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ABSTRACT There is increasing evidence for a major and critical involvement of lipids in signal transduction and cellular
trafficking, and this has motivated large-scale studies on lipid pathways. The Lipid Metabolites and Pathways Strategy consor-
tium is actively investigating lipid metabolism in mammalian cells and has made available time-course data on various lipids in
response to treatment with KDO2-lipid A (a lipopolysaccharide analog) of macrophage RAW 264.7 cells. The lipids known as
eicosanoids play an important role in inflammation. We have reconstructed an integrated network of eicosanoid metabolism
and signaling based on the KEGG pathway database and the literature and have developed a kinetic model. A matrix-based
approach was used to estimate the rate constants from experimental data and these were further refined using generalized
constrained nonlinear optimization. The resulting model fits the experimental data well for all species, and simulated enzyme
activities were similar to their literature values. The quantitative model for eicosanoid metabolism that we have developed
can be used to design experimental studies utilizing genetic and pharmacological perturbations to probe fluxes in lipid
pathways.
INTRODUCTION

Lipids are the main structural components of cellular

membranes and facilitate compartmentalization of the cell

in different organelles, e.g., mitochondria, nucleus, etc., for

the efficient functioning of various processes. Traditionally,

lipids are only associated with cellular roles involving energy

storage and used as structural building blocks for compart-

ments. Recent developments in lipid research have identified

the important role of lipids in modulating cellular trafficking

and cellular signaling. There is increasing recognition that to

understand cellular processes, our current knowledge of

genomics and proteomics has to be complemented with

knowledge of lipids and other metabolites. Lipids have been

classified into six major categories (fatty acyls, glycerolipids,

glycerophospholipids, sphingolipids, sterol lipids, and pre-

nols) (1). Each category of lipids exhibits distinct roles in

various cellular processes and disease in addition to cross

talk. For example, fatty acyls contribute to inflammation,

rheumatoid arthritis, sepsis, and asthma; sphingolipids regu-

late cell proliferation, apoptosis, and cell differentiation;

and sterols play a central role in atherosclerosis (2). Thus,

the quantification and modeling of lipid synthesis and

metabolism opens new opportunities for systems-level anal-
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ysis of cellular processes and design of novel therapeutic

agents.

In this article, we have focused on a class of fatty acyls,

namely, the eicosanoids. For a recent review of all of the ei-

cosanoid biosynthetic and degradative pathways, see

Buczynski et al. (3). Eicosanoids are derived from AA, a

20-carbon fatty acid, and are divided into four subclasses:

prostaglandins, thromboxanes, leukotrienes, and other

oxidized products. Prostaglandins have been found to

mediate pain, fever, and other symptoms associated with

inflammation, and have been studied extensively (4,5).

Prostaglandin G/H synthase (EC 1.14.99.1; COX) catalyzes

the synthesis of prostaglandins from AA and has been

targeted for treating inflammation, musculoskeletal pain,

and other conditions (6). Even simple pharmaceutical

agents including aspirin and ibuprofen, COX inhibitors,

are used extensively in daily life (4). Recently, a new gener-

ation of COX-2 inhibitors, including celecoxib (Celebrex)

and rofecoxib (Vioxx), were used for the treatment of oste-

oarthritis and acute pain conditions, but most of these have

exhibited severe side effects, as evidenced from the recall

of Vioxx (7). Insufficient accounting for the important

interactions between different proteins and metabolites in

drug discovery is one plausible explanation for such side

effects. This suggests an increasingly important role of

quantitative and predictive modeling in drug-discovery

research.

There are only a few models of AA metabolism available

in the literature (8). Furthermore, due to the lack of avail-

ability of large-scale data, the quantification of intermediate

metabolites and interactions are not reliable in these

models. The Lipid Metabolites and Pathways Strategy

(LIPID MAPS) consortium (9) has quantified the global
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changes in lipid metabolites (‘‘lipidomics’’) and has devel-

oped mass spectrometry-based methods to quantitatively

measure the changes in lipid metabolites in RAW 264.7

macrophage cells. Time-course data in response to the

treatment of macrophages with KDO2-lipid A (an LPS

analog) has been collected. This data is reported herein,

and additional data is freely available online (9). The

goal of the work presented here is to construct a predictive

kinetic model for eicosanoid metabolism and signaling

using the lipid pathways derived from the KEGG pathway

database and literature, and the time-course data from

LIPID MAPS. This manuscript is organized as follows.

