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Abstract
Since the isolation of respiratory syncytial virus (RSV) in 1956, its significance as an important
human pathogen in infants, the elderly and the immunocompromised has been established. Many
important mechanisms contributing to RSV infection, replication and disease pathogenesis have been
uncovered; however, there is still insufficient knowledge in these and related areas, which must be
addressed to facilitate the development of safe and effective vaccines and therapeutic treatments. A
better understanding of the molecular pathogenesis of RSV infection, particularly the host-cell
response and transcription profiles to RSV infection, is required to advance disease intervention
strategies. Substantial information is accumulating regarding how RSV proteins modulate molecular
signaling and regulation of cytokine and chemokine responses to infection, molecular signals
regulating programmed cell death, and innate and adaptive immune responses to infection. This
review discusses RSV manipulation of the host response to infection and related disease
pathogenesis.
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Respiratory syncytial virus
The Paramyxoviridae family includes important human respiratory-tract pathogens, of which
human respiratory syncytial virus (RSV) is a member. RSV is in the Pneumovirinae subfamily
and type species member of the Pneumovirus genus. RSV was first isolated four decades ago
from chimpanzees during an outbreak of respiratory illness [1]. Thereafter, RSV was isolated
from infants with pneumonia and bronchitis [2], and was named RSV owing to its characteristic
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ability to induce syncytia in cell lines. RSV is a ubiquitous virus and the most important cause
of serious lower respiratory-tract illness in infants and young children worldwide, as well as
an important pathogen in the elderly and the immunocompromised [3–11]. RSV is the primary
cause of hospitalization for respiratory tract illness in young children with infection rates
approaching 70% in the first year of life [12]. In the USA, lower respiratory-tract disease
develops in 20–30% of children infected with RSV, of which many require hospitalization
[13].

RSV is a nonsegmented pleiomorphic negative-strand RNA virus containing two nonstructural
(NS1 and NS2) genes followed, in gene order, by nucleocapsid, phosphoprotein (P), matrix,
small hydrophobic (SH), surface attachment glycoprotein (G), surface fusion glycoprotein
(F), a M2 gene, which encodes two proteins from M2-1/M2-2 open reading frames that have
roles in RNA transcription and replication, and RNA-dependent RNA polymerase (L). The
virus consists of a nucleocapsid surrounded by a lipid envelope derived from the host-cell
plasma membrane during the budding process [14–16]. There are three virally encoded surface
transmembrane proteins: G, F and SH, and all three of these proteins have been associated with
modifying aspects of the host response to infection. The G protein, or attachment protein, is a
type II glycoprotein with a single N-terminal hydrophobic region (amino acids 38–66) that
serves as a signal peptide and membrane-anchor [17–20]. Proximal to the membrane anchor
region is an extracellular ectodomain containing four cysteine residues that are highly
conserved in all RSV isolates [21,22]. This cysteine region contains a CX3C chemokine motif
(amino acids 182–186) that may facilitate virus attachment to cells expressing the CX3C
chemokine receptor, and modify CX3CL1 (fractalkine)-mediated responses as an immune
evasion strategy [23]. The G glycoprotein is expressed as both a membrane-bound (Gm) and
secreted form (Gs) by initiation of translation at an alternate in-frame AUG codon located in
the middle of the hydrophobic transmembrane region [19]. Approximately 15% is synthesized
in infected cells as a soluble form lacking the cytoplasmic but Gs retains the same characteristics
domain, as Gm, for example, glycosylation and antibody reactivity [24,25]. The SH protein is
a minor surface protein that has been shown to have the ability to form cation-selective ion
channels in planar lipid bilayers [26] and interact with the G protein [27]. In addition, the SH
protein may inhibit TNF-α signaling [28]. Considering the other RSV proteins with known
immune modulatory activities, the function of NS1 and NS2 proteins appear to act
cooperatively to antagonize the type I IFN antiviral response [29–33]. Studies with
recombinant RSV with deletions in the NS1 and NS2 have shown that these genes are
dispensable for virus replication in vitro, however, through type I IFN antagonism, they provide
auxiliary functions for efficient RSV replication in vitro and in vivo [34].

RSV replication
RSV attachment to cells primarily occurs via heparin-binding domains on the G protein with
cell-surface glycosaminoglycans [35–37]. The G protein itself is not required for virion
attachment as RSV mutant viruses lacking G and/or SH genes have been shown to infect cells
likely through interaction with the F protein [38–41]; however, G protein appears to be
necessary for efficient virus replication in vivo [40]. Following cell fusion and penetration
mediated by the F protein [42], the nucleocapsid is released into the cytoplasm [43–46] where
the L protein initiates viral transcription and replication proceeds [47]. Transcription of mRNA
occurs in a 3′ to 5′ order from a single promoter near the 3′ end resulting in a series of
subgenomic mRNAs [48–52]. mRNAs can be detected by 4 h postinfection with peak mRNA
synthesis and protein expression occurring 12–20 h postinfection. Importantly, the level of
protein expressed is related to mRNA abundance [49], thus there are decreased levels of mRNA
proportional to the gene distance from promoter sequence. Virions assemble at the plasma
membrane where nucleocapsids localize with the cell-membrane containing membrane viral
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glycoproteins. The virions mature in clusters at the apical surface in a filamentous form
associated with caveolin-1, and extend from the plasma membrane [53].

Regulation of the host-cell response to infection
RSV primarily infects respiratory epithelial cells lining the nasal passages and respiratory tract.
RSV infection of host cells has been shown to alter the tempo and expression patterns of various
genes related to protein metabolism, cell growth and proliferation, cytoskeleton organization,
regulation of nucleotides and nucleic acid synthesis, and cytokine/chemokine genes linked with
inflammation [54,55]. While a primary function of airway epithelium is to promote gaseous
exchange, it also functions as the interface between the external environment and the host, thus
acting as a first-line defense against pathogens. Given the unique position of airway epithelial
cells in this regard, they also provide a close interface with various immune components
including mucosal dendritic cells (DCs) and intraepithelial lymphocytes [56]. To overcome
the repertoire of immune defenses encountered, it is not surprising that RSV enlists a variety
of immune modulatory and evasion strategies to promote virus infection and replication.

