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ABSTRACT Efficient and accurate reconstruction of secondary structure elements in the context of protein structure prediction
is the major focus of this work. We present a novel approach capable of reconstructing a-helices and b-sheets in atomic detail.
The method is based on Metropolis Monte Carlo simulations in a force field of empirical potentials that are designed to stabilize
secondary structure elements in room-temperature simulations. Particular attention is paid to lateral side-chain interactions in
b-sheets and between the turns of a-helices, as well as backbone hydrogen bonding. The force constants are optimized using
contrastive divergence, a novel machine learning technique, from a data set of known structures. Using this approach, we
demonstrate the applicability of the framework to the problem of reconstructing the overall protein fold for a number of commonly
studied small proteins, based on only predicted secondary structure and contact map. For protein G and chymotrypsin inhibitor 2,
we are able to reconstruct the secondary structure elements in atomic detail and the overall protein folds with a root mean-square
deviation of <10 Å. For cold-shock protein and the SH3 domain, we accurately reproduce the secondary structure elements and
the topology of the 5-stranded b-sheets, but not the barrel structure. The importance of high-quality secondary structure and
contact map prediction is discussed.
INTRODUCTION

One of the central problems of computational biophysics is

the difficulty of predicting and reconstructing protein struc-

ture from sequence (1,2). There are three main paradigms

that are employed to address this problem. The first paradigm

is ab initio molecular dynamics or Markov chain Monte

Carlo simulations guided by physical forces (3,4). The second

is fold-recognition or threading using sequence-structure

compatibility between the sequence of interest and proteins

with known 3D structures (5,6). The third approach is homo-

logy or comparative modeling, based on sequence alignment

to a template of known 3D structure with high sequence simi-

larity to the sequence (7,8).

In this work we explore an alternative approach that

involves reconstruction of secondary structure elements and

an overall 3D fold based on preliminary prediction of

secondary structure and a contact map. Reconstruction of

the 3D structure can then be achieved with the use of distance

geometry optimization (9,10) or a Metropolis Monte Carlo

scheme with annealing (11,12) in the field of Go-type poten-

tials (13,14) specified by the contact map. Recognizing the

fundamental importance of secondary structure, along with

long-range contacts in b-sheets, we extend the hierarchical

folding theory of Baldwin and Rose (15,16) in this work.

We hypothesize that lateral contacts between b-strands and

between the turns of an a-helix are most important for stabi-

lizing secondary structural elements. Therefore, in our recon-
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struction procedure we only consider residue contacts in the

context of secondary structure, in contrast to other procedures

(9–12) that identify contacts purely by distance.

In this study we reconstructed the protein backbone confor-

mation by using a highly efficient Metropolis Monte Carlo

procedure that we described in an earlier work (17). Our

backbone model features an all-atom representation in contin-

uous space, including the positions of b-carbon atoms (Cb),

whereas the majority of previously published methods rely

on a-carbon (Ca) trace reconstruction (9,11,12). Therefore,

one clear advantage of our methodology is that it provides

a more detailed atomistic description of the protein backbone

during reconstruction, which ensures, for example, the correct

chirality of a-helices and appropriate dihedral angles for the

entire backbone. We are particularly interested in faithful

reconstruction of secondary structural elements, including

hydrogen-bonding patterns in a-helices and b-sheets. Our

approach, therefore, also recognizes the fundamental princi-

ples of the backbone-based theory of protein folding (18).

The reconstruction of tertiary structure usually utilizes

residue-independent empirical potentials in the course of a

simulated annealing or energy minimization protocol (10–12).

In contrast, our Metropolis Monte Carlo procedure does not

rely on annealing. It is, therefore, important to estimate the

strength of the contacts in a-helices and b-sheets and their

stability at room temperature before employing the contact

potentials in a reconstruction. Specifically, we draw on a novel

statistical machine learning technique, known as contrastive

divergence learning (19,20), to determine the average strength

of side-chain interactions, the strength of hydrogen bonding,

and other force-field parameters in a simultaneous optimiza-

tion scheme. The estimates obtained from a data set of 466
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protein domains with known structure are used in conforma-

tional reconstruction simulations in the framework of our

polypeptide model.

