, the

complementary strand is immobilized to a microscopic force
detector such as an AFM cantilever. Upon contacting the

AFM cantilever with the solid support, the two complemen-

tary DNA strands hybridize. During separation of the

support and the detector surface, the PEG linkers act like

entropic springs (47,48), and an increasing force builds up

until the DNA duplex unbinds (Fig. 1, a and b). The force

extension curve is recorded and the unbinding force deter-

mined. Because unbinding is a thermally activated process

(49) and the force detector is limited by thermal noise (50),

several hundred experiments are typically performed to

determine the unbinding forces with sufficient accuracy.

As demonstrated by Krautbauer et al. (17) as well as Koch

et al. (18), complex formation of a DNA duplex with a small
Biophysical Journal 96(11) 4661–4671



4666 Ho et al.
FIGURE 4 Schematics of CUFA

experiments. (a) The molecular setup

consists of two DNA duplexes, i.e.,

the 1$2 target and the 2$3 reference

DNA duplex, linked in series. (b) A

simple fluidic system allows incubation

of 16 identical DNA spots with eight

different polyamide P1 concentrations.

(c) The molecular setups are linked

between glass support and PDMS.

Separation of the surfaces applies

a load to the chain of duplexes until

the weaker fails. (d) The fluorescently

labeled linking DNA oligomer 2 is

more likely to remain on the side of

the more stable DNA$ligand complex.
molecule or a protein is accompanied by a shift of the

unbinding forces (Fig. 1 c). In our comparative unbinding

force experiments, a known molecular bond carrying a fluo-

rescent label replaces the microscopic force detector (Fig. 1,

d and e).

Fig. 4 a illustrates the molecular setup schematically.

Target DNA duplex 1$2 is immobilized to glass support

via a (hexaethyleneglycol)5 linker of oligomer 1. Reference

DNA duplex 2$3 is bridged to 1$2 via a 10 basepair single

stranded polythymine linker carrying a Cy3 fluorescence

label. Oligomer 3 carries a biotin modification at the end

of another polythymine linker. Before the force experiment,

a fluidic system allows for incubation of the molecular setups

with different ligand concentrations (Fig. 4 b). In Fig. 4 c,

a soft PDMS stamp is brought in contact with the 1$2$3
complexes on the glass slide analogously to a microcon-

tact-printing experiment (51,52). 1$2$3 couples to the

PDMS stamp via biotin$streptavidin complex formation.

Upon retraction of the PDMS stamp at 5 mm/s force is built

up gradually acting along the molecular chain consisting of

the linkers as well as the 1$2 and 2$3 duplexes until either

1$2 or 2$3 breaks (Fig. 4 d).

Approximately 104 duplicates of the same experiment are

performed per mm2. The absolute force needed to pull the

two surfaces apart is neither recorded nor analyzed. Instead,

the unbinding force of each target DNA duplex is compared

individually against a separate reference duplex. For each

molecular chain, the two possible experimental outcomes

are distinguished by determining the location of the fluores-

cently labeled oligomer 2. In case the fluorophore remained

on the glass slide, the 2$3 DNA duplex is broken, and in case

the fluorophore was transferred to the PDMS stamp, the 1$2
DNA duplex is broken.

The target and the reference DNA duplex are comprised of

the same basepair composition, and the outcome ‘‘1$2 is

broken’’ should be close to equally likely to the outcome

‘‘2$3 is broken’’ (53). Experimentally, we determined

a NF (see Materials and Methods) of 38.4% with an error

of 1.6%, which we estimated from repeated measurements

(Fig. 5 a). We attribute this deviation from the expected
Biophysical Journal 96(11) 4661–4671
NF of 50% to the symmetry break due to the different

surfaces to which the oligomers are attached. DNA duplexes

are sensitive to solution conditions such as pH and ionic

strength (54), which may differ depending on the proximity

of the DNA duplex to the PDMS or the glass surface. This

minor imbalance does not affect the quantitative detection

of dsDNA$ligand complexes.