RSV delays programmed cell death to facilitate virus replication
RSV infection does not induce substantial cytopathology in human airway epithelial cell
models [57,58], a feature in part associated with the ability of RSV to delay programmed cell
death or apoptosis of epithelial cells. It has been shown that RSV-infected cells have increased
expression of the anti-apoptosis gene IEX-1L and increased expression of several Bcl-2 family
members including myeloid cell leukemia-1 and Bcl-XL [59–62]. Recent studies have
suggested other mechanisms that may contribute to delayed cell death that are linked to the
inhibition of tumor suppressor p53 and Akt activation, leading to p53 proteosome degradation
[63]. The delay of apoptosis has also been connected to the phosphatidylinositol 3-kinase-
dependent pathway [64], and to increased ceramidase and sphingosine kinases leading to
enhanced levels of anti-apoptotic proteins within cells [65]. In addition, the RSV NS and SH
proteins have been shown to delay premature apoptosis, a feature that results in more robust
viral titers [28,66].

Modulation of host-cell responses via pattern recognition receptors
A majority of respiratory epithelial cells express pattern recognition receptors (PRRs) or Toll-
like receptors (TLRs), which aid in sensing infection and host-cell signaling and
communication. RSV infection of respiratory epithelial cells has been shown to result in
increased TLR4 expression on the cell surface within 24 h postinfection [67,68]. The
upregulation of TLR4 leads to increased sensitivity to endotoxin, and upon stimulation with
lipopolysaccharide, enhanced IL-6 and IL-8 production has been observed [67]. TLR4
expression in infants responding to RSV infection has also been examined. In one study, infants
possessing two single-nucleotide polymorphisms encoding Asp299Gly and Thr399Ile
substitutions in the TLR4 ectodomain were highly associated with symptomatic RSV disease,
suggesting that heterozygosity of these two extracellular TLR4 polymorphisms is associated
with symptomatic RSV disease in high-risk infants [69], supporting the role for TLR4 in host
response to RSV infection. Furthermore, peripheral monocytes isolated from infants with
severe RSV bronchiolitis also showed increased TLR4 expression [70]. Like
lipopolysaccharide, the RSV F protein can interact with TLR4 and CD14 in human monocytes
leading to the activation of NF-κB and the production of proinflammatory cytokines TNF-α,
IL-6 and IL-12 [71]. While the mechanism is not yet clear, the RSV G protein may also suppress
TLR3/4-mediated cytokine production by interfering with the TLR adaptor, TNF receptor-
associated factor/Toll IL-1 receptor domain-containing adaptor molecule-1 or NF-κB
activation, resulting in decreased proinflammatory cytokine production [72,73]. A recent study
demonstrated that RSV promotes TNF-α, IL-6, monocyte chemotactic protein (MCP)-1 and
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RANTES via interaction with TLR2 and TLR6 [74]. These findings indicate that TLR4 has a
role in sensing RSV infection and contributing to protection from RSV infection.

RSV interferes with the host antiviral cytokine response
Several studies have shown that RSV nonstructural proteins, NS1 and NS2, are important in
antagonizing the type I IFN response in infected epithelial cells as well as suppressing DC
maturation [30,32,33,75–78]. NS2 is the principal type I IFN antagonist linked to STAT-2
signaling [76,79,80]. The NS1 protein contains elongin-C- and cullin-2-binding sequences and
can potentially act as an ubiquitin E3 ligase to target STAT-2 to the proteasome [80,81]. Bovine
RSV nonstructural proteins have also been shown to interfere in type I IFN signaling via a
mechanism involving IFN regulatory factor (IRF)3 phosphorylation and subsequent activation
[75]. Aside from the role for NS1 and NS2 in governing type I IFN expression, a recent study
in mice epithelial-15 lung cells showed that by 24 h postinfection, in the absence of NS1 and
NS2 proteins, type I IFN mRNA and IFN-β protein expression were suppressed [31]. In this
study, a role for RSV G-protein inhibition of IFN-β was revealed and linked to the induction
of suppressor of cytokine signaling (SOCS)1 and SOCS3 expression. SOCS proteins are
negative regulators of cytokine expression [82,83], and act to inhibit the JAK–STAT pathway
to regulate cytokine expression via a kinase inhibitory region [84]. While it remains unclear
whether NS1 and NS2 directly affect SOCS expression, the net result of SOCS expression
leads to a decreased antiviral response within the cell. RSV can also interfere with JAK–STAT
signaling and chemokine transcription by inducing Bcl-3, which complexes with STATs in the
nucleus, resulting in enhanced infection [85].

RSV infection modulates respiratory epithelial cell function
A consequence of severe RSV disease is fluid extravasation into the lung air spaces [86]. RSV
infection of murine and human airway cells results in decreased sodium transport across
epithelial cells leading to reduced alveolar fluid clearance in mice [64,87,88]. Evidence
suggests that the RSV F protein and TLR4 have a role in this effect [89], and one recent study
found that RSV infection of primary bronchial cells resulted in a loss of plasma-membrane
integrity and cytoskeletal rearrangement dependent on MAPK signaling via p38 and heat shock
protein-27 activation [86]. p38 MAPK activation and heat shock protein-27 phosphorylation
may result in actin reorganization and an altered shape of the infected cell [90].

RSV infection also results in reduced levels of surfactant proteins (SP), particularly SP-A and
SP-D, in bronchoalveolar lavage [91,92]. Nonciliated cells of the respiratory tract produce SP-
A and SP-D, which are important in promoting opsonization of pathogens as well as apoptotic
cells [93]. SP-A has been shown to bind to the RSV F protein and promote uptake of RSV-
infected cells by macrophages [94,95], while SP-D binds to the RSV G protein to inhibit
infection [96]. Although SP-A and SP-D bind viruses as part of the clearance mechanism, it is
possible that RSV may use these innate host-defense proteins to sequester surfactant proteins
during infection to prevent antibody neutralization or to limit the immune cell response to
infection, an effect that may be linked to the decreased levels of SP-A and SP-D found in the
lungs of infected infants [92].