The contact map, a matrix that indicates which amino acids

are in close proximity (21), can be moderately predicted by

correlated mutation analysis (22) and neural network methods

(23). In this work we rely on an alternative approach that uses

a segmental semi-Markov model (SSMM) (24) to simulta-

neously predict the contact map and secondary structure of

a protein. This procedure enables reasonably accurate contact

map prediction for the b-strand residues involved in b-sheet

formation, and we briefly recapitulate its details below. In

summary, the first goal of this work is to evaluate the stability

of secondary structure elements that are formed early in the

folding process. The second goal is to investigate the possi-

bility of overall 3D fold reconstruction based only on pre-

dicted secondary structure and b-sheet contacts. We tested

the procedure using protein G, chymotrypsin inhibitor 2, the

SH3 domain, and the major cold-shock protein, all of which

are rich in b-strands.

METHODS

Protein model

The probability P(R, U) that a protein sequence R will adopt a conformation

U is governed by the Boltzmann distribution. It is convenient to factorize

this probability into the product of the probability of the sequence given

the conformation (likelihood) and the prior distribution of conformations

P(R, U) ¼ P(RjU)P(U). In energetic terms, this can be rewritten as

EðR;UÞ ¼ �ln PðRjUÞ þ EðUÞ; (1)

where sequence-dependent and sequence-independent contributions to the

energy are separated. We assume that the sequence-independent term,

E(U), is defined by short-range interactions between the polypeptide back-

bone atoms as well as Cb atoms:

EðUÞ ¼
XN

i¼ 1

EB
i þ

XN

i¼ 1

Xi

j¼ 1

�
EvdW

ij þ EHB
ij

�
; (2)

where we consider valence elasticity, Ei
B; van der Waals repulsions, Eij

vdW;

and hydrogen bonding, Eij
HB (which represents the main contribution from

polar interactions). As such, our treatment of the sequence-independent

part of energy is similar to the traditional ab initio modeling approaches.

A detailed description of the backbone model and the interactions can be

found in our previous work (17).

The sequence-dependent part of the potential (the negative log-likelihood)

was approximated in our model by pairwise interactions between side chains.

Our main focus was on the resulting effect of these interactions and how they

stabilize secondary structural elements. We did not consider the detailed

physical nature of these forces or how they depend on the amino acid types.

We introduced these interactions between the polypeptide side chains as an

effective Go-type potential dependent on the distance between Cb atoms:

ESC
ij ¼ kCijr

2
ij; (3)

where rij is a distance between nonadjacent, ji � jj > 1, Cb atoms, and k is

a force constant. In this work we introduce a ‘‘regularized contact map’’, Cij.

In this binary matrix, two types of contacts are defined in the context of

protein secondary structure. First, only lateral contacts in the parallel and
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antiparallel b-sheets are indicated by ones. Second, the contacts between

amino acids i and iþ3 in a-helices are also represented by ones. The contacts

of the first and second types typically have the closest Cb–Cb distance

among nonadjacent contacts in native proteins. The force constants depend

on the secondary structure type, introducing positive ka and kb. Nonadjacent

contacts in secondary structural elements are therefore stabilized by attract-

ing potentials.

We also modeled interactions between sequential residues. This interac-

tion is defined by the mutual orientation of adjacent residues that are

involved in secondary structural elements:

ESC
i;iþ 1 ¼ h cos gi;iþ 1; (4)

where gi,iþ1 is the dihedral angle Cb–Ca–Ca–Cb between the adjacent resi-

dues. The purpose of this interaction is to bias the conformation toward the

naturally occurring orientations of residues in secondary structural elements.

In a-helices, adjacent residues adopt a conformation with cosg positive. In

b-sheets, cosg is, in contrast, negative. We therefore used two values of the

force constant: negative ha and positive hb.

To summarize, the total energy of a polypeptide chain with conformation

U was calculated as follows:

EðR;UÞ ¼
XN

i¼ 1

EB
i þ

XN

i¼ 1

Xi

j¼ 1

�
EvdW

ij þ EHB
ij þ ESC

ij

�
: (5)

The valence elasticity, van der Waals repulsions, and hydrogen bonding that

contribute to this potential have a clear physical meaning and are analogous to

traditional ab initio approaches. The side-chain interactions, Eij
SC, in this

model were introduced as a long-range quadratic Go-type potential based

on the contact map and secondary structure assignment. This pseudo-poten-

tial had two purposes: to stabilize the secondary structural elements, and to

provide a biasing force that allows reconstruction of the backbone conforma-

tion in the course of our Metropolis Monte Carlo simulations (17,20).

