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 1. Introduction 

 The goals of genetic linkage analysis  [1]  include detect-
ing and localizing genes that are causal to a trait. The trait 
of interest can be quantitative, such as lipid levels, or 
qualitative, such as disease affectation status. This paper 
concerns linkage analysis using pedigree data.

  In pedigree-based linkage analysis, data available to us 
include trait values and genetic marker data on observed 
individuals in a collection of pedigrees, and inheritance 
vectors  [2]  play a central role. When inheritance vectors 
can be completely determined from the genetic marker 
data, they and the observed trait values are sufficient for 
both linkage detection and gene localization. Individuals 
with the same genotype at a causal locus tend to have 
similar mean trait values or disease penetrances, and the 
probability for two individuals in a pedigree to have the 
same genotype at a locus depends on the inheritance vec-
tor at that locus. So when there are one or more causal loci 
in a genomic region, the posterior distribution of the in-
heritance vectors  S  j  at positions  j  in the region given ob-
served trait values  Y  will deviate from their prior distri-
bution. The theme of this paper is to measure and explore 
this deviation in order to achieve linkage detection and 
gene localization goals.

  For clarity, in this paper, loci refer specifically to ge-
netic trait or marker loci, while a position is simply a ge-
neric location in the genome. Posterior/prior refer to con-
ditional/unconditional on trait values, while conditional 
refers to conditional on inheritance vectors at nearby ge-
nomic positions or conditional on genetic marker data. 
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 Abstract 

  Background/Aims:  With pedigree data, genetic linkage can 
be detected using inheritance vector tests, which explore 
the discrepancy between the posterior distribution of the 
inheritance vectors given observed trait values and the prior 
distribution of the inheritance vectors. In this paper, we pro-
pose conditional inheritance vector tests for linkage local-
ization. These conditional tests can also be used to detect 
additional linkage signals in the presence of previously de-
tected causal genes.  Methods:  For linkage localization, we 
propose to perform inheritance vector tests conditioning on 
the inheritance vectors at two positions bounding a test re-
gion. We can detect additional linkage signals by conduct-
ing a further conditional test in a region with no previously 
detected genes. We use randomized p values to extend the 
marginal and conditional tests when the inheritance vectors 
cannot be completely determined from genetic marker data. 
 Results:  We conduct simulation studies to compare and con-
trast the marginal and the conditional tests and to demon-
strate that randomized p values can capture both the sig-
nificance and the uncertainty in the test results.  Conclusions:  
The simulation results demonstrate that the proposed con-
ditional tests provide useful localization information, and 
with informative marker data, the uncertainty in random-
ized marginal and conditional test results is small. 
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Throughout the paper, we follow the notational conven-
tion of using capital letters for random variables and cor-
responding lower case letters for their values. In expres-
sions involving probabilities, we use shorthands such as 
Pr( s  j   �   y ) to mean Pr( S  j  =  s  j   �   Y  =  y ).

  The main focus of this paper is to introduce condi-
tional inheritance vector tests for linkage localization. 
Traditionally, linkage localization is often treated as an 
interval estimation problem. Papachristou and Lin  [3]  
constructed confidence sets for the location of a disease 
gene by inverting hypothesis testing results. Their meth-
od requires that the effect of the disease gene be specified 
or accurately estimated. If more than one disease gene is 
involved, the interactions between the genes must also be 
incorporated. Liang et al.  [4]  discussed point and interval 
estimation of the location of a disease gene under the 
GEE framework  [5] , considering single disease gene mod-
els. Biernacka et al.  [6]  extended the method of Liang et 
al.  [4]  to work with two linked disease genes. These GEE 
methods will estimate the effects of the disease genes to-
gether with their locations, but it is still crucial to cor-
rectly specify the number of disease genes. These GEE 
methods are developed for affected-sib-pair data and rely 
on asymptotic results to have correct confidence interval 
coverage probabilities. Confidence interval approaches 
have intrinsic difficulties. To construct a confidence in-
terval for the location of a disease gene, one has to include 
the location as a parameter in a model and has to con-
sider the number and effects of the disease genes. The 
validity of the resulting confidence interval inevitably de-
pends on correct specification or estimation of these 
number and effects.