Matrix metalloproteinases are involved in the digestion of extracellular matrix components
such as gelatin, collagens (types IV, V, XI and XVII) and elastin [97]. RSV infection can
enhance the expression of matrix metalloproteinase-9, which increases the rate of syncytium
formation, leading to more efficient viral replication [98]. Furthermore, prostaglandin, which
are implicated in many regulatory events including the differentiation of immune cells and
regulation of immunological and inflammatory responses, are increased via increased
cyclooxygenase-2 expression, which occurs during RSV infection [99–101]. Prostaglandin E2
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is considered a potent proinflammatory mediator, and in the lung, has a role in limiting the
immune inflammatory response as well as the tissue repair processes [102].

RSV G protein immune evasion
The RSV G protein was first recognized as an attachment protein involved in the binding of
RSV particles to the host cell surface. Following RSV infection, the G protein is produced in
two forms, Gm and Gs [24,103]. G protein is one of two major RSV proteins recognized in the
antibody response to infection, the other being the F protein [104,105]. While the antibody
response primarily recognizes epitopes within the C-terminal region of the G protein [106,
107], the glycosylation pattern of the RSV G protein changes depending on the specific cell
type infected [108–111]. Thus, the altered glycosylation patterns are likely to be a feature linked
to immune evasion associated with changes in the G protein antigenic profile [112,113].

The G protein has known attributes that contribute to host protein mimicry and immune
evasion. For example, the Gm and Gs proteins both contain a central-conserved cysteine-rich
region, homologous to the fourth subdomain of the TNF receptor, which can modulate the
innate immune response to infection [23,72,114–116]. TNF-α/β are proinflammatory cytokines
implicated in a large range of inflammatory conditions [117] and in the antiviral response to
RSV infection [118]. It is possible that the Gs protein may bind to TNF-α or other homologs
modulating the host antiviral response [24,116]. The central-conserved cysteine-rich region
also contains a CX3C chemokine motif at amino acid positions 182–186, which binds to
CX3CR1, the CX3CL1 (fractalkine) receptor [23]. CX3CR1 mimicry by the G protein has
been shown to facilitate RSV infection and alter CX3CL1 chemotaxis of human and mouse
leukocytes [23]. Expression of the G protein during RSV infection of mice has also been shown
to decrease the number of activated and RSV-specific pulmonary CX3CR1+ T cells, as well
as natural killer (NK) cells [119]. Consistent with this finding, infection of mice with a RSV
mutant virus lacking the G and SH genes results in enhanced numbers of NK cells recruited to
the lung as well as increased IFN-γ and TNF-α production, suggesting that the G and/or SH
surface proteins inhibit NK cell recruitment and proinflammatory cytokine production [41].
Together these studies suggest that RSV can modulate both the innate and adaptive immune
responses to infection via G protein expression.

Cytokine response to RSV infection
Cytokines are a diverse group of secreted proteins produced de novo in response to immune
stimuli that mediate and regulate immunity, inflammation and hematopoiesis. Chemokines, a
constituent of the cytokine family, function to activate and attract leukocytes to sites of
infection. Many cytokines are pleiotropic and may have multiple, overlapping or redundant
actions that can be explained by the presence of receptors for a cytokine on multiple cell types
or lineages, or by a cytokine having the ability to activate multiple signaling pathways that
may differentially contribute to different cell functions. A wide range of cytokines and
chemokines are produced by different cell types in response to RSV infection, some of which
mediate proinflammatory functions to activate and recruit immune cells, and others that
suppress or regulate the proinflammatory state. For example, RSV infection of airway epithelial
cells has been shown to result in a cascade of signaling events mediated by NF-κB leading to
the expression of proinflammatory cytokines and chemokines including RANTES, MCP,
eotaxin, IL-9, TNF-α, IL-6, IL-1 and CX3CL1 (fractalkine) [120–127]. It has been suggested
that certain patterns of cytokine and chemokine expression in a RSV-infected individual may
be an indicator of disease severity [128]. Studies with RSV-infected patients have shown that
increased levels of macrophage inflammatory protein (MIP)-1α, RANTES and IL-8 are often
present in the upper and lower respiratory tract [121]. Likewise, bronchial epithelial cells
infected with RSV have been shown to express high levels of IL-6, IL-8 and RANTES [129].
Blocking any one of these factors may result in less severe disease. For example, antibody-
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mediated depletion of RANTES or eotaxin results in reduced airway hyper-reactivity and
eosinophilia in mice infected with RSV [130,131]. Furthermore, the tempo and pattern of
cytokine and chemokine expression has also been linked to age, as mice infected as neonates
display higher illness scores, greater cell recruitment to the lungs and increased IL-4
production, and upon reinfection with RSV as adult mice, develop manifestations of severe
disease associated with a Th2-type cytokine response [132].

RSV G-protein expression during acute infection in mice has been associated with altered CC
and CXC chemokine mRNA expression and Th1/Th2-type cytokine responses by
bronchoalveolar leukocytes [133,134]. Specifically, the G protein appears to inhibit early
MIP-1α, MIP-1β, MIP-2, MCP-1 and IFN-inducible protein of 10 kDa mRNA expression, all
important chemokines that attract immune cells to sites of infection or inflammation [133]. G-
protein expression has also been linked with reduced IFN-β expression in mouse lung epithelial
cells [31], thus RSV appears to modulate the balance or expression of cytokines to manipulate
antiviral immunity, a feature that may contribute to RSV-mediated disease pathogenesis.