Nonchiral hairpin polyamide

To investigate whether the CUFA is applicable to determine

the thermal dissociation constant KD of dsDNA$ligand inter-

actions, we incubated 1$2$3 molecular setups with different

concentrations of hairpin polyamide P1. Thereby, we make

use of a symmetry breaking property, such that P1 only binds

to the target and not the reference DNA duplex: hairpin poly-

amides bind sequence specific with a preference for N/C

orientation with respect to the 50/30 direction of the adjacent

DNA strand (55,56). The preferred binding motif 50-TGAC-

CAA-30 of polyamide P1 is present in the 1$2 target DNA

duplex, whereas the 2$3 reference DNA duplex contains the

reverse-binding motif 50-AACCAGT-30, to which P1 binds

with significantly decreased affinity.

On a single chip, we incubated 16 identical spots of immo-

bilized 1$2$3 molecular setups with eight different P1 concen-

trations ranging from 0 to 2.7 nM and performed a CUFA

experiment as described above. The NF increased with

increasing polyamide concentration from 38.4% (Fig. 5 a)

until it saturated at 63.1% (Fig. 5 b). This is in agreement

with a stabilizing effect of P1 on the 1$2 duplex. As it is

common for quantitative dsDNA$polyamide interaction

studies, we fitted the titration data to the Hill equation isotherm

(a more detailed discussion follows at the end of this section)

(9,58). The apparent thermal dissociation constant KD was

determined to be 105 pM with a 95% confidence interval of

[65 pM, 169 pM] agreeing well with previously published

quantitative DNase footprinting and microarray data (58).

The NF data including the fit are shown in Fig. 5 c.

To ensure that the molecular setup responds as expected,

we investigated the upside-down molecular setup 3$2$1.



A Force-Based DNA-Microarray 4667
FIGURE 5 (a) Cy3 fluorescence

image of 1$2$3 molecular setups on

a glass slide before and after contact

with a PDMS stamp in absence of P1.

(b) Cy3 fluorescence image of 1$2$3

molecular setups on a glass slide before

and after contact with a PDMS stamp in

presence of 1 nM P1. The fluorescence

intensity of the contacted area is higher

compared to the 0 nM case. (c) Relative

change in NF due to titration with three

different polyamide compounds.
Here, the position of the target and the reference DNA

duplex is exchanged, and thus the response to the addition

of P1 should be inverted. Indeed, the NF decreased from

31.9% to 7.7% upon increasing the P1 concentration from

0 to 10 nM. In this case, the polyamide binds preferentially

to the DNA duplex adjacent to the PDMS stamp, and there-

fore the amount of fluorescently labeled oligomer 2 trans-

ferred to the PDMS stamp was increased in presence of P1.

Chiral hairpin polyamide

In previous work, we demonstrated that chiral hairpin poly-

amides distinguish between D- and L-DNA (16). Chiral selec-

tivitiy is introduced by an amine substituent on the g-turn

amino acid of the hairpin polyamide that was also shown to

lead to an increase in binding affinity (47). The chiral hairpin

polyamide (R)-P2, which recognizes the same sequence as

P1, was examined employing the 1$4$5 molecular setup.

1$4 is identical to the 1$2 target DNA duplex, and 4$5 is

the mirrored DNA duplex to 1$4. (R)-P2 binds preferentially

to the 1$4 50-TGACCAA-30 binding motif, whereas 4$5 pres-

ents less optimal binding sites due to its opposite chirality.
Analogous to the previous experiment, an increase in

concentration of (R)-P2 from 0 to 1 nM lead to an increase

of the NF from 47.1% to 80.3%, agreeing with a stabilizing

effect on the D-DNA duplex 1$4. Fitting the titration data to

a Hill equation isotherm revealed an apparent thermal disso-

ciation constant KD of 44 pM with a 95% confidence interval

of [23 pM, 83 pM]. The KD for the (R)-P2 hairpin polyamide

has not been reported yet. However, a lowered KD compared

to P1 is consistent with prior experiences with the addition of

an amine substituent to the g-turn amino acid of regular

polyamide hairpins (47). The NF data including the fit are

shown in Fig. 5 c.