  We propose a different strategy for linkage localiza-
tion. In this strategy, we conduct an inheritance vector 
test conditioning on the inheritance vectors at two posi-
tions bounding a test region. This conditional test has 
many appealing features. First, the test provides a statisti-
cally valid way to accurately interpret the localization in-
formation in the data. The test will only show significance 
when there are one or more casual loci in the specified test 
region. When there is no causal locus in the test region, 
the test has the correct type-I error. The validity of the test 
does not rely on asymptotic results. Second, being focused 
on the distribution of the inheritance vectors, our condi-
tional tests rely much less on trait model assumptions. For 
the test to work, it is not required to specify the number 
or effects of the disease genes. Third, the proposed condi-
tional tests can be implemented for both quantitative 
traits and qualitative traits, and are applicable to general 
pedigrees, not just affected relative pairs. 

 The proposed conditional tests can also be used to de-
tect extra linkage signals in the presence of one or more 
previously detected causal genes on the same chromo-
some. Once linkage signals have been detected and suc-
cessfully localized to small regions, we can perform fur-
ther conditional tests in regions with no previously de-
tected linkage signal. We condition out the effects of 
previously detected genes by excluding these genes from 
the test region.

  In the context of detecting extra linkage signals, the 
idea of conditioning has been explored before: Delepine 
et al.  [7]  detected a new linkage signal for type I diabetes 
(IDDM) by conditioning on the IBD state at a previously 
discovered gene on the same chromosome. Farrall  [8] , 
Cordell et al.  [9] , Biernacka et al.  [10] , and Barber et al. 
 [11]  discussed incorporating previously detected genes by 
including their estimated locations in the likelihood 
(LOD score) or GEE estimation equations for estimating 
the location of the undetected gene. One distinctive fea-
ture of our proposed conditioning strategy is that it does 
not require point estimates of the locations of previous 
detected genes. We just need to exclude the localized gene 
regions from the test region of the conditional test. As 
pointed out by many (for example, Biernacka et al.  [10] ), 
the point estimate of the location of a causal gene is often 
unreliable, especially when the number of possible causal 
genes is unknown. Another feature of our conditional 
tests is that we explicitly condition on inheritance vec-
tors. In this regard, the method of Delepine et al.  [7]  is 
most similar to ours. However, Delepine et al.  [7]  consid-
ered only affected sib pairs with genotyped parents (in 
this situation, the IBD states of the sib pairs are equivalent 
to inheritance vectors). Our method applies to general 
pedigrees. Also, by using randomized p values  [12, 13] , 
our test draws information from all pedigrees even when 
inheritance vectors cannot be completely determined.

  Our conditional inheritance vector test method shares 
some features with the composite interval mapping (CIM) 
method of Zeng  [14, 15] . Both methods involves choosing 
two bounding positions to specify a test region and then 
using a conditional test to examine linkage evidence in 
the specified test region. There are, however, important 
differences between our method and Zeng’s CIM meth-
od. First, the CIM method relies on the Markov chain 
structure of the genotypes along a chromosome to work. 
This Markov chain structure of genotypes exists in back-
cross or intercross populations, but not in general pedi-
grees, so the CIM method cannot be validly applied to 
general pedigrees. Our conditional inheritance vector 
tests use the Markov chain structure of the inheritance 
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vectors, which holds in general pedigrees under the as-
sumption of no genetic interference  [16] , so our condi-
tional tests are applicable to general pedigrees. Second, in 
designed crosses, the state space of the genotype at a ge-
nomic position is very small, so conditional tests in CIM 
can be effectively performed by regressing the trait values 
on the genotypes at multiple positions and testing wheth-
er certain multiple regression coefficient is 0. The state 
space of the inheritance vector at a genomic position is 
huge and regression method is not applicable to inheri-
tance-vector-based tests. Different techniques are needed 
for implementing tests based on inheritance vectors.