RSV activation & regulation of cellular transcription factors
Accumulating evidence suggests that RSV interacts with TLRs and PRRs and activates
signaling and downstream cellular transcription pathways [68,71,73,74,135–138]. In vitro
studies show that RSV infection upregulates TLR4 expression in A549 cells [68], and more
specifically, that purified RSV F protein interacts with TLR4 in a CD14-dependent manner
[71]. Signaling through TLR4 can lead to activation of TNF receptor-associated factor and the
adaptor protein MyD88, which in turn activate downstream members IKKε/TANK-binding
kinase-1 and IL-1 receptor-associated kinase-4, thereby initiating signaling pathways leading
to the induction of an array of transcription factors (IRF3, IRF7, NF-κB, JNK, p38 MAPK and
activator protein-1), which translocate to the nucleus and initiate transcription of various
proinflammatory genes [139]. TLR3, the ligand of which is dsRNA, is upregulated in response
to RSV infection [137,140]. Cellular signaling via TLR3 leads to the activation of downstream
IKKε/TANK-binding kinase-1, which in turn induces the nuclear translocation of transcription
factors such as IRF3, IRF7 and NF-κB. Activation of the TLR3 pathway in A549 airway
epithelial cells was shown to control phosphorylation of RelA providing a mechanism for
regulating RSV-induced NF-κB-dependent gene expression at the late phase of infection
[138]. Similarly, retinoic acid-inducible gene (RIG)-I, is a cellular cytoplasmic helicase protein
that recognizes the 5′ triphosphate ends of RNA generated by viral polymerases and when
activated leads to the induction of IFN-α and IFN-β [141]. In vitro studies in A549 cells have
shown that RSV infection induces RIG-I and TLR3 expression, and that TLR3 induction is
regulated by RIG-I-dependent IFN-β and mediated by both IFN response-stimulated element
and STAT sites within its proximal promoter [138]. These findings indicate distinct roles for
RIG-I and TLR3 in mediating RSV-induced innate immune responses. Later stage signaling
events suggest that paracrine signaling mechanisms may have an important role in the innate
response to RSV infection. Recently, studies examining IFN-mediated monocyte-derived DC
(mDC) TLR3/4 signaling showed that mDCs treated with live or UV-irradiated RSV showed
no early (within 4 h) induction of IFN-β [73]. In this study, initial virus attachment to the cells
blocked poly-I:C-mediated IFN-β induction. Furthermore, studies using IFN-stimulated
response element reporter analysis in HEK293 cells demonstrated that RSV G protein inhibited
TLR3/4-mediated IFN-stimulated response element activation. These findings are consistent
with studies in mice epithelial-15 lung cells, which showed that RSV G protein modulates
SOCS1 and SOCS3 expression associated with the type I IFN response, and in particular,
inhibits IFN-β expression [31].

STAT proteins are a family of transcription factors that are activated following phosphorylation
by JAK, translocated to the nucleus, where IFN-γ activation factor, a dimer of STAT1, binds
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to, and initiates transcription of, genes containing IFN-γ-activated sites [142]. RSV proteins
have been shown to modulate STAT signaling and transcription of IFN-regulated genes. For
example, in vitro studies in A549 cells and human tracheobronchial epithelial cells have shown
that RSV NS protein expression is linked to reduced levels of STAT2 [76,80], a feature that
requires proteasomal activity. NS1 protein contains elongin-C- and cullin-2-binding consensus
sequences, which allow NS1 to act as an E3 ligase, thereby targeting STAT2 for proteosome-
mediated degradation [81]. Degradation of STAT2 suppresses formation of the IFN-stimulated
gene factor-3 transcription factor complex [143,144]. The IFN-stimulated gene factor-3
transcription factor is a heterotrimer complex composed of STAT1, STAT2 and IRF9, which
translocate to the nucleus and bind to ISRE leading to the transcription of IFN-regulated genes
such as 2′5′OAS Mx, PKR, MHC, CD80, CD86, iNOS, STAT1 and IRF7 [145]. These studies
provide a mechanism for NS antagonism of type I IFN responses to infection [76,78]. In
addition, another mechanism that can negatively regulate type I IFN expression is SOCS
regulation of the JAK-STAT signaling pathway [82]. Of the eight SOCS family members,
SOCS1 and SOCS3 appear to be the most efficient at downregulating type I IFN expression
[146], and SOCS1 and SOCS3 expression has been shown to be modulated during RSV
infection, leading to type I IFN antagonism [31,147].

Innate immunity to RSV infection
Innate immunity constitutes an evolutionarily conserved, nonspecific primary defense strategy
that is important for recruitment, activation and production of the virus-specific adaptive
immune response that mediates long-lasting immunity. Viral recognition by the host is essential
for regulating the functional consequences of infection. TLRs and PRRs recognize conserved
pathogen-associated molecular patterns [148]. Viruses that trigger TLRs initiate a complex
signaling cascade leading to the expression of a variety of genes and signaling through NF-
κB [149]. It is likely that multiple TLRs and/or PRRs are involved in detecting RSV or RSV
components as several TLRs and PRRs have been shown to be affected by RSV infection
[68,71,73,74,135–138], and although not all TLRs or PRRs may be required to facilitate RSV
clearance, it seems that some, for example TLR3, may be important for maintaining an immune
environment by avoiding the development of Th2-mediated pathology in the lungs [150].

TLRs are broadly distributed along the airways by various cell types including respiratory
epithelial cells, alveolar macrophages and DCs. Virus infection sensed by TLRs results in NF-
κB activation and inflammatory chemokine and cytokine expression. These chemokines and
cytokines can act directly or via an autocrine/paracrine feedback mechanism to regulate virus
infection and replication. RSV has been shown to be a poor inducer of type I IFNs (IFN-α/β),
and cells infected with RSV are resistant to the antiviral effects of IFN-α/β [30]. As noted
previously, RSV NS1 and NS2 proteins have been shown to act cooperatively as type I IFN
antagonists [30,32,33,75], and recent studies suggest that RSV G protein also inhibits IFN-β
expression [31]. As type I IFNs have an important role in DC maturation, activation of NK
cells, differentiation and function of T cells, as well as enhancing primary antibody responses
[151,152], RSV-mediated inhibition of IFN production negatively impacts antiviral immunity
and facilitates virus replication.