In the next section, we briefly discuss the experimental

data preprocessing and present the methodology used to

estimate the rate parameters. In the subsequent section,

we present the results of parameters estimation and

validation of the model, followed by a discussion and

conclusion.
MATERIALS AND METHODS

Network simplification

We have developed a detailed metabolic and signaling reaction network

comprising the production and consumption of AA using the information

available in the literature (10–17) and the KEGG pathways database (18)

(Fig. 1 a). VANTED software was used to draw these networks (19). The

detailed network contained many unmeasured metabolites. One of the

steps in our matrix-based fast algorithm for parameter estimation required

experimental data on all metabolites except the leaf nodes/metabolites in

the network. The leaf nodes (last metabolite in each branch of the

network) were exempted, because the reactions leading to the unmeasured

leaf metabolites were combined with the default degradation of their

precursors. The network was simplified to include only the measured

metabolites by using two simple rules that are commonly used in chem-

ical reaction kinetics, metabolic engineering, and systems biology (20).

First, multistep reactions with unmeasured intermediate metabolites were

lumped into a single step containing measured metabolites. For example,

in the reaction A / B / C, if A and C are measured, and B is unmea-

sured, then the reaction has been simplified to A / C. When metabolites

were involved in unmeasured branches of pathway or leaf-node
FIGURE 1 Detailed network (a) and

simplified network (b) for LPS/

KDO2-lipid A stimulated eicosanoid

metabolism and signaling pathway.The

numbers above the arrows are reaction

numbers (Table 1), and default degrada-

tion reactions are not labeled. Black

lines represent lipid metabolism and

gray (red in online version) indicate

signaling pathways. Metabolites and

enzymes are represented in rectangular

boxes and ovals boxes, respectively.

The measured and unmeasured metabo-

lites are differentiated by thick and thin

borders, respectively. For full names of

metabolites, refer to the abbreviations

list. Signaling/transporter proteins:

FAT, fatty acid transporter; ERK, extra-

cellular receptor kinase; cPLA2, cyto-

plasmic phospholipase A2; PKC,

protein kinase C; NF-kB, nuclear factor

kappa beta.
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metabolites, those reactions/branched pathways were lumped into generic

degradation reactions. Second, the enzymes, which were not regulated by

other proteins or metabolites, were eliminated from the reaction, with the

assumption that their activities remain constant during such processes.

When an enzyme is regulated, it is preserved in the simplified pathway

along with its signaling connections. Fig. 1 b represents the simplified

network map containing the essential components of lipid metabolism

and signaling. In this network, PGH2, an unmeasured metabolite, has

been retained because of its role as an intermediate in the generation of

more than one metabolite. More discussion on treatment of PGH2 in

the model is presented in the section on Kinetic modeling and parameter

estimation.

Experimental data and preprocessing

The LIPID MAPS consortium has developed a mass spectrometry-based

method for measuring all the major lipids in mammalian cells after treatment

with KDO2-lipid A. RAW 264.7 cells, grown in 10% serum, were used in

the experiments. All metabolites were measured in pmol/mg-DNA units.

To understand lipid metabolism under the normal and disease state, the

experiments were performed and time-courses of lipids were measured

under two conditions: (a) normal condition designated as control and (b)

inflamed condition (stimulated by KDO2-lipid A). LPS activates the cyclo-

oxygenase (COX) enzyme and inhibits the lipoxygenases (21). Thus, COX

products (prostaglandins) were detected in the experiments and lipoxyge-

nase products (leukotrienes) were undetectable. Time series comprised of

eight points, at 0, 0.5, 1, 2, 4, 8, 12, and 24 h, were measured with three bio-

logical replicates consisting of three technical replicates each. The three

technical replicate experiments were performed on the same day with a single

batch of cells. In addition, each time course was repeated three times

on different days with different batches of cells (biological replicates).