  Conditional inheritance vector tests are the main fo-
cus of this paper, although for comparison purpose, we 
also discuss marginal inheritance vector tests. In our im-
plementation of these marginal and conditional tests, 
when the inheritance vectors cannot be fully determined 
from the marker data, we do not integrate the test statis-
tic over imputed inheritance vectors. Instead, we sum-
marize the test results using randomized p values  [12, 13] . 
Using randomized p values allows us to decouple the un-
certainly in the test results due to latent inheritance vec-
tors from the lack of evidence for linkage detection or 
localization.

  In the rest of this paper, Section 2 describes the Mar-
kov chain structure of the inheritance vectors and intro-
duces the marginal and conditional inheritance vector 
tests. The section starts by assuming known inheritance 
vectors, and later discusses how to use randomized p-val-
ues  [12, 13]  to extend the tests using an MCMC sample of 
the inheritance vectors when the inheritance vectors can-
not be fully determined from the genetic marker data. 
Section 3 presents simulation results to compare the 
properties of the marginal tests and the conditional tests. 
We also evaluate the effects of uncertainty in latent in-
heritance vectors on both the marginal and the condi-
tional tests. Section 4 concludes the paper with discus-
sion.

  2. Methods 

 2.1. Markov Structure of the Inheritance Vectors 
 At each genomic position, each individual has two alleles, a 

paternal allele and a maternal allele. A random copy of one of the 
two alleles will be chosen to be copied to each child of the indi-
vidual. A meiosis indicator  [17]   S  ij  indicates whether the paternal 
allele or the maternal allele is copied to the child from the par-
ent:

1, if parent s paternal allele is copied to the child
0, if parent s maternal allele is copied to the childijS ’

’     (1)

  where  i  = 1, ...,  I  indexes meioses in a pedigree and  j  = 1, ...,  J  in-
dexes positions along a genomic region of interest. An inheritance 
vector  [2]  at a position is the set of all meiosis indicators at that 
position: 

    S  J  = ( S  1  j , ...,  S  Ij ).                                                                              (2)

  With multiple pedigrees,  S  j  will represent the multiple-pedigree 
inheritance vector resulting from concatenating inheritance vec-
tors of individual pedigrees. The inheritance vector  S  j  fully spec-
ifies how founder alleles descend in each pedigree at position  j . 

 When inheritance vectors  S  = ( S  1 , ...,  S  J ) at positions  j  = 1, ...,  J  
are completely determined, then  S  together with trait values  Y  are 
jointly sufficient for both linkage detection and linkage localiza-
tion. Under the assumption of no genetic interference  [16] , the 
prior distribution of ( S  1 , ...,  S  J ) is simple:  S  1 , ...,  S  J  form a Markov 
chain with state space ,  being the set of all possible inheritance 
vector configurations at a single position, common to all  j . The 
distribution of this Markov chain is well-characterized: Mendel’s 
First Law states that meioses are independent, so the meiosis in-
dicators  S  ij ,  i  = 1, ...,  I , at any position  j  are independent, and that 
Pr( S  ij  = 0) = Pr( S  ij  = 1) = 1/2. As a corollary, at each position  j , the 
marginal distribution of  S  j  = ( S  1  j , ...,  S  Ij ) is uniform over   . Within 
each meiosis, at different positions  j  and  j �  , meiosis indicators can 
be different. When  S  ij   0   S ij   � , there is recombination between posi-
tions  j  and  j �   at meiosis  i . The farther apart the positions are, the 
more probable it is that there will be recombination between 
them. The transition probability Pr( s  j   + 1   �   s  j ) of the Markov chain 
is determined by the probability of having recombination be-
tween positions  j  and  j  + 1.

  Assume we have observed trait values  y  on a subset of indi-
viduals in the pedigrees and complete inheritance vectors  s  = 
( s  1 , ...,  s  J ) at linked positions  j  = 1, ...,  J  along a chromosome region. 
When no causal locus is linked to the chromosome region under 
investigation, observing trait values  y  should not affect the poste-
rior distribution of the inheritance vectors. So the posterior dis-
tribution of the inheritance vectors given observed trait values 
should be the same as the prior distribution of the inheritance 
vectors, and the following global null hypothesis should hold:

   H  0  : ( s  1 , ...,  s  J ) follows a Markov chain distribution with uniform 
marginal   distribution and transition probability Pr( s  j   + 1   �   s  j ).         
                (3)

  This global null is about the joint distribution of inheritance vec-
tors at all positions. A graphical representation  [18]  of this global 
null is shown in  figure 1 . 