Model tuning and training data set

Since our procedure does not involve simulated annealing, we carefully opti-

mized the force-field parameters of our model. The values of many param-

eters of our protein model (i.e., lengths and angles (25,26) and atomic radii

(27)) are fairly well established. We used these parameters to model protein

backbone structure and introduce hard-sphere repulsion between the back-

bone atoms as well as b-carbons, the only side-chain atom that we used in

our model. Other model interactions necessitated calibration of their param-

eters. Our model featured an interpeptide hydrogen bonding specified by

a square-well potential. Four parameters of hydrogen-bonding interactions

were optimized in the procedure: hydrogen bond strength, H; the maximum

allowed H$$$O distance, d; and the minimum allowed angles :COH and

:OHN, Q and J. Our model also featured interactions between side chains

that were parts of secondary structural elements. Four force constants—ka,

kb, ha, and hb—corresponding to different types of side-chain interactions

were also optimized.

We used a novel machine learning procedure known as contrastive diver-

gence (19) to calibrate the aforementioned eight parameters: q¼ {H, d, Q, J,

ka, kb, ha, hb}. Contrastive divergence is a fast approximate gradient-ascent

maximum likelihood method for estimating force constants and other energy

parameters from a training set of known structures. The gradient of log-likeli-

hood with respect to the model parameters was evaluated as follows:

v ln PðR;U0jqÞ
vq

z
vEðR;UKÞ

vq
� vEðR;U0Þ

vq
; (6)

where U0 corresponds to initial conformations in the training data set, and

UK corresponds to conformations after K ¼ 4096 Metropolis steps. For

details of the procedure, see our previous work (20).

To prepare a training set of proteins of known structure, we used ASTRAL

1.69 (28,29). We initially downloaded the 945 highest Summary PDB Astral
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Check Index (SPACI) scoring Protein Data Bank (PDB)-style structures that

represent different folds according to the Structural Classification of Proteins

(SCOP) database. SPACI is an approximate measure of structure quality that

incorporates resolution, R-factor, and stereochemical checks (29). A large

portion of these structures was eliminated from this data set. We kept only

representatives of the a, b, a/b, and aþb classes. We dropped all structures

with missing residues. Finally, we removed the structures with SPACI scores

of<0.4 and NMR structures. This left us with 466 high-quality diverse x-ray

structures containing 79,918 residues. The chain lengths ranged from 31 to

759 residues, with the median length of 145 residues. In our modeling proce-

dure, the chains are regularized so that the peptide bonds are absolutely flat

and the Ca–Ca distances are fixed. The root mean-square error of the regula-

rization was, on average, equal to 0.037 Å and never exceeded 0.104 Å. The

structures in the training set are listed in the Supporting Material, along with

the corresponding number of residues, the SPACI score, and the root mean-

square error of the regularization.

Secondary structure and contact map prediction

The secondary structure and the contact map were predicted based on a given

sequence of amino acids and its multiple sequence alignment profile (30).

The prediction procedure is based on the concept of proteins as collections

of local secondary structure segments, which may be shared by unrelated

proteins. We adopted the framework of the SSMM (31,32), a generalization

of hidden Markov models that allows each hidden state to generate a variable

length sequence of the observations. The observation sequence, O, included

both a residue sequence and a multiple alignment profile. The associated

secondary structure, T, was fully specified in terms of segment locations and

segment types. The contacts between b-strand residues are specified by

nonzero elements in the binary contact map, C.

The secondary structure prediction for a given observation sequence, or the

posterior distribution P(TjO), was derived using a Bayesian approach from

the distribution of observations for a given secondary structure, P(OjT), in

the training data set. The training data set consisted of ~2000 proteins from

the PDB (33) with a low pairwise sequence identity. The contact map predic-

tion, P(CjO), was derived using a Markov Chain Monte Carlo approach,

drawing samples from the distributions of P(CjT) and P(TjO). When samples

were drawn from the former distribution, any b-strand was allowed to form

one or two contacts with other b-strands. For more details on the procedure,

see our previous publication (24) (for web server implementation see http://

wsbc.warwick.ac.uk/www/eva/contacteva.html).