Dendritic cells
DCs are the major antigen-presenting cells following RSV infection [153,154]. The
costimulatory or inhibitory surface molecules and cytokines secreted by DCs influence the T-
cell response, such as whether T cells are activated or tolerized and whether they are polarized
to Th1, Th2 or regulatory T cells [155]. Respiratory DCs are located within intraepithelial sites
and below the respiratory epithelium where they encounter RSV and carry the RSV antigens
to the draining lymph node. There are two main subsets of DCs: myeloid or conventional DCs
expressing CD11b and CD11c, and plasmacytoid DCs (pDCs) expressing little or no CD11b
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or B220 [156]. The balance between conventional DCs and pDCs in the lung and lymph nodes
is essential for driving pulmonary immunity to RSV infection [157]. Increased pDC numbers
have a protective impact on the nature of the overall immune environment, while depletion of
pDCs from the lungs of RSV-infected mice results in a pathologic response characterized by
increased Th2 cytokine profiles [157–159]. DCs in the lung can be infected by RSV. Although
RSV-infected DCs can still differentiate and mature, they display impaired T-cell activation,
an effect linked to altered IFN-α or IL-1 receptor-α expression [160,161]. It has also been
shown that direct contact of T cells with RSV F protein expressed on cells inhibits T-cell
activation [162]. Moreover, a recent study showed that RSV impairs T-cell activation by
preventing T-cell receptor–DC synapse assembly on DCs [163]. Thus RSV-infected DCs
expressing F protein may also inhibit T-cell activation by a related mechanism.

Macrophages
Macrophages, like DCs, are key effector cells in the innate immune response. The lower
respiratory tract abounds with alveolar macrophages, which serve as significant sources of
proinflammatory cytokines such as TNF-α, IL-6 and IL-8 following RSV infection [164]. In
one study, a depletion of macrophages significantly inhibited the early release of inflammatory
cytokines following RSV infection, an effect which resulted in enhanced virus titers in the lung
[165]. In this study, a depletion of macrophages had little effect on the activated T-cell
recruitment and overall lung disease, suggesting that macrophages may be more important in
the earliest response to RSV infection. However, a recent study comparing RSV-mediated lung
pathogenesis in BALB/c and New Zealand Black (NZB) mice showed that alveolar
macrophages are central in the disease process because depletion of alveolar macrophages in
BALB/c mice before RSV exposure resulted in airway occlusion, and a similar pathogenesis
was observed in NZB mice deficienct in alveolar macrophages [166]. In this study, RSV
infection yielded an increased viral load and enhanced expression of type I IFN genes at the
height of disease, suggesting that innate, rather than adaptive, immune responses are critical
determinants of the severity of RSV bronchiolitis.

Natural killer cells
NK cells constitute a major component of the innate immune system where they have a major
role in the clearance of tumors and virus-infected cells by virtue of their natural cytotoxic
ability. Chemokines, such as MIP-1α, are important for the recruitment of NK cells to the site
of infection and inflammation [167]. During RSV infection, NK cells are recruited to the lungs
very early after infection and reach peak levels at approximately day 3–4 postinfection [41,
114]. DCs are considered to be the primary cell types that potentiate NK-cell activation and
cytotoxicity [168,169]; however, a recent study showed that alveolar macrophages are required
to recruit and activate NK cells in response to RSV infection, and depletion of macrophages
reduced the activation and recruitment of NK cells [165]. RSV G and/or SH proteins appear
to regulate trafficking of NK cells to the lungs, as mice infected with a RSV mutant lacking
G and SH genes exhibited greater pulmonary trafficking of NK cells compared with mice
infected with wild-type RSV [41].

Natural killer T cells
Natural killer T (NKT) cells are a subpopulation of CD1d-restricted T cells that coexpress
semi-invariant T-cell receptor and NK-cell markers [170]. NKT cells recognize
glycosphingolipids presented by CD1d, an antigen-presenting molecule that is related to the
classical MHC class I and class II glycoproteins [171,172]. These cells can produce Th1- and
Th2-type cytokines and therefore have the potential to impact adaptive immune responses by
governing aspects of the cytokine microenvironment. NKT cells have been implicated in
immune responses against RSV infection; NKT cells were shown to have a role in early IFN-
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γ production and efficient induction of CD8 T-cell responses during primary RSV infection
[173].

Adaptive humoral immunity
RSV infection induces antibody responses against several viral antigens; however, only the
two major surface glycoproteins (F and G proteins) induce antibodies that have a major role
in protection [174]. Vaccination studies using recombinant vaccinia virus expressing various
RSV proteins have shown that serum antibodies can be induced by F, G, M2 and P proteins,
but only F and G proteins were the major determinants of protection [175]. The RSV F protein
has two forms: a mature form, found in virions, and an immature folded form [176,177]. The
immature F protein does not contain all the neutralizing epitopes found on the mature form of
the F protein, thus if released from lysed cells or made available from a denatured mature F
protein; it is possible that the immature form may induce an ineffective antibody response
leading to the diversion or reduction of a protective antibody response. It has been shown that
both forms of F protein are able to induce antibody responses of comparable magnitudes
[178]. Comparing the F to G proteins among RSV isolates, reveals that the G protein is the
more divergent protein [179]. Between the major antigenic subgroups of RSV, such as A and
B strains, there is only a 53% identity for G protein but a 90% similarity for the F protein.
Therefore, few G-specific monoclonal antibodies are cross-reactive, while the majority of F-
specific monoclonal antibodies are cross-reactive [179]. Unexpectedly, very few individual G-
protein-specific monoclonal antibodies efficiently neutralize RSV infectivity, and G-protein-
specific antibody neutralization requires multiple antibodies [180]. Furthermore, the majority
of G-protein-specific monoclonal antibodies are much less effective compared with F-protein-
specific monoclonal antibodies in the neutralization of RSV. It appears that protective anti-G
protein antibodies recognize the central-conserved cysteine-rich region of the G protein
[181]. It is plausible that this feature may also be linked to antibody-mediated inhibition of G
protein CX3C interaction with CX3CR1 and immune modulation [23].