For kinetic modeling purposes, outlier points were detected by a simple

t-test and were excluded at each time point. The resulting data from

all the replicates were averaged at each time point. Data were processed

for all metabolites under treatment with KDO2-lipid A and control

conditions.

Kinetic model and parameter estimation

We have developed a kinetic model of the simplified lipid network. The

reaction rates were described by linear or law-of-mass-action kinetics,

with the assumption that for enzymatic reactions, the substrate concentra-

tions are much smaller as compared to the corresponding Michaelis constant,

Km. For example, the following types of reaction schemes and rate expres-

sions were used:

This is similar to a scheme used in the modeling of calcium dynamics in our

laboratory (22). Because of the scarcity of information on transcriptional,

translational and posttranslational regulation of various enzymes, and also

for simplification, enzyme regulation was modeled by formulating the

rate parameter for the enzyme as a linear function of its regulatory mole-

cules. For example, COX has two isoforms, COX-1 and COX-2. COX-1

is constitutive and COX-2 is an inducible enzyme. The activity of COX-2

is modified by DG and LPS. This effect was functionally captured through

the reactions

Reaction Rate expressions

A / B k*[A]

A þ B / AB k*[A]*[B]

[Enz] A / B k*[Enz]*[A]

Biophysical Journal 96(11) 4542–4551
The effective rate constant for COX was obtained as a linear function of DG

and LPS (k10*[DG] þ k11*[LPS] þ k12). The flux expressions obtained

from this scheme were linear in rate parameters and nonlinear in metabolite

concentrations. The matrix-based approach to estimate the rate constants

is described below in terms of the reaction numbers labeled in Fig. 1 b

and listed in Table 1. This approach is an extension of a previous approach

used for rate-parameter estimation for metabolic reactions using steady-

state data (23). Equation 1 describes the rate of change of [PGH2] and

[PGD2].

d½PGH2�
dt

¼ k10½DG�½AA� þ k11½LPS�½AA� þ k12½AA�

�k13½PGH2� � k15½PGH2� � k17½PGH2�
d½PGD2�

dt
¼ k17½PGH2� � k18½PGD2� � k19½PGD2�

;

(1)

where the rate constants, ki (i¼ 10, 11, 12, 13, 15, 17, 18, 19), are as defined

in Table 1.

TABLE 1 The estimated parameter values for eicosanoids

model

No. Reactions Parameter Names Values

1 [LPS] FA / AA k1 355.637

2 FA/ AA k2 10�15

3 DG / AA k3 10�15

4 AA / k4 10�15

5 [DG] GPCho / AA k5 10�15

6 [LPS] GPCho / AA k6 0.330

7 GPCho / AA k7 10�15

8 AA / HETE k8 0.007

9 HETE / k9 0.187

10 [DG] AA / PGH2 k10 0.024

11 [LPS] AA / PGH2 k11 0.111

12 AA / PGH2 k12 0.098

13 PGH2 / PGE2 k13 0.204

14 PGE2 / k14 10�15

15 PGH2 / PGF2a k15 0.061

16 PGF2a / k16 10�15

17 PGH2 / PGD2 k17 3.116

18 PGD2 / PGJ2 k18 0.054

19 PGD2 / dPGD2 k19 0.029

20 dPGD2 / k20 0.014

21 PGJ2 / dPGJ2 k21 0.034

22 dPGJ2 / k22 0.116

‘‘[DG]’’ and ‘‘[LPS]’’ indicate the effects of signaling (molecules) in

the reaction. X / represents the default degradation of metabolite X.

The unit of first-order reaction is 1/h. The unit of second-order reaction

is 1/h when it involves either FA or LPS as one of the metabolites, as

we have used scaled profiles for these variables. The unit of second-order

reaction is mg DNA/(ratio int * h) when it involves DG as one of the

metabolites.

½DG�AA /
k10

PGH2

½LPS�AA /
k11

PGH2

AA /
k12

PGH2

for inducible activity of COX-2 because of DG

for inducible activity of COX-2 because of LPS

for constitutive activity of COX-1 and COX-2
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If the metabolite concentrations are known and the rate parameters are

unknown, then the ODEs can be rearranged in a matrix format as shown

in Eq. 2.