We further used the prediction results for the reconstruction of tertiary

structure in the framework of our protein model. Specifically, the most likely

secondary structure was assigned to each residue based on P(TjO), the inter-

action between two adjacent residues that belong to the same secondary

structure element. These were, in turn, defined according to Eq. 4, and, in

the case of a-helix, the interactions between side-chains i and iþ3 were

defined according to Eq. 3. The contact map prediction, P(CjO), was regu-

larized to define off-diagonal bands in the Cij matrix that defined the specific

b-sheet lateral interactions according to Eq. 3.

RESULTS

Learning model parameters

Secondary structure elements that are formed early in protein

folding (15,16) are stabilized by both sequence-dependent

side-chain interactions and sequence-independent backbone

interactions (particularly hydrogen bonding). A careful balance

between the two contributions is crucial for faithful reconstruc-

tion of secondary structure elements in the course of room-

temperature simulations. In the context of our protein model,

this balance requires careful optimization of hydrogen-bonding

parameters and interactions between side chains as mimicked
by Go-type interactions between Cb atoms (see ‘‘Protein

Model’’ in Methods). The contrastive divergence technique

(19) provides an efficient tool to estimate these parameters

from the data set of known structures as they are observed in

the PDB, by relying on short Metropolis simulations (20).

Contrastive divergence is a better alternative to statistical

potentials (34) for evaluating interactions from the PDB.

Overall, eight model parameters were simultaneously opti-

mized with the use of contrastive divergence. Fig. 1 shows the

parameter learning curves produced by the iterative proce-

dure. We found that hydrogen bonding is characterized

by the strength, H/RT ¼ 1.85; the H$$$O distance cutoff,

d ¼ 2.14 Å; and the minimum allowed angles :COH and

:OHN, Q¼ 140� and J ¼ 150�, respectively. Our estima-

tion of hydrogen-bonding parameters is in perfect agreement

with our previous work, in which we used a smaller data set

(20), and in good agreement with experimental evidence

(H ¼ 1.2 kcal/mol) (35). We also found the value of the

force constant for the attracting potential between amino

acids in secondary structural elements to be equal to ka/RT¼
0.10 Å�2 and kb/RT ¼ 0.09 Å�2. The two values are very

close to each other, indicating that these interactions are

indeed similar in both helices and sheets. This is an expected

FIGURE 1 Contrastive divergence optimization of the model parameters.

The top panel shows iterative convergence of four parameters of side-chain

interactions: ka in red, kb in black, ha in green, and hb in blue. The bottom

panel shows the convergence of hydrogen-bond parameters: H in blue, d in

black, Q in green, and J in red.
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result because the separation between the Cb atoms in both

a-helices and b-sheets is ~5.4 Å. The effective force constants

for the interactions between adjacent residues were deter-

mined to be ha/RT ¼ �0.6 and hb/RT ¼ 4.5. In agreement

with our expectations, these force constants have opposite

signs, stabilizing alternative mutual orientations of adjacent

residues in a-helices and b-strands.

Isolated a-helix and b-hairpin reconstruction

Experimental evidence suggests that the polyalanine confor-

mation in solution can be either an a-helix or a 310-helix

(36). Our previous simulations of a model polyalanine

without side-chain interactions also demonstrated that hydro-

gen bonding alone stabilized an a-helix or a 310-helix equally

well. Yet, the overwhelming majority of helical conforma-

tions in proteins are a-helices. We believe that attracting inter-

actions between side chains can explain the preference for

a-helices in proteins. Such forces should constrict the helix

toward a smaller pitch in a-helices. We reliably observed

formation of stable a-helices from an extended conformation

in specially designed simulations. The simulations were initi-

ated from a b-hairpin conformation of a 16-residue polypep-

tide. The side-chain interactions were specified between Cb

atoms i and iþ3, as well as adjacent residues (see Methods).

The formation of stable a-helix was usually complete within

5 million steps of our simulations. Fig. 2 A shows a represen-

tative resultant a-helix.