Neutralizing antibodies have an important role in protection from RSV infection, although
serum and mucosal neutralizing antibodies seem to provide different levels of protection.
Serum antibodies, mainly composed of IgG, gain access to the lungs easier than to the nasal
passages via transduction. Passive immunization studies in cotton rats have demonstrated that
serum antibodies can provide complete protection against RSV replication in the lungs, but
only a partial reduction in nasal virus titers [182]. Mucosal secretory IgA antibody may have
a more important role in local protection, although this antibody is short-lived and has less
neutralizing activity compared with serum IgG antibodies. Repeated RSV infection can induce
a sustained antibody response associated with high levels of mucosal IgA in nasal secretions,
a feature that can limit virus replication in the upper respiratory tract independent of the level
of serum antibodies [183].

Cellular immunity
Although antibody responses are vital for protection again RSV infection, T-cell-mediated
cellular immune responses have a greater role in virus clearance. In humans, CD8+ T cells
recognize F, matrix, M2 and NS2 proteins, but there is little or no recognition of G,
phosphoprotein or NS1 protein [184]. In BALB/c mice, CD8+ cytotoxic T lymphocyte
primarily recognize F, nucleocapsid and M2 proteins [185]. Priming of different subsets of
CD4+ T cells appears to contribute to the quality and magnitude of the CD8+ T-cell response
and subsequent disease pathogenesis. Studies in BALB/c mice vaccinated with different
recombinant vaccinia virus constructs expressing G or F proteins have shown that F and G
proteins prime different subsets of CD4+ T cells [186]. In BALB/c mice, F protein primes both
CD8+ and CD4+ T cells toward a Th1-type biased cytokine response while G protein primes
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only CD4+ T cells that are biased towards the Th2-type cytokine response [187]. The Th1 and
Th2 CD4+ T-cells elicited react to a single region comprising amino acids 183–197 of the G
protein [188]. Antigen-specific Th2-type CD4 T cells from mice have also been shown to
respond to non-glycosylated immunodominant epitopes in the ectodomain of G protein,
however, these epitopes have been shown to be poorly recognized by human CD4+ T cells
[189,190]. In a related study, it was reported that the immunodominant peptide in G protein is
recognized by both Th1 and Th2 CD4+ T cells in humans [191,192].

The importance of CD4+ memory T cells to RSV reinfection has been investigated; however,
the majority of studies have focused on the response to RSV G-protein priming. It has been
shown that the memory CD4+ T-cell response to the RSV G protein in the lungs of primed
BALB/c mice challenged with RSV is dominated by effector T cells expressing a single TCR
Vβ chain, such as Vβ14 [193]. CD4+ T cells expressing TCR Vβ14 preferentially proliferate
and expand into activated effector T cells in the lungs rather than the lymph nodes, which drain
the site of infection [194]. Although this study is limited to a specific inbred strain of mice,
these findings may be important as RSV-specific CD4+ memory T cells have been shown to
have a major role in RSV-induced immunopathology, a feature linked to polarizing for a Th2-
type cytokine response and pulmonary eosinophilia [114,153,195–197]. It has recently been
shown that RSV-specific memory CD8 T cells, when present in sufficient numbers, inhibit
Th2-associated chemokines, CCL17 and CCL22, and may alter the trafficking of Th2-type
cells and eosinophils into the lung [198]. Interestingly, the memory CD4+ T-cell response to
RSV F protein is much broader than that to RSV G protein. Immunization of mice with the F
protein elicits a broad repertoire of RSV F-protein-specific CD4+ T cells that predominantly
express Th1-type responses; however, in the absence of IFN-γ, RSV F-specific memory
CD4+ T cells secrete IL-5 and develop pulmonary eosinophilia after RSV challenge, suggesting
that IFN-γ can modulate the memory CD4+ T-cell response to secondary RSV infection
[199].

CD8+ T cells have a major role in the clearance of a virus. RSV-specific CD8+ T cells are
found in the lungs and peripheral tissues after RSV infection. Studies have demonstrated that
virus clearance is temporally associated with an increase of RSV-specific CD8 cytotoxic T-
lymphocyte activity in the lungs [200]. Although T-cell responses to RSV infection
predominantly occur in the lungs, it has been demonstrated in a mouse model that T-cell subsets
can redistribute to secondary sites following RSV infection [201]. A higher proportion of RSV-
specific CD8+ T cells in the peripheral blood have been observed in older infants than younger
infants, a feature that might be due to immune immaturity, the Th2-type environment in the
lungs or the suppressive effect of maternal antibodies. It has been shown that young children
are prone to develop a Th2-type cytokine biased response, which has also been associated with
higher RSV pathology [202]. However, other studies have demonstrated a predominant Th1-
type response [203].

CD8+ memory T cells are important for clearing RSV reinfection. Studies of RSV-specific
CD8+ memory T cells in humans have demonstrated that most pulmonary CD8+ T cells are
retained in the lungs and a minority in the peripheral blood [204]. Consistent with these
findings, it has been shown, following acute RSV infection in mice, that approximately 20%
of pulmonary CD8+ T cells secrete IFN-γ in response to immunodominant peptide stimulation
compared with 2–3% in the draining lymph node [205]. It remains unclear whether resident or
recruited RSV-specific CD8+ T cells may be more important to control RSV reinfection;
however, it has been demonstrated that although there is a higher proportion of CD8+ memory
T cells in the lungs, amplification of recall responses in the organized lymphoid tissue is more
efficient [205]. These findings do not appear to be related to RSV-mediated suppression, as
RSV does not impair the ex vivo functionality of RSV-specific CD8+ T cells isolated from the
lung during the acute and memory phase of murine RSV infection [206], suggesting that
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functionality is likely to be affected by the lung environment. Consistent with these findings,
it was recently shown that RSV-specific CD8+ T cells isolated from the lungs were impaired
in their ability to secrete IFN-γ compared with RSV-specific CD8+ T cells isolated from the
spleen, providing strong evidence that the decreased functionality of CD8+ cytotoxic T
lymphocyte is specific to a lung environment and is not dependent on the specific virus, viral
antigen or route of infection [207]. The mechanisms contributing to pulmonary CD8+ T-cell
functional impairment are not well understood, but the effect may be linked to the cytokine
microenvironment or other features. One study suggested that the functional inactivation of
CD8 T cells is independent of RSV infection and is mediated by immunosuppressive agents
in a basal lung environment [208]. It has been shown that the functional inactivation of
CD8+ T cells is associated with TCR signaling, and the activity could be improved by IL-2
expression in the lungs [209].