(10�15). The algorithm of fmincon does not require a matrix form. Thus,

numerical integration was used (e.g., MATLAB function ode23) to simulate

the system to circumvent the discretization problems. The combined use of

" d½PGH2�
dt

d½PGD2�
dt

#
¼
�
½AA� ½DG�½AA� ½LPS�½AA� � ½PGH2� � ½PGH2� � ½PGH2� 0 0

0 0 0 0 0 ½PGH2� � ½PGD2� � ½PGD2�

�
2
66666666664

k10

k11

k12

k13

k15

k17

k18

k19

3
77777777775

Y ¼ X � b

: (2)
The coefficients in the matrix X are linear/nonlinear functions of metabolite

concentrations. All the equations used in the simulation are listed in an

Appendix. Experimental data were available for all metabolites except

PGH2 in the simplified network. To be able to use this matrix-based

approach, a time-course profile was assumed for the PGH2 for this step.

The shape for PGH2 was assumed based on the average shape of AA and

PGD2, with a maximum concentration of 25 pmol/mg DNA. A low concen-

tration was assumed based upon its unstable nature and the value reported in

the literature (24). With the assumed PGH2 profile, X is completely defined.

The lefthand side of the equations (matrix Y) was computed using discreti-

zation and the experimental data (Eq. 3).

dx

dt

����
t¼ tk

¼
xjt¼ tk

�xjt¼ tk�1

tk � tk�1

: (3)

To compute the unknown parameter vector (b), matrix X was required to

contain only known entries, justifying the retention of only measured metab-

olites in the simplified network.

Equation 2 contains known matrices X and Y, and the only unknown in

this equation is the rate-constant vector, b, which can be computed as

b ¼ ðXTXÞ�1ðXTYÞ(the least-squares solution, which is the fastest

method). However, XTX can be singular in many practical applications.

Another problem is that the estimated values in matrix b may contain nega-

tive values, which are not viable for biological systems. The problem of

singularity can be eliminated using principal-component regression (PCR)

(25), but PCR does not prevent the negative solutions. Hence, we used

the constrained least-squares approach (MATLAB (The MathWorks, Natick

MA) function lsqlin), which optimized the solution with objective function

(Eq. 4), with additional constraints that all parameter values have to be

positive.

minkY�Xbk2
where Y and Xb are :

dy

dt

����
exp

and
dy

dt

����
pred

:

(4)

The above method minimized the fit error (Eq. 4) between the experimental

slope (d/dt computed using experimental data) and the predicted slope (d/dt

computed using predictions) instead of between the experimental and pre-

dicted data. Hence, the resulting parameters did not fit the experimental

data well. However, they serve as good initial values for the parameter esti-

mation. The estimated values of the parameters were further refined by using

generalized constrained nonlinear optimization (MATLAB function fmin-

con), where the objective (Eq. 5) was to minimize the weighted fit error

between the experimental and predicted metabolite concentrations and their

slopes (time derivative), except in the case of PGH2. The maximum concen-

tration of PGH2 was optimized at ~25 pmol/mg DNA to maintain its low

concentration in the simulation (24). The positivity of parameters was

imposed by constraining the lower limit of parameters to a small number
lsqlin and fmincon made the overall process computationally efficient. The

objective function for use with fmincon was

min
K;X0

0
BBB@

w1

Pnsp

i¼ 1

 Pnt

j¼ 1

�
yi;j;exp � yi;j;predðK;X0Þ

�2

!
þ

w2

Pnsp

i¼ 1

 Pnt

j¼ 1

��
dy
dt

�
i;j;exp
�
�

dy
dt

�
i;j;pred
ðK;X0Þ

�2

!
1
CCCA;

K : parameters ðrate constantsÞ
X0 : Initial conditions ðspecies concentrationsÞ

(5)

where nt is the number of time points and nsp is the number of species. The

first term represents the fit error between the experimental and predicted

concentrations, and the second term represents the fit error between their

experimental and predicted derivatives. Different weights (wi) can be as-

signed to these two terms to improve the fit. For this study, w1 and w2 are

set to 1 and 0, respectively.