S1 · · · Sj · · · SJ

Y

  Fig. 1.  A graphical representation of the global null model  H  0 . 
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  Figure 2  shows a graphical representation of one possible al-
ternative model, in which there are two causal loci  �  1  and  �  2  in the 
region. A general alternative model can be quite complicated, but 
under any alternative model, there should be more ‘connection’ 
between the inheritance vectors  and the trait values  Y . Observ-
ing trait values  Y  =  y  will affect the posterior distribution of the 
inheritance vectors, and the posterior distribution of the inheri-
tance vectors ( S  1 , ...,  S  J ) given the observed trait values  y  will devi-
ate from the prior distribution of ( S  1 , ...,  S  J ). Our task is to measure 
and explore the discrepancy between the posterior distribution of 
the inheritance vectors given the trait values and the prior distri-
bution of the inheritance vectors.

  2.2. Marginal Inheritance Vector Tests 
 For linkage detection, we want to see whether the data col-

lected provide significant evidence against the global null (3). 
Since it is difficult to tackle the joint distribution of ( S  1 , ...,  S  J ) un-
der a general alternative, linkage detection is often achieved using 
marginal tests. The global null (3) implies the following marginal 
null hypothesis at all  j :

   H  0,  j  :  s  j  follows a uniform distribution over .                        (4)

  A valid test for  H  0,  j  at any  j  is also a valid test for the global null. 
To test  H  0,  j  at a single position  j , we need a test statistic  t ( S  j ;  y ) that 
measures the connection between the inheritance vectors at the 
test position  j  and the observed trait values  y . The null distribution 
of  S  j  is uniform over . If we sample  s  j (  h  )   ,  h  = 1, ...,  N , uniformly 
from   , then  t ( s j (  h  )   ;   y ) will provide an empirical null distribution 
of the test statistic. Assuming large values of the test statistic
 t ( s  j ;  y ) indicate deviation from  H  0,  j , we can compute a valid Mon-
te Carlo p value for testing  H  0,  j  by counting the proportion of
 t (s j (  h  )   ;  y ) that are greater than the observed value  t ( s  j ;  y ) of the test 
statistic, 

 
1
1 ; ; 1

,  
1

N h
j jh

t s y t s y
p

N

�                                        (5)

  where 1{ � } is an indicator function taking value 1 if the expression 
in the curly braces in true, 0 otherwise. 

 Inheritance vectors at linked positions tend to be similar and 
marginal inheritance vector tests at linked positions are corre-
lated. As a consequence, marginal inheritance vector tests can 
show significance at positions that are not those of causal loci, but 
only linked to the true causal loci. A significant marginal test re-
sult does not provide specific linkage localization information.

  2.3. Conditional Inheritance Vector Tests 
 For linkage localization, we propose to perform inheritance 

vector tests conditioning on the inheritance vectors at two posi-
tions  j  1  and  j  2  bounding a test region. If there is no causal locus in 

the test region, observing the trait values  y  should not affect the 
posterior conditional distribution of ( S  j   �   S  j  1  =  s  j  1 ,  S  j  2  =  s  j  2 ) at any 
position  j  between  j  1  and  j  2 , so the following conditional null hy-
pothesis should hold 

  Hc
0,j
ond  :  s  j  follows the distribution of ( S  j   �   S  j  1  =  s  j  1 ,  S  j  2  =  s  j  2 )

  as determined by the Markov chain distribution in (3).       (6)

  To test  Hc
0,j
ond   we can compare the observed test statistic  t ( s  j ;  y ) to 

the conditional distribution of ( t ( S  j ;  y )  �   S  j  1  =  s  j  1 ,  S  j  2  =  s  j  2 ). If we 
sample  s j (  h  )        ,  h  = 1, ...,  N , from the conditional distribution of 

   ( S  j   �   S  j  1  =  s  j  1 ,  S  j  2  =  s  j  2 )

  corresponding  t (s j (  h  )     ;  y ) will provide an empirical null distribution 
of the test statistic. Again, we can compute a Monte Carlo p value 
for testing Hc

0,j
ond  by counting the proportion of  t (s j (  h  )   ;  y ) that are 

greater than the observed value of the test statistic, as in equation 
(5). 