Although spontaneous folding of helical structures is

possible under the influence of hydrogen bonds alone, the

folding of isolated b-hairpins seems extremely unlikely (and

was not actually observed) (17). In this work, we added two

types of biasing interactions between side chains to facilitate

the formation of b-hairpins in special simulations: 1), an

attracting potential between the Cb atoms of amino acids

that form lateral contacts in the b-hairpin; and 2), repulsion

between sequential residues (see Methods) that favored alter-

nating orientations of side chains. Starting from a helical

conformation of a 16-residue polypeptide, the formation of

a stable b-hairpin was usually complete within 30 million steps

of our Metropolis procedure. Fig. 2 B shows a representative

resultant b-hairpin. Of interest, without repulsion between

adjacent residues, b-hairpins routinely bent on themselves

and formed stable structures, such as those shown in Fig. 2 C.

Therefore, the interactions between the lateral neighbors alone

were not sufficient to produce long, straight b-hairpins.

To improve the stability of a-helices and b-sheets in these

and further simulations, we moderately adjusted some force

constants (ka/RT ¼ 0.12 Å�2, kb/RT ¼ 0.11 Å�2) and

hydrogen-bonding parameters (H/RT ¼ 2.5, d ¼ 2.19 Å,

Q ¼ 130�, and J ¼ 140�). The difference between these

values and those determined in the contrastive divergence

procedure is<30%. Unfortunately, without this modest modi-

fication, the formation of persistent and hydrogen-bonded

a-helices and b-sheets became unlikely in our simulations,
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with lateral Cb–Cb distances noticeably exceeding native

5.4 Å. Unavoidable systematic errors in the data set may ex-

plain the underestimation of force parameters in a contrastive

divergence procedure that assumes a correct representation of

thermal fluctuations in the data set. Another justification for

the small adjustment is the necessity to compensate for other

interactions that were not considered in our model.

To summarize, we developed biasing potentials and deter-

mined the force constants that are sufficient to fold and stabi-

lize both a-helices and b-hairpins. Our biasing potentials do

not involve artificial constraints on dihedral angles. We

believe that values of dihedral angles pertaining to different

secondary structural elements are the result of the adopted

conformation, rather than its cause. In our model, to assemble

a secondary structure, side chains are first properly arranged

by long-range specific interactions and then short-range,

nonspecific hydrogen bonds are spontaneously formed.

Protein G modeling from an ideal contact map

Protein G (e.g., PDB code 1PGA) is a widely used model

system for testing protein-folding procedures (37–39). Protein

G is a 56-residue-long protein that contains all the important

structural motifs: parallel and antiparallel b-sheets and an

a-helix. As a benchmark for a ‘‘best possible case’’ recon-

struction, we first simulated protein G folding by introducing

attractive interactions between lateral neighboring Cb atoms

FIGURE 2 Examples of reconstructed secondary structural elements. The

chains of 16 residues were modeled. The visualization is done in VMD (54).

The secondary structure is automatically assigned by STRIDE (55) and

reflects the backbone hydrogen-bonding criteria that are spontaneously

satisfied in the course of simulations.
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as they appear in the native b-sheets and the helix (see

Methods), rather than relying on prediction results. We also

used interactions between adjacent Cb atoms as appropriate

for the native secondary structure. Cb atoms in the coil confor-

mation were not included in any interaction. The regularized

contact map that corresponds to these interactions is shown

in Fig. 3 A. This is an ideal case with Go-type potentials

specified by native interactions. The simulations were started

from an overall extended conformation, where the residue

initial conformations had dihedral angles corresponding to

their native secondary structures. None of the b-sheet contacts

were formed in the initial conformation. We continued

protein G simulations for 65 million steps. Folds resembling

the native fold started to appear after ~30 million steps. To

analyze the folding pathway, we followed the microscopic

energy and the fraction of native contacts specified in the regu-

larized contact map among all contacts formed (40). Fig. 4

demonstrates the relaxation of the total microscopic energy

and evolution of the fraction of native contacts during this

simulation. The conformation corresponding to a relatively

low energy and maximal fraction is also shown in Fig. 3 B.

These simulations were completed within 10 h on a Sun Netra

X1 Cluster Grid (Sun Microsystems, Santa Clara, CA).

This simulation demonstrates that, in the case of protein G,

our framework is capable of reconstructing the overall fold

of the protein if a detailed description of secondary structure

and b-sheet contacts is available. The structure shown in

Fig. 3 B contains the correct a-helix and b-sheets with

FIGURE 3 Reconstruction of the protein G fold by specifying native

interactions. The top-left panel shows the regularized contact map with

native interactions in a-helix and b-sheets. The best structure corresponding

to the maximum fraction of native contacts at relatively low energy is shown

in the top-right corner.
correct interpeptide hydrogen bonding and topology,

although the root mean-square deviation (RMSD) between

this structure and the native structure is 8.6 Å. Hypotheti-

cally, the more compact native structure may be stabilized

by interactions that are omitted from our model, e.g., by

packing of the hydrophobic core of the protein in the later

stages of folding.