The initial concentrations of the metabolites were also optimized in

a narrow range around the experimental values. When data were available

for more than one condition, all the data were used to compute the fit error

by simulating the model several times individually and minimizing the

objective function collectively. We also observed that when arbitrary initial

guesses were used, fmincon was either diverging or converging to erroneous

solutions. Thus, the matrix approach (lsqlin) was very useful for providing

an initial guess for the parameter-estimation.

RESULTS

Good fit to experimental data

ODEs were generated for all metabolites in the network, and

effective rate constants were estimated for the simplified

eicosanoid reaction network using the approach described in

Materials and Methods. The simplified model is a reliable

predictive model, as evidenced by the good fit to experimental

data. Table 1 lists the reactions and the corresponding esti-

mated reaction-rate parameters included in the model. The

large variation in experimental ‘‘control’’ data, especially

for glycerolipids, glycerophospholipids, and sphingolipids

(9), indicated the non-steady-state condition in control exper-

iments. The assumption of steady state was circumvented by

including (fitting) data obtained in two experimental scenarios

during parameter estimation, one in which cells were treated

with KDO2-lipid A and a corresponding control data set.
Biophysical Journal 96(11) 4542–4551
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The wide range of metabolite concentrations also created

a problem in optimization of the parameters. The maximum

concentration of metabolites varied between 8 pmol/mg

DNA (for HETE) and 400 pmol/mg DNA (for AA). Due to

the two orders of magnitude difference in metabolite concen-

trations, the metabolites with higher concentrations contrib-

uted more to the objective function (fit error) (Eq. 5) than

did those with lower concentration. This resulted in a rela-

tively poor fit for the metabolites with lower concentrations.

To resolve this issue, the errors between experimental values

and predicted values for each metabolite were calculated and

scaled/normalized by its maximum experimental value.

Then, the sum of squares of the normalized fit error on all

metabolites was minimized. This scaling essentially normal-

ized the maximum experimental concentrations to 1 for all

metabolites and resulted in approximately equal weight for

all metabolites. It should be noted that integration was still

performed in absolute concentration values for all metabo-

lites. Further, the data were measured at irregular time inter-

vals (longer intervals at later times). This led to relatively

poor fit at later time points. To resolve this issue, the point-

wise error was scaled by the square root of the length of the

time interval.

Fig. 2 shows the simulation results (27). For most time

points, the difference between the predicted and experi-

mental data was within the standard error of the mean

(Fig. 2). The good fit was obtained for all metabolites under

both conditions (treatment and control). The only difference

between the treatment and control scenarios was the presence
Biophysical Journal 96(11) 4542–4551
and absence of KDO2-lipid A. To capture this scenario in the

simulation, nonzero and zero KDO2-lipid A profiles were

used for the treatment and control sets, respectively. Good

fit to control data is also significant from both the biological

function and the mathematical analysis point of view. The

control scenario provided a condition similar to steady state

at time 0 h and constrained the optimized solution such that

the fit to treatment data captures only the effect of treatment.

Thus, good fit to both the datasets suggested that the

topology of the simplified network was correct and captured

the important metabolic and signaling effects.

We assumed constant fatty acid concentration ([FA] ¼1)

in the media. The assumption of a constant fatty acid profile

is reasonable, since the total amount of eicosanoids is much

smaller compared to the total amount of fatty acid in the

media. Thus, the production of eicosanoids should not affect

the concentration of fatty acid in the media. Its uptake was

constitutive and also induced by LPS. The timescale of

KDO2-lipid A signaling for the activation of eicosanoid path-

ways and fatty acid transport is largely unknown, as the

dynamics of the activation of Toll-like receptor 4 is complex.