 The conditional inheritance vector tests provide a statistically 
valid way to accurately assess the gene localization information 
in the data. When the above conditional test shows significance, 
it indicates that there are one or more causal loci between posi-
tions  j  1  and  j  2 . The p value of the test gives the probability of hav-
ing a false positive. This conditional test does not require the spec-
ification of the number or effects of the causal genes, and the va-
lidity of the test does not rely on such model assumptions. When 
 j  1  or  j  2  is close to  j , there can be too few meioses with recombina-
tions between  j  1  or  j  2  and  j , and thus not much variability in ( S  j   � 
 S  j  1  =  s  j  1 ,  S  j  2  =  s  j  2 ). To improve power, we can perform the test con-
ditioning on more distant positions. As a trade-off, the localiza-
tion information provided by the conditional test will then be less 
precise.

  2.4. Detecting Additional Linkage Signals 
 A conditional inheritance vector test can be used also to de-

tect additional linkage signals in the presence of previously de-
tected causal genes. Suppose a causal gene has been detected and 
localized to the genomic region bounded by positions ( j  1 ,  j  2 ). We 
can perform a further conditional test conditioning on inheri-
tance vectors at positions ( j  3 ,  j  4 ), the region bounded by which 
does not overlap with the region ( j  1 ,  j  2 ). This way, we condition 
out the effect of the previously detected gene by excluding it from 
the test region of the further conditional test. The test will have 
the correct type-I error if there is no causal locus in the region 
( j  3 ,  j  4 ).

  Note that this approach does not require precise point esti-
mates of the locations of previously detected causal genes. This 
feature is important, since relying on a wrongly estimated gene 
position may lead to invalid test significance. In our conditional 
test, we only need to exclude regions that contain any previously 

S1 · · · Sj1 Sj2 · · · Sj3 Sj4 · · · SJ

Y

S 2�S 1�

  Fig. 2.  A graphical representation of one 
possible alternative model. 
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detected causal loci. These regions may be available from previous 
studies or found using our conditional tests.

  When the test regions of two conditional tests do not overlap, 
our simulation results suggest that the p values of the two tests are 
close to uncorrelated, so adjusting for multiple testing is simple. 
One could, for example, use a Bonferroni correction  [19] . In the-
ory, we can repeat the procedure after a new gene is localized. 
However, due to power-precision trade-off, we may have to use a 
wide test region to detect genes with weak effect. This will limit 
the number of the causal loci that we may resolve.

  2.5. Latent Inheritance Vectors 
 In practice, we cannot observe inheritance vectors. However, 

there are well established methods on drawing Markov Chain 
Monte Carlo (MCMC) samples from the conditional distribution 
of the inheritance vectors given observed genetic marker data  [17] . 
Marginal inheritance vector tests and conditional inheritance 
vector tests can be extended using an MCMC sample of  S  = 
( S  1 , ...,  S  J ), when these inheritance vectors cannot be fully deter-
mined by the genetic marker data.

  Let  s  (  h   * ) ,  h  *  = 1, ...,  N  * , be an MCMC sample from the condi-
tional distribution of  S  given observed marker genotypes at mul-
tiple genetic marker loci. At position  j , a p value  p (s j (  h *)) can be 
computed for each s j (  h *) according to (5). The collection of p values 
for all s j (  h *)   ,   h  *  = 1, ...,  N  * , provides an empirical distribution of a 
randomized p value  [13] . At any nominal level  � , this randomized 
p value leads naturally to a randomized test for  H  0,  j  (see (4)), in 
which we reject the null with probability 

1

1 1 . 
N

h

h
p s

N
��

*
*

**
                                                              (7)

 When  H  0,  j  holds, the power of this randomized marginal test is  �  
up to discretization error  [13] . 