Protein G modeling from a predicted contact map

In the second experiment, we attempted to reconstruct the

protein G conformation by relying on a predicted secondary

structure and contact map. The prediction was provided by

the SSMM procedure (24) and required some manual inter-

pretation of the results to resolve ambiguities and enable its

FIGURE 4 Protein G modeling from the ideal regularized contact map.

The graphs demonstrate the evolution of the microscopic energy, E, and

fraction of the native contacts, Q, during the simulation run in the top and

middle panel, respectively. The bottom panel demonstrates the relationship

between Q and E.

Biophysical Journal 96(11) 4399–4408
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use for the reconstruction of 3D structure. Fig. 5 A illustrates

the three-step interpretation of the prediction results. First, the

predicted helical region in the middle of the protein specified

helical contacts and corresponding Go-type potentials in our

protein model. Second, the pairing between central b-strand

residues was specified based on the position of a local

maximum on the predicted contact map. Third, the corre-

sponding regularized contacts were diagonally extended in

a parallel or antiparallel direction to the boundaries of the

reliable prediction, where the predicted probability dropped

to the background level.

For protein G, the predicted a-helix was slightly shorter

than the native one. The ambiguity in predicted positions

corresponded to a plausible two- or four-residue shift between

the b-strands. The orientation of the contacts that appeared

close to the main diagonal necessarily corresponded to anti-

parallel b-hairpins. The predicted contact between N- and

C-termini could be both parallel (as in the native protein struc-

ture) or antiparallel. We separately simulated both the parallel

and antiparallel orientations as represented in Figs. 5 and 6,

respectively. The evolution of the total energy and the fraction

of predicted contacts specified in the regularized contact map

FIGURE 5 Reconstruction of the protein G fold by specifying predicted

interactions. Panel A shows the regularized contact map with predicted inter-

actions in a-helix and b-sheets, with the predicted contact map in the back-

ground. The gray levels in the predicted contact map represent the predicted

probability of a particular contact. The regularized diagonal contacts pass

through the local maxima on the predicted contact map and extend until

the predicted contact probability levels off. The best structure corresponding

to the maximum fraction of predicted contacts at relatively low energy is

shown in panel B.
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during the simulations can be found in the Supporting Mate-

rial. These simulations of ~100 million Metropolis steps were

completed within 5 h on a Sun Netra X1 Cluster Grid.

Figs. 5 B and 6 B show the structures that correspond to the

maximum fraction of predicted contacts at relatively low total

energy. The fold of the structure shown in Fig. 5 B corresponds

to the native fold of the protein G, although the RMSD with

the native structure is 10 Å. Because of the underprediction

of the length of both the a-helix and b-sheets, larger portions

on the chain were left as coils in comparison to the native struc-

ture. This can partly explain why the a-helix does not pack

against the b-sheets in our simulated structures. Both the anti-

parallel and parallel b-sheets between the termini of the chain

were able to form in our simulations. It is, therefore, impossible

to rule out the antiparallel conformation based on the contact

map prediction alone. Our results indicate that it is crucial to

obtain a good-quality predicted contact map and secondary

structure to faithfully reconstruct the 3D fold of a protein.

Other examples of protein modeling from
a predicted contact map

We demonstrated the general applicability of the modeling

procedure described above by modeling three other proteins:

chymotrypsin inhibitor 2 (CI2, PDB code 2CI2) (41), Src

tyrosine kinase SH3 domain (SH3, PDB code 1SRL) (42),

and the major cold-shock protein of Escherichia coli (CspA,

FIGURE 6 Reconstruction of the protein G fold by specifying predicted

interactions. Panel A shows the regularized contact map (alternative to

Fig. 5) with the predicted contact map in the background. The regularized

diagonal contacts pass through the local maxima on the predicted contact

map and extend until the predicted contact probability levels off. The best

structure corresponding to the maximum fraction of predicted contacts at

relatively low energy is shown in panel B.
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PDB code 1MJC) (43). These peptides are often used as

folding model and simulation systems (44,45). The native

65-residue CI2 fold contains a four-stranded b-sheet and an

a-helix, and differs in topology from protein G. Both native

56-residue SH3 and 69-residue CspA have five-stranded

b-barrel structures, with slightly different topologies. We

again modeled these proteins by relying on secondary struc-

ture and contact map prediction, in a similar fashion to the

protein G modeling described above. These simulations

required ~100 million Metropolis steps (20). The secondary

structure and contact map prediction were again produced

using the SSMM procedure (24).