We have manually optimized the time course of LPS to get

a good fit. Upon treatment, the effective level of KDO2-lipid

A (or the activity of Toll-like receptor 4) increased from 0 to

1 during the first half-hour and then decreased back to 0 in the

next 1.5 h. The rate constant k1 is large compared to other rate

constants (Table 1). This is because we have used scaled and

dimensionless values for LPS and FA, in contrast to our use

of pmol/mg DNA for other metabolites.
FIGURE 2 Simulation of kinetic

modeling of the simplified lipid

network: fit of the predicted response

(control and treatment with KDO2-lipid

A) to the corresponding experimental

data for RAW 264.7 cells. Ctrl, control

set; Trt, KDO2-lipid A treatment set.

The error bars shown for the experi-

mental data represent the standard error

of mean.
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Validation: the leave-one-out approach

We have also validated our model by excluding from objective

function minimization the data on one of the intermediate

metabolites. The rate parameters were estimated, and the

predictions were compared with the experimental data. The

values of the parameters thus obtained were approximately

similar to the values in the previous simulation/optimization

(listed in Table 1), except for the AA degradation constant.

In the previous simulation, the profile of PGH2 was unknown

and its maximum concentration was optimized and con-

strained at ~25 pmol/mg DNA, but during the validation, we

used this profile of PGH2 in the optimization. There are two

intermediate metabolites present in the network: PGD2 and

PGJ2. The validation was performed on both of these metabo-

lites, and satisfactory results were obtained. The results of vali-

dation by excluding PGD2 (the fitted response for other

metabolites during optimization and the predicted response

of PGD2 using the resulting parameter values) are shown in

Fig. 3. Simulation results are not shown for validation by

exclusion of PGJ2. There is a slight deterioration in the quan-

titative fit, but the qualitative shape of the predicted time

course is in good agreement with the experimental time course.

Parametric sensitivity and timescale analysis

Parametric sensitivity

Parametric sensitivity analysis was performed by varying

each parameter (one at a time) by twofold up and down
from its original (optimized) value. The sensitivity of each

metabolite was studied by plotting the fold change in its

maximum concentration, as compared to the maximum

concentration corresponding to the original value of the

parameter, versus the ratio change in the value of the per-

turbed parameter (Fig. 4). The numerical values of the sensi-

tivity, i.e., the slope of the plot at the optimized value of the

parameter, are listed in Table S1 of the Supporting Material.

For each parameter and each metabolite, monotonic increase,

decrease, or no change was observed, depending upon the

respective locations of the parameter and the metabolite

chosen in the network. The change in the parameters

belonging to the upper part of the network produced a larger

change in almost all metabolites as compared to the change

in the parameters belonging to the lower part of the network.

For example, the change in parameter k1 ([LPS] FA / AA)

(Fig. S1) produced an increase in all metabolites (sensitivity

~ 0.8); the change in k17 (PGH2 / PGD2) produced changes

in all metabolites downstream of PGH2. Although PGH2,

PGE2, and PGF2a decreased (sensitivity ~ �0.9), PGD2,

PGJ2, dPGD2, and dPGJ2 increased (sensitivity ~ 0.1), but

no significant change was observed for AA and HETE

(Fig. 4 and Table S1). Sensitivities are consistent with the

structure of the biochemical reaction network (Fig. 1 b). A

change in k17 has a direct impact on the peak height of

PGH2. Because PGE2 and PGF2a are immediately down-

stream of PGH2, they are affected to the same degree as

PGH2 (Fig. 4). In comparison, the peak height of PGD2 is

affected to a much lesser degree, because the influx to
FIGURE 3 Validation of the eicosa-

noid network with leave-one-out inter-

mediate metabolite: PGD2 was omitted

from the objective function used in opti-

mization. The solution obtained using

this method fits the experimental data

for PGD2 reasonably well. The error

bars shown for the experimental data

are standard-error of mean.
Biophysical Journal 96(11) 4542–4551
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FIGURE 4 Result of parametric

sensitivity analysis for parameter k17

(PGH2 / PGD2). The x axis indicates

the ratio of the perturbed to the original

(optimized) value of the parameter, and

the y axis indicates the fold change in

the maximum value of state variables

(metabolites).
PGD2 is k17*[PGH2]. When k17 increases, [PGH2] decreases,

so the net effect on k17*[PGH2] is much smaller. PGJ2,

dPGD2 and dPGJ2 are downstream of PGD2 and are affected

to the same degree as PGD2. Small to moderate sensitivities

(Table S1) suggest that the biochemical system is robust with

respect to parametric perturbations.