 Conditional inheritance tests can also be performed using an 
MCMC sample of  S . At position  j , we can compute a p value for 
each  s j (  h  *)   ,  conditional on  S  j  1  =  s j (  h 1  *)     and  S  j  2  =  s j (  h2  *)      . The p values com-
puted for  h  *  = 1, ...,  N  *  will provide us an empirical distribution 
of a randomized p value for testing  Hc

0,j
ond   (see (6)). A valid ran-

domized test can be designed accordingly.
  The uncertainty in the latent inheritance vectors may result in 

power loss. Using randomized p values allows us to decouple the 
uncertainty in the test results due to latent inheritance vectors 
from the lack of evidence for linkage detection or localization.

  2.6. Test Statistics 
 In the marginal and the conditional inheritance vector tests, 

we need a test statistic  t ( s  j ;  y ) to measure the connection between 
the inheritance vectors and the observed trait values. Allele-shar-
ing statistics for qualitative traits  [20–23] , and variance compo-
nents estimated using Haseman-Elston regression  [24]  or more 
general variance components methods  [25, 26] , are all functions 
of inheritance vectors and trait values. They can be used as test 
statistics for our marginal or conditional tests. However, many 
allele-sharing statistics use information from affected individuals 
only, and Haseman-Elston regression or variance components 
methods aggregate information in relative pairs and ignore the 
effects of higher-order sharing on trait values. In an attempt to 
use the data more efficiently, we introduce a test statistic,  w -score, 
that draws information from all individuals with trait values and 
takes higher order gene sharing into consideration.

  We will define the test statistic conditioning on the trait values 
 y . Pedigrees collected in practice are often ascertained and  y  is 
often part of the ascertainment criteria, but information on ascer-
tainment criteria is often vague. Conditioning the test on  y  makes 
the test more robust to ascertainment  [27] .

  As a motivating example, we first consider a model-based ap-
proach. At any potential trait locus  j , the inheritance vector  S  j  
specifies how founder alleles have descended in a pedigree.  S  j , to-
gether with the allelic types  A  j  of all founder alleles, will deter-
mine the genotypes  g ( S  j ,  A  j ) of all the individuals in the pedigree. 
Assuming a simple trait model in which locus  j  is the single caus-
al locus and genotypes at j determine the trait values. Let  p  D  be 
the minor allele frequency at the locus j. Let  �  be the parameters 
of the trait model. In a quantitative model,  �  can be the genotype-
specific mean trait values. In a qualitative trait model, this  �  can 
be the genotype-specific probabilities of being affected. We can 
measure the connection between  s  j  and  y  using Pr( s  j   �   y ). It is not 
hard to see

Pr ; , Pr , ; ,j D j Ds | y p s y p� �
                                                   (8)

  Pr ; ,j Dy|s p�                                                    (9)

Pr , ; Pr ; . 
j

j j j D
a

y| g s a a p�                    (10)

(8) holds since we condition on  Y  =  y , and (9) holds since Pr( s  j ) 
is constant. Note that, if viewed as a function of the location of 
locus  j , this model-based score is simply the likelihood (up to a 
constant) of the location of the causal gene under the one-locus 
trait model described above. 

 The model-based score (10) is not practical, since usually we 
will not know the trait model parameters  � . So we propose an-
other score, which we call  w -score,

, ; Pr , ; , , Pr ; . 
j

j D j j j j j D
a

ˆw s y p y| g s a g s a y a p�   (11)

  That is, for each ( s  j ,  a  j ), we estimate  �  ̂   based on the observed trait 
values  y  and genotypes  g ( s  j ,  a  j ). Note  �  ̂   in (11) is not an MLE, since 
we will estimate a different  �  ̂   for each different assignment of  a  j . 
Here we are not interested in the values of   �  ̂     . For each possible as-
signment of founder allelic types, we simply use 

   Pr( y   �   g ( s  j ,  a  j );   �  ̂     ( g ( s  j ,  a  j ),  y ))

  as a measure of trait value similarity among individuals with 
same genotypes. We weight the contributions from each possible 
 a  j  by its probability. 