For control, the 5$4$1 upside-down molecular setup in

combination with (R)-P2 was measured at 0 nM and 10 nM

yielding 32.8% and 12.9%, respectively. The regular molec-

ular setup 1$4$5 in combination with mirror imaged poly-

amide (S)-P2 was also measured at 0 nM and 10 nM

resulting in NF of 44.1% and 20.9%. The two controls

demonstrated that the response of the assay was as expected:

in the 5$4$1 upside-down molecular setup, the target and

reference DNA duplex are essentially mirrored (target and

reference are of identical sequence but opposite chirality).
Biophysical Journal 96(11) 4661–4671
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In this case, the ligand recognizes the DNA duplex adjacent

to the PDMS stamp and the change in NF due to ligand

binding was inverted. In case the ligand was mirrored and

incubated with the 1$4$5 molecular setup, the ligand recog-

nized the reference bond as its preferential binding motif and

the change in NF was also inverted.

Mismatched hairpin polyamide

Introducing the single basepair mismatched polyamide

(R)-P3 to the 1$4$5 molecular setup is expected to form

a DNA-ligand complex of lower affinity (57). In detail,

1$4 provides a binding motif for (R)-P3 with a single base-

pair mismatch. The affinity to 4$5 is even further decreased,

because the binding motif contains a single basepair

mismatch and, in addition, is of opposite chirality. Incuba-

tion of the 1$4$5 molecular setup with increasing concentra-

tions of (R)-P3 increased the NF from 47.1% at 0 nM to

71.2% at 27 nM. The apparent KD, determined from a fit

of the NF to the Hill equation isotherm, was 1442 pM with

a 95% confidence interval of [932 pM, 2169 pM]. The NF

data including the fit are shown in Fig. 5 c.

Controls were performed with the 5$4$1 upside-down

molecular setup in absence and presence of 10 nM (R)-P3,
yielding NF of 32.8% and 15.4%, respectively. For the

regular 1$4$5 molecular setup, the NF fluorescence also

decreased from 47.1% in absence to 25.6% in presence of

10 nM mirrored compound (S)-P3. Both controls, in which

either the molecular setup or the ligand was mirrored,

produced an inverted change in NF as response to the addi-

tion of the ligand.

Melting temperatures

To ensure that the differences in unbinding forces were

a result of target DNA duplex stabilization by hairpin poly-

amides, the melting temperatures of the dsDNA$polyamide

complexes were determined. The results clearly showed

a larger increase in melting temperature for the target

duplexes in presence of the polyamides compared to the

reference duplexes (Fig. 6).

Thermal dissociation constant

The affinity of a hairpin polyamide for its dsDNA binding

site is characterized by the thermal dissociation constant

KD. The experimental data suggest that the Hill equation

isotherm governs the response of the NF, from which the

KD characteristic for the dsDNA$polyamide complex under

investigation is easily determined. In the following, we

derive the response of CUFA beginning with the law of

mass action.

The law of mass action describes the amounts of

dsDNA$ligand complexes, unbound dsDNA, and free ligands

at chemical equilibrium with a dsDNA$ligand complex char-

acteristic thermal KD defined as
Biophysical Journal 96(11) 4661–4671
KD ¼
koff

kon

¼ ½dsDNA�½ligand�
½dsDNA , ligand�: (6)

In our experiments, the total amount of added ligand ex-

ceeded the available dsDNA binding sites by at least two

orders of magnitude. As a result, the probability p of

a dsDNA binding site to be occupied by a ligand is given

by the Hill equation isotherm and depends on the ligand

concentration and KD only (58):

p ¼ ½ligand�
½ligand� þ KD

: (7)

For further analysis, it is crucial to compare the timescale of

association to a single binding site to the timescale of the

force probing. The apparent KD determined from the

CUFA experiment may vary from the initial thermal KD, if

the system is allowed to equilibrate during the application

of the external force: at equilibrium and ligand concentra-

tions around the thermal KD the association rate, given by

[ligand]$kon, is of the same order of magnitude as the disso-

ciation rate koff. The lifetime or inverse dissociation rate for

a dsDNA$polyamide complex was experimentally deter-

mined to be ~500 s (59). At 5 mm/s separation velocity

and similar linker lengths, the force needed to rupture a 20

basepair DNA duplex is built up on timescales in the order

of t ¼ 0.01 s (44). The DNA duplex unbinding occurs there-

fore on a much faster timescale t than the association or

dissociation of the dsDNA$ligand complex at relevant ligand

concentrations:

t <<
1

½ligand� , kon

: (8)