Timescale

Timescale characterization is important in understanding the

metabolite dynamics and its response time. The analysis was

performed by computing eigenvalues and eigenvectors of the

Jacobian matrix of ordinary differential equations at steady-

state conditions. The steady-state was identified by simu-

lating the system corresponding to the control condition

(no stimulus) for a long time (t ¼1000 h). The Jacobian

was computed through numerical differentiation of the

expressions on the righthand sides of the ODEs with respect

to the state variables. The eigenvalues are split into three

broad ranges. For each eigenvalue, the metabolites with

substantial contribution to the corresponding eigenvector

were identified. Depending upon the eigenvalues and metab-

olites significantly contributing to the corresponding eigen-

vectors, these metabolites have been divided into the three

categories listed in Table 2. When a metabolite contributed

significantly in two or more eigenvectors spanning two

different eigenvalue ranges, it was assigned to the smaller

eigenvalue range, because the fast time manifold only deter-

mines its initial transients and the slow manifold governs the

later response leading to steady state. Similar results could be
Biophysical Journal 96(11) 4542–4551
gleaned by inspecting the time course of the metabolites,

but the eigenvalue-decomposition-based characterization is

more rigorous and contributes to a better understanding of

the temporal evolution in a systemic context. Medium-time-

scale metabolites go up and return to basal levels within 24 h;

however, slow-timescale metabolites show monotonic

increases up to 24 h (Fig. 2). As discussed in the Results

section, PGH2 is unstable and maintains its low concentra-

tion inside the cell. Thus, its fast timescale is a resultant of

its low concentration, its involvement in a high rate of

production from AA, and its fast conversion into PGD2.

DISCUSSION

The metabolism of AA in macrophages has been the subject

of long-standing investigations because of its involvement in

inflammation and the immune system response. Earlier

experiments focused on a specific metabolite or enzyme in

the network. LIPID MAPS performed experiments to

TABLE 2 Results of eigenvalue based timescale analysis of

metabolites

Fast (~1 h) Medium (~10 h) Slow (~50 h)

PGH2 AA PGE2

PGD2 PGF2a

HETE PGJ2

dPGD2

dPGJ2
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measure a large number of metabolites, proteins, and genes

using high-throughput techniques under identical conditions.

This data is valuable for studying interactions between

different lipid metabolites, proteins, and genes. To validate

the LIPID MAPS data, we have compared the LPS-induced

time-course profile with those in the existing literature for

various metabolites. The time courses for AA, PGD2,

PGE2, PGF2a, and dPGD2 were collected from the literature

(28–32) and found to be qualitatively similar to the LIPID

MAPS data and model simulations.

Multiple sources of AA and lumped nature
of the rate parameters for the upstream part
of the network

Lipid metabolism and signaling are complex processes and

the mechanisms involved are only partially known. The

quantitative contribution of various potential sources of

AA production is not clearly known. Theoretically, AA

can be produced from glycerophospholipids such as GPCho

or glycerolipids such as DG and can also get transported

from/to the extracellular media, perhaps through CoASH

pools. We have accounted for all three sources of the AA

production. The timescales/response times of the three sour-

ces are largely unknown, and hence, we cannot distinguish

among them. Further, no information is available about

fluxes of conversion of AA into PGH2, acyl coenzyme A,

and HETE (Fig. 1 b). Consequently, we have manually opti-

mized the profile of LPS to get the best fit. Thus, we have less

confidence in the quantitative values of parameters for AA

production from the three sources than for those of parame-

ters for conversion of AA into prostaglandins. This is why

we chose COX, PGDS, and PGES activities to compare

against their literature values instead of the enzymes

involved in AA production. If experimental data related to

acylation of AA becomes available in the future, its utiliza-

tion will result in the readjustment of unknown parameters

related to the production of AA and its acylation. The param-

eters of prostaglandin pathways will not be affected signifi-

cantly. Hence, this model is reliable.