 The  w -score is not specific to a particular trait model, it draws 
information from all individuals with observed trait values in the 
pedigrees, and it can be implemented for both qualitative and 
quantitative traits and for general pedigree structures. To com-
pute the  w -score for qualitative traits, we need both affected and 
unaffected individuals, so  w -score will not work for affected-sib-
pair data. For affected-sib-pair data, an alternative test statistic, 
such as  S  pairs  could be used in our marginal or conditional tests.

  The qualitative behavior of the marginal and conditional tests 
will not depend on the test statistic used. It will be of practical 
interest to know the relative power resulted from different test 
statistics, but this is not the focus of this paper. In our simulation 
study, we present a brief comparison of  w -score with LOD score 
computed using a variance component method.
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  3. Simulation Studies 

 In this section, we present results of two simulation 
studies. In the first study, we assume that the inheritance 
vectors are completely determined. We use this study to 
demonstrate the differences between marginal tests and 
conditional tests. In the implementation of the marginal 
and conditional tests, the newly developed  w -score (Sec-
tion 2.6) was used as the test statistic. To provide a com-
parison with standard methods, we compare the w-scores 
with variance component LOD scores computed using 
the software SOLAR  [26] . In the second study, we assume 
that the inheritance vectors are latent and we need to use 
dense genetic marker data to infer their distributions. 
The focus there is to investigate the effects of the uncer-
tainty in the inheritance vectors on both marginal and 
conditional tests.

  3.1. Known Inheritance Vectors 
 In this first simulation study, we assumed that the in-

heritance vectors are known. We simulated data on iden-
tical copies of a three-generation 12-member pedigree 
( fig. 3 ). For each pedigree, we simulated quantitative trait 
values on the 8 non-founders and inheritance vectors at 
21 evenly spaced positions at 0, 5, 10, ..., 100 cM along a 
100 cM chromosome as shown in  figure 4 . We first simu-
lated inheritance vectors at two causal loci at 37.5 and 
62.5 cM on the chromosome. The inheritance vectors at 
the 21 positions were then simulated respecting con-
straints on recombination probabilities. The trait values 
of the 8 non-founders were simulated based on the geno-
types determined by the inheritance vectors at the two 
causal loci and randomly simulated founder allelic types, 
and according to the two locus trait model shown in  ta-
ble 1 . In this model, locus  �  2  has a stronger effect on trait 
values and there are interactions between the causal ef-

fects of the two loci. Sung and Wijsman  [28]  used this 
model to study a two QTL method. To be able to see rea-
sonable powers, in each data set, we simulated 200 pedi-
grees. For power simulations, we simulated 1000 data 
sets.

  Let  j  index the 21 positions on the chromosome. For 
each data set, at each position  j , we performed three tests 
using the simulated trait values and inheritance vectors: 
a marginal test and two conditional tests, one condition-
al on the inheritance vectors  s  j   – 1  and  s  j   + 1  at the two posi-
tions immediately next to the test position  j , the other 
conditional on the inheritance vectors  s  j   – 2  and  s  j   + 2  at two 
positions that are one position removed from the test po-
sition  j . We did not perform tests directly at the causal 
loci. At each position  j , we also computed a variance com-
ponent LOD score using the software SOLAR  [26] .

  When computing the w-score for a set of pedigrees, we 
take the product of the  w -scores of individual pedigrees 
to be the multiple-pedigree  w -score. For each pedigree, to 
compute (11), we need to determine

  Pr( y   �   g ( s  j ,  a  j );   �  ̂     ( g ( s  j ,  a  j ),  y ))Pr( a  j ;  p  D )                                       (12)

x x
0 20 40 60 80 100 (cM)

  Fig. 3.  The ped12 pedigree used in the simulation studies. 
  Fig. 4.  The chromosome simulated in the simulation studies. The two crosses indicate 
the two causal loci. 