Although the natural off-rate of polyamides is very low,

dissociation of the ligand from the DNA duplex during force

probing may be nonnegligible. Studies suggest that the B-S

transition of DNA under force can be explained by a tilt of

the basepairs and a significant reorganization of the helical

structure of the DNA (60–62). The B-S transition has not

been observed for 20 basepair duplexes yet (44). However,

even small deformations of the dsDNA helical structure

may lead to the dissociation of the ligand, especially because

hairpin polyamides are particularly sensitive to deformations

FIGURE 6 Melting temperatures of the target and reference DNA duplex

in presence and absence of polyamides. The polyamides and DNA duplexes

are mixed at a stoichiometry of 1:1 at 2 mM.
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of the minor groove. This results in a decreased fraction of

occupied binding sites at the time of dsDNA unbinding

compared to the initial situation before force is applied.

Given that the association rate is slow, rebinding of the

ligand to the dsDNA is neglected and the fraction of occu-

pied binding sites is reduced by a constant factor f.

p
0 ¼ f , p ¼ f ,

½ligand�
½ligand� þ KD

; (9)

where f lies within the interval [0,1]. The probability of

a binding site to be occupied by a ligand is still governed

by the Hill equation isotherm; however with increasing

ligand concentration, the probability p0 saturates at f < 1

instead of 1. Importantly, the apparent KD is identical with

the thermal KD.

The target DNA sequence was designed such that there is

only one preferred polyamide-binding site. Without loss of

generality, the no-ligand case is assumed to yield NF0,

whereas the bound-ligand case is assumed to yield NF1.

The fluorescence signals of these two states superimpose

each other, and the expected total fluorescence signal as

a function of the polyamide concentration is the sum of the

NFs of the two states weighted by their relative occurrence:

NF ¼ p
0
, NF1 þ

�
1� p

0�
, NF0

¼ NF0 þ f , ðNF1 � NF0Þ ,
½ligand�

½ligand� þ KD

: (10)

The dissociation of ligands from the DNA duplex results in

a decrease of the maximal change in NF, whereas the

apparent KD is not affected. To conclude, in case Eq. 8 holds,

the forced unbinding of dsDNA in presence of a ligand is

a nonequilibrium process that produces a snapshot of the

equilibrium distribution between dsDNA and dsDNA$ligand

complexes from which the thermal dissociation constant KD

can be determined.

CONCLUSION

The CUFA was successfully applied to quantify the thermal

dissociation constants of three different dsDNA-polyamide

complexes. For this purpose, polyamide concentrations as

low as 10 pM were detected. This level of sensitivity is

comparable to conventional chip methods, which work with

fluorescently labeled ligands (9). Labeling, however, may

alter the binding behavior compared with the unlabeled ligand

and is not always applicable. Label-free high-throughput

techniques, such as surface plasmon resonance, are chal-

lenged when they are confronted with small molecules like

polyamides, which are easily detected employing CUFA.

Our approach not only avoids labeling of the interacting mole-

cules (a label is attached to linking DNA strand at a noninter-

acting basepair), but also permits the combination of different

experiments as well as controls on one chip. The current

DNA-feature size is hundreds of micrometers but can be
reduced to several micrometers using conventional microar-

ray spotters. Miniaturization will allow for a high degree of

parallelization and significantly reduced sample volumes.

We foresee CUFA in combination with microarray tech-

nology to be used as a tool to rapidly determine and quantify

the sequence-recognition profile of small molecules like tran-

scription factors, drugs, or other DNA-binding molecules. In

separate experiments, we demonstrated that short-lived

molecular interactions are captured in molecular crowded

environments, as will be published elsewhere (63). Thus,

the sensitivity range covers molecular complexes with micro-

molar to picomolar thermal dissociation constants and CUFA

may prove to be the ideal tool for systems biologists, who

have a growing interest in techniques that obtain affinity

binder data with sufficient accuracy in a high-throughput

fashion (64,65). The experimental procedure is as simple as

contacting and separating two surfaces and can be imple-

mented in any laboratory equipped with a quantitative fluores-

cence microscope.
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