The simulation results for proteins CI2, SH3, and CspA are

shown in Figs. 7–9, respectively. For all considered proteins,

the quality of the secondary structure prediction was compa-

rable to that of protein G: b-strand locations in the sequence

were correctly predicted, whereas their length was slightly

underpredicted. The contact map prediction (shown in panel

FIGURE 7 Reconstruction of chymotrypsin inhibitor 2 CI2. Panel A
shows the regularized contact map with the predicted contact map in the

background. The regularized diagonal contacts pass through the local

maxima on the predicted contact map and extend until the predicted contact

probability levels off. The selected regularized contacts correspond to the

native fold of CI2. False-positive predictions are not included in the recon-

struction. The best structure corresponding to the maximum fraction of

predicted contacts at relatively low energy is shown in panel B.
A of each figure) presented a challenge for our further

modeling because all possible combinations between the

b-strands were predicted with comparable probability. The

correctly predicted b-hairpin contacts allowed unambiguous

interpretation in terms of residue contacts and Go-type poten-

tials in our protein model (see protein G modeling above).

In contrast, the other predicted contacts were mostly false

positives. For further simulations, we used three b-hairpin

contacts and one longer-range contact between N- and

C-termini that were reliably predicted and corresponded to

the native structure. The plots for the evolution of the total

energy and the fraction of predicted contacts specified in the

regularized contact map during the simulations can be found

in the Supporting Material.

The structures shown in Figs. 7–9 B were selected based on

the maximum fraction of predicted contacts at relatively low

total energy. The quality of reconstruction of CI2 (Fig. 7 B)

was comparable to the case of the protein G described above.

The resulting structure features a correctly folded b-sheet with

an a-helix. The RMSD of the structure with the native fold was

6.8 Å. In the case of the SH3 domain (Fig. 8 B), four out of five

strands correctly packed in the b-sheet with small misalign-

ments of up to two residues. The C-terminus was correctly

packed against the rest of the structure, but the hydrogen bonds

FIGURE 8 Reconstruction of the Src tyrosine kinase SH3 domain. Panel

A shows the regularized contact map with the predicted contact map in the

background. The regularized diagonal contacts pass through the local

maxima on the predicted contact map and extend until the predicted contact

probability levels off. The selected regularized contacts correspond to the

native fold of SH3. False-positive predictions are not included in the recon-

struction. The best structure corresponding to the maximum fraction of

predicted contacts at relatively low energy is shown in panel B.

Biophysical Journal 96(11) 4399–4408



4406 Podtelezhnikov and Wild
did not completely form to complete the barrel. The RMSD of

the shown structure with the native fold was equal to 5.8 Å. In

the case of CspA (Fig. 9 B), instead of the barrel-like native

structure, this structure resembles a flattened five-stranded

b-sheet. The contacts between the strands were in good agree-

ment with the native structure except for some small misalign-

ments by up to three residues. The reason for the flattened,

rather than barrel-like, structure is the missing contact between

the edges. Indeed, the native structure contains one additional

contact between the b-strands that involves only three pairs of

residues near residues 30 and 62. This contact was not reliably

predicted (see Fig. 7 A) and was omitted from the 3D recon-

struction procedure. The overall RMSD of the native and

predicted structure is 10.8 Å. In all of these cases, we can spec-

ulate that the resulting structures are stable folding intermedi-

ates, with the native structure being adopted as a result of

the formation of the final contacts and small adjustments in

alignment between the b-strands.