Rate parameters for the enzymes

We compared the effective rate constant for the enzymes

COX, PGDS (EC 5.3.99.2), and PGES (EC 5.3.99.3) with

the corresponding values reported in the literature (33–36).

Since the concentrations in LIPID MAPS experimental

data and literature values were reported in units of pmol/mg

DNA and mmol/min/mg of enzyme-enriched protein, respec-

tively, we used appropriate conversion factors, assuming the

cell diameter to be 10 mm and other relevant information

about the average cell density, percentage protein content,

and total percentages of RNA and mRNA per cell. For the

amount of COX protein per cell, we used COX mRNA/total

RNA data from Chan et al. (37) and assumed that this ratio is

the same at the protein level. The values reported in the liter-
ature were based on in vitro measurements with partially

purified protein. Thus, we assumed that the literature values

represented basal activity and compared these activities (flux

through the enzyme) with predicted activities of these

enzymes in the ‘‘control’’ simulation. Our computed value

for COX (10�13 mmol/min/cell) is within one order of magni-

tude of the reported value (10�14 mmol/min/cell) (37). This

discrepancy in the COX parameter value can be attributed

to many factors, e.g., experimental conditions, modeling

approximations, differences between the cell types used in

these experiments, etc. For PGDS and PGES, we used

reverse transcriptase PCR data from references (38,39) to

compare with the COX amount and calculated its activities.

A comparison between the simulated and experimental

values for all three enzymes is shown in Table 3.

CONCLUSIONS

Systems biology approaches have contributed to our under-

standing of the gene, protein, and metabolic networks and

are proving to be beneficial for pathway-based drug

discovery. In this study, we used a supervised approach

to integrate legacy information on the lipid pathways with

novel experimental data to develop a simple kinetic model

of the eicosanoid metabolic pathway. Signaling and meta-

bolic pathways were reconstructed from KEGG and the ex-

isting literature. Based upon the network map reconstructed,

we developed an ODE-based mathematical model. A two-

step approach was used for parameter estimation. In the first

step, a matrix-based approach provided an initial guess. The

parameter values were further refined in the second step.

This approach makes the overall process computationally

efficient. It can be noted that to utilize the matrix-based

fast approach, nonsaturation linear kinetics were used. To

estimate the parameters more accurately, Michaelis-Menten

kinetics can be used for enzymatic reactions. The resulting

model fit the experimental data well for all species and

demonstrated that the integrated metabolic and signaling

network and the experimental data are consistent with

each other. The robustness of the network structure and

model parameters was also validated through leave-one-

out type experiments and parametric sensitivity analysis.

The fluxes through COX, PGDS, and PGES, obtained

from the simulation, were consistent with their literature

values.

TABLE 3 Comparison of computed enzyme activities with the

corresponding literature values

Enzyme EC No.

Literature

values (mmol/

min/mg protein)

Literature

values (mmol/

min/cell)

Computed/

optimized values

in our model

(mmol/min/cell)

COX 1.14.99.1 3.96 10�14 10�13

PGDS 5.3.99.2 1.7 10�14 10�14

PGES 5.3.99.3 2 10�15 10�15
Biophysical Journal 96(11) 4542–4551
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APPENDIX

The flux expressions for the reactions shown in Fig. 1 b are

v1 ¼ k1[PIP2][LPS] v2 ¼ k2[PIP2] v3 ¼ k3[DG]

v4 ¼ k4[AA] v5 ¼ k5[GPCho][DG] v6 ¼ k6[GPCho][LPS]

v7 ¼ k7[GPCho] v8 ¼ k8[AA] v9 ¼ k9[HETE]

v10 ¼ k10[AA][DG] v11 ¼ k11[AA][LPS] v12 ¼ k12[AA]

v13 ¼ k13[PGH2] v14 ¼ k14[PGE2] v15 ¼ k15[PGH2]

v16 ¼ k16[PGF2a] v17 ¼ k17[PGH2] v18 ¼ k18[PGD2]

v19 ¼ k19[PGD2] v20 ¼ k20[dPGD2] v21 ¼ k21[PGJ2]

v22 ¼ k22[dPGJ2].

The differential equations describing the rate of change of metabolite

concentrations are
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