Disease pathogenesis
A variety of host factors affect RSV disease pathogenesis. Some of the known risk factors for
severe disease include the age of the individual at the time of infection, congenital heart disease
and immunodeficiency or suppression [210–212]. The state of immune maturation early in life
is also important for susceptibility to RSV disease. Maternal antibodies appear to confer only
partial protection from RSV infection, and have been shown to also suppress antibody and T-
cell responses to primary RSV infection [213]. Furthermore, genetic-association studies have
demonstrated that variations in certain genetic loci, such as haplotype and Th2-type cytokine
genes, confer susceptibility to RSV disease [214–216]. RSV disease pathogenesis mechanisms
are not well understood, but the virus itself likely contributes to the level of pathogenesis and
there is abundant evidence that the early innate host response to primary infection is important.
Although RSV disease phenotypes vary in humans and among animal models, inflammatory
mediators have been strongly implicated in RSV pathogenesis. For example, numerous studies
have established that RSV can cause asthma exacerbations and bronchiolitis [217], and that
these conditions are associated with enhanced CD4 T-cell responses, inappropriate cytokine
expression, inflammation and reduced immune regulation [217–219].

There is no single paradigm for how the cascade of inflammatory mediators and events that
follow affect RSV disease pathogenesis. Numerous inflammatory mediators are expressed in
the response to RSV infection in humans and in animal models, and there is controversy
regarding the importance of inflammatory mediators, Th1- versus Th2-type cytokine responses
and dysfunction induced by RSV. It appears that disease pathogenesis is a multifactorial
process involving virus replication, innate responses to infection and aberrant immune
responses linked to modification by RSV proteins. The often early onset of RSV disease
severity suggests that features affecting innate immunity have an important role in the disease
process, and it is likely that these features are linked to RSV activation of PRRs or TLRs
[220]. How RSV recognition and the subsequent response is tailored by the individual PRRs
or TLRs is not yet clear, but evidence suggests that RSV may be recognized by surface and
cytoplasmic TLRs including TLR2, TLR3, TLR4 and RIG-I [71,74,137,138,221], and that
RSV may inhibit TLR7- and TLR9-mediated type I IFN production in human pDCs [136].

Activation of the innate immune response to RSV infection is associated with the production
of chemokines and cytokines, which signal and recruit immune cells to sites of infection. These
cells and their constituents function to regulate virus replication, but over-exuberant or
inappropriate production of immune mediators in the respiratory tract may exacerbate the
inflammatory response and promote airway damage and pathogenesis during virus clearance.
RSV has been shown to modify the tempo and magnitude of cytokine and chemokine
expression patterns during infection [114,151,196,222–224], and these features likely
contribute to immune dysregulation and aspects of disease pathogenesis. Consistent with this
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view, in vivo chemokine blockade reduces RSV-associated lung pathology in mice treated with
anti-RANTES antibodies [130], and treatment of RSV-infected mice with a competitor of the
RANTES receptor (Met-RANTES) reduces recruitment of inflammatory cells to the lung
[225].

The innate immune response interfaces with adaptive immunity and has an important role in
defining the magnitude and quality of adaptive immunity to RSV infection and
immunopathology. Inefficient or inappropriate innate and inflammatory responses triggered
by RSV may contribute to the induction of inappropriate T-cell responses, and there is
considerable evidence of a Th2-type biased immune response specific for some RSV antigens
[151,196,224,226–228]. It is thought that efficient virus clearance requires Th1-type responses
characterized by IFN-γ, IL-2 and IL-12 expression, and that Th2-type responses characterized
by IL-4, IL-10 and IL-13 expression are mostly ineffective and can lead to allergic diseases
and asthma. Th2-type cytokine responses have been linked to RSV vaccine-enhanced disease
studies in mice and cotton rats immunized with formalin-inactivated RSV vaccine or vaccinia
vectors expressing RSV F or G proteins [195,224,228–231]. In these studies, sensitization with
the RSV G protein leads to Th2-type CD4+ T-cell responses, and in many cases pulmonary
eosinophilia, during subsequent challenge with RSV. In small animal models, ablation of either
CD4+ or CD8+ T cells after RSV infection has been shown to decrease disease severity and
illness [224,232], indicating the important role of T cells in immune pathology. Interestingly,
RSV-specific memory CD8+ T cells appear to have an important role in regulation of the
aberrant CD4+ T-cell response associated with vaccine-enhanced disease [198,233,234], but
may have less of a role in other allergy-related pathologies such as airway hyper-responsiveness
to RSV infection [235].

Conclusion
Numerous host and several virus components have been connected with disease pathogenesis
following RSV infection; however, the importance of a single component against the spectrum
of mediators is difficult to identify as being singularly important. It is apparent that RSV causes
an atypical host response to infection with attributes of altered innate and inadequate immune
memory responses where individuals may be repeatedly infected with the same or different
strains of RSV, and where RSV may reinfect despite the presence of specific neutralizing
antibodies [153,236–239]. Experimental animal models and in vitro studies of RSV infection
have helped to identify and differentiate aspects of the host response to infection, and to identify
RSV proteins that modulate these responses, however, the features of molecular pathogenesis
remain poorly understood. A better understanding of the interplay between RSV and the host
response to infection is needed to facilitate vaccine and antiviral drug development, although
accumulating evidence suggests that regulating aspects of innate immunity may be more
important in controlling disease pathogenesis.