DISCUSSION

We have presented a framework for reconstructing protein

backbone conformation from the primary sequence with

a focus on secondary structural elements. This work repre-

FIGURE 9 Reconstruction of the major cold-shock protein CspA. Panel A

shows the regularized contact map with the predicted contact map in the

background. The regularized diagonal contacts pass through the local

maxima on the predicted contact map and extend until the predicted contact

probability levels off. The selected regularized contacts correspond to the

native fold of CspA. False-positive predictions are not included in the recon-

struction. The best structure corresponding to the maximum fraction of

predicted contacts at relatively low energy is shown in panel B.
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sents a further development of the simulation techniques

we described in earlier works (17,20). Our model features

an all-atom backbone representation with standard bond

lengths and angles as well as atomic radii (25–27). We intro-

duced two types of sequence-independent short-range inter-

actions: van der Waals repulsions and hydrogen bonding.

The sequence-dependent part of the potential was mimicked

by means of special Go-type potentials between Cb atoms.

We only specified these interactions between lateral neigh-

bors in b-sheets and across the turns of a-helices. To sample

the conformations, we used an efficient Metropolis Monte

Carlo sampler that is capable of performing simulations in

reasonable time.

To calibrate the magnitude of the model interactions, we

used a modern machine learning technique called contrastive

divergence (20). In this work, we performed combined optimi-

zation of hydrogen-bonding parameters along with Go-type

side-chain interactions. The estimates of the hydrogen-bond-

ing interactions are in full agreement with our previous

work, in which hydrogen bonding interactions were optimized

regardless of side-chain interactions. They are also in agree-

ment with some experimental observations (35).

We identified and estimated the magnitude of the model

side-chain interactions that are capable of stabilizing secondary

structural elements in our simulations. We observed that

a-helices were sufficiently stabilized by attractions between

side chains at positions i and iþ3. (In this study we did not

consider the important interactions between side chains i and

iþ4 (46,47).) It turned out that, besides lateral attractions

between b-strands, a special interaction that favored alternating

orientations of adjacent residues was necessary to form flat-

tened b-sheets. This observation is in agreement with

numerous experimental observations (48). These interactions

can be conveniently specified on the regularized contact

map. We did not consider the dependence of these potentials

on amino acid types because such potentials can only be opti-

mized to stabilize the tertiary structure of a finite number of

proteins, and thus cannot be universally optimized (49,50).

In the framework of our model, we were able to success-

fully reconstruct the general fold of protein G by precisely

specifying native interactions in its a-helix and b-sheets.

We reconstructed secondary structural elements in atomic

detail, including hydrogen-bonding patterns. Despite the

fact that our model did not include interactions between the

a-helix and the b-sheets, we obtained reasonable packing

between the secondary structural elements. We also success-

fully reconstructed the overall folds of proteins G and CI2

from predicted contact maps, although the orientation of one

out of three predicted b-sheet contacts was ambiguous in

both cases. In addition, the specific location of some contacts

disagreed with the specific pairing in native folds by a two-

residue shift. The attempt to reconstruct the overall folds of

CspA and SH3 domain turned out to be more challenging

because of a large number of false-positively predicted

b-sheet contacts. Most of the b-strand packing into a b-sheet
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was, however, reconstructed successfully. We concluded that

ambiguities in the predicted contact map presented the major

obstacle to successful reconstruction of the 3D fold.

In our current model, the side-chain interactions were spec-

ified according to the secondary structure regardless of

a particular residue position. This is a significant simplifica-

tion considering that interactions in a-helix caps and on

b-sheet edges are believed to be stronger to compensate for

the lack of backbone hydrogen bonding (51,52). In addition,

our model lacks any interactions between secondary structure

elements and therefore is not suitable for pure a-proteins. This

also resulted in rather loose agreements between the modeled

structures and native folds with RMSDs up to 10 Å. Our goal

in this work was to identify a minimal set of interactions that

are sufficient to stabilize secondary structure elements, rather

than produce a precise tertiary structure. Smaller RMSDs

have been achieved by specifying a more complete set of

interactions, albeit in Ca-only models (11,12). The discrep-

ancy can therefore be attributed to the lack of side-chain inter-

actions other than the direct secondary-structure interactions

(53). The introduction of special interactions between the

side chains near the edges and between secondary structure

elements would be a significant advancement of our model,

and will be the focus of future work.

SUPPORTING MATERIAL

One table and five figures are available at http://www.biophysj.org/biophysj/

supplemental/S0006-3495(09)00673-0.

This study was supported by a grant from the National Institutes of Health

(1 P01 GM63208).
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