Future perspective
Understanding the host response and molecular pathogenesis of RSV infection is critical for
the development of vaccines, antivirals and other disease intervention approaches. It is clear
that we must understand the problem if we are to prevent or correct it. Fundamental to this
understanding is the biology behind RSV infection. RSV first infects respiratory epithelial cells
during infection. The host response to infection is sensed by PRRs or TLRs that induce a
network of host cell gene products, which profoundly affect the cascade of inflammatory and
immune signals and functions. RSV-specific gene products have been shown to modulate the
tempo, pattern and magnitude of the signaling cascade in the early elements of innate immunity.
These early elements in innate immunity are required to properly orchestrate the adaptive
immune response as well as regulate airway inflammation and disease pathogenesis. It is clear
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that the identification of host pathways affected by RSV proteins will be fundamental to
achieving rationally designed antiviral drugs and vaccines. Despite decades of effort toward
an efficacious RSV vaccine, there are still no clear contenders on the horizon. It is likely that
the vaccine focus will shift from current vaccine approaches toward the development of
mucosal RSV vaccine strategies and antiviral drug approaches toward novel strategies that
encumber RNA interference or antisense approaches that could be used to specifically target
the virus or airway epithelium host genes early after infection. It is likely that interceding in
the earliest events following RSV infection may offer a clearer path toward drug-based disease
intervention, and generating antibody responses that target RSV proteins more effectively may
provide greater efficacy for RSV disease pathogenesis.

Executive summary

Respiratory syncytial virus

▪ Respiratory syncytial virus (RSV) is a paramyxovirus.

▪ Nonsegmented negative-strand RNA virus containing two nonstructural (NS2 and
NS1) genes followed, in gene order, by nucleocapsid, phosphoprotein, matrix, small
hydrophobic, surface attachment glycoprotein (G), surface fusion glycoprotein (F), a
M2 gene encoding two proteins from M2–1/M2–2 and RNA-dependent RNA
polymerase.

▪ Transcription of mRNA occurs in a 3′ to 5′ order from a single promoter near the 3′
end resulting in a series of subgenomic mRNAs.

▪ The level of protein expressed is related to mRNA abundance.

▪ Virions assemble at the plasma membrane where nucleocapsids localize with the cell
membrane containing membrane viral glycoproteins.

Regulation of host-cell responses to infection

▪ RSV primarily infects respiratory epithelial cells lining the nasal passages and
respiratory tract.

▪ Following infection, RSV delays apoptosis by enhancing IEX-1L, several Bcl-2
family members, proteins within the phosphatidylinositol 3-kinase pathway, and by
inhibiting tumor suppressor p53 and oncogene Akt.

▪ RSV proteins modulate host-cell responses through pattern recognition receptors and
Toll-like receptors (TLRs); RSV F protein interacts with TLR4; G protein potentially
with TLR2.

▪ RSV interferes with the host antiviral cytokine response; NS1 and NS2 are important
in type I IFN antagonists.

▪ RSV induces suppressor of cytokine signaling (SOCS)1 and SOCS3 negative
regulation of type I IFNs.

▪ RSV infection modulates respiratory epithelial-cell function, surfactant protein (SP)-
A and SP-D are decreased, and matrix metalloproteinases are increased.

▪ RSV G protein contains a CX3C chemokine motif which can bind to the CX3CR1
and impede CX3CR1 responses and CX3CR1-mediated leukocyte chemotaxis.

Cytokine responses to RSV infection
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▪ RSV infection of airway epithelial cells results in a cascade of signaling events
mediated by NF-κB leading to the expression of proinflammatory cytokines and
chemokines.

▪ RSV G-protein expression during acute infection in mice has been associated with
altered CC and CXC chemokine mRNA expression and Th1/Th2-type cytokines.

▪ RSV G protein inhibits IFN -β and IFN-stimulated gene-15.

Regulation of cellular transcription factors

▪ RSV infection induces many transcription factors including IFN regulatory factor
(IRF)3, IRF7, NF-κB, p38 MAPK and AP-1.

▪ RSV G protein interferes with Toll IL-1 receptor domain-containing adaptor
molecule-1 or NF-κB activation leading to reduced levels proinflammatory cytokines.

▪ Interferon antagonism by NS1/NS2 is mediated by inhibiting STAT2 and IRF3
activation.

▪ NS1 contains elongin-C- and cullin-2-binding sequences that provide ubiquitin E3
ligase activity to target proteins, specifically STAT2, to the proteosome.

▪ RSV G protein induces SOCS1 and SOCS3 proteins which negatively regulate
cytokine signaling cascades, particularly type I IFNs.

Innate immunity to RSV infection

▪ Host cells recognize RSV infection via TLR4, TLR3, TLR2 and retinoic acid-
inducible gene-I resulting in the expression of proinflammatory cytokines and
chemokines.

▪ The balance between conventional dendritic cells (DCs) and plasmacytoid DCs in the
lung and lymph nodes is important for driving pulmonary immunity to RSV infection.

▪ DCs infected with RSV lose their ability to stimulate RSV-specific T cells.

▪ RSV G protein has a role in modulating natural killer cells and other cell trafficking
to the lung through inhibition of cytokines and chemokines.

Adaptive humoral & cellular immunity

▪ RSV F and G surface proteins induce neutralizing antibody production, and these are
the major antigenic determinants of protection.

▪ T-cell responses have an important role in viral clearance.

▪ RSV F protein may polarize both CD4+ and CD8+ T-cell responses toward a Th1-
type response.

▪ RSV G protein may prime CD4 + T cells toward a Th2-biased response.

Disease pathogenesis

▪ A variety of host factors affect RSV disease pathogenesis; known risk factors for
severe disease include the age of infection, congenital heart disease and immune
deficiency or suppression.

▪ The state of immune maturation early in life is important for susceptibility to RSV
disease.

▪ Genetic-association studies indicate that variations in certain genetic loci confer
susceptibility to RSV disease.
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▪ Disease pathogenesis is a multifactorial process.
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