Table 1. A two-locus quantitative trait model

Locus �1 Locus �2

dd dD DD

dd –1.0 7.0 15.0
dD 1.0 3.5 6.0
DD 3.0 0.0 –3.0

Allele frequencies of D at �1 and �2 are 0.3 and 0.4 respec-
tively.

  3  4    
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  for each possible founder allelic type assignment  a  j . We 
assumed the rare allele frequency  p  D  to be 0.3. Previous 
simulation results (not shown) show that test results are 
reasonably robust to the specification of  p  D . For a quan-
titative trait, other parameters involved in (12) include 
the mean trait values ( �  DD ,  �  Dd ,  �  dd ) for different geno-
types and the variance of the trait values  �   2 , which we 
assumed to be common to all three genotype groups. For 
each  a  j , we estimated ( �  DD ,  �  Dd ,  �  dd ) based on  g ( s  j ,  a  j ) and 
 y . However, estimating  �   2  from a small number of indi-
viduals will generate very variable estimates and can re-
sult in disproportionate contributions to the multiple-
pedigree  w -score by a few pedigrees. So, instead, we spec-
ify the  �  ̂     2  to be the total variance of observed trait values. 
This approach will overestimate  �  2 , but the bias will be 
small unless the genetic variance is large relevant to the 
total variance, in which case, the causal loci will be easy 
to detect. 

  Figure 5  compares the marginal and the conditional 
tests.  Figure 5 a summarizes the powers of the marginal 
and conditional tests. A p value cutoff of 0.05 is used to 
compute these powers.  Figure 5 b summarizes the p val-
ues of the marginal and conditional tests based on  w -
scores for six data sets randomly chosen from the 1000 
simulated data sets. From the power and the p value 
curves, we can see that the conditional inheritance vector 
tests show very specific localizing information. The test 
conditional on  s  j   – 1  and  s  j   + 1  only shows significance when 
there is a causal locus between  j  – 1 and  j  + 1. The p value 
of the test represents the probability of having a false pos-
itive when there is no causal locus between  s  j   – 1  and  s  j   + 1 . 
The conditional tests have the correct type-I errors, as 
can be seen from the power curves in  figure 5 a. For the 
conditional tests, there is a trade-off between power and 
precision. The tests conditional on  s  j   – 2  and  s  j   + 2  are more 
powerful, but less precise. When this test shows signifi-
cance, we can only claim that there is a causal locus be-
tween positions  j  – 2 and  j  + 2.

  In contrast, the marginal tests show power at all test 
positions and show strong power at all test positions be-
tween  �  1  and  �  2 . The p value curves for individual data 
sets show that a significant marginal test result does not 
provide specific localization information. We computed 
the test p values by comparing observed  w -score to 1000 
simulated null w-scores, so the smallest achievable p val-
ue is 0.001. To see more detailed information, we can look 
at the test statistics. For the six data sets corresponding to 
 figure 5 b, we show linearly transformed (details below) 
log  w -scores on  figure 6 . We see that a log  w -score curve 
can have multiple peaks. Not all peaks correspond to po-

sitions of the causal genes and it is difficult to distinguish 
the peaks. Also, a marginal test statistic curve does not 
give clear information about the number of possible caus-
al genes in the region.

  We also compare w-scores with the SOLAR variance 
component LOD scores. For a power comparison, we 
converted the LOD scores to approximate p values by first 
converting the scores to natural logarithm and then com-
paring twice the converted values to a 50 : 50 mixture of 
a chi-square distribution with 1 degree of freedom and a 
point mass at 0. The resulting powers corresponding to 
the LOD scores are also shown on  figure 5 a. To compare 
the test statistics, we linearly transformed the log  w -score 
so that the range of the log  w -scores match that of the 
LOD scores. In  figure 6 , we see that the variance compo-
nent LOD scores and the log  w -scores show similar qual-
itative behavior. In Marchani et al.  [29] , we also saw sim-
ilar qualitative behavior of w-scores and SOLAR LOD 
scores in analysis of a large real data set  [30]  of multiple 
pedigrees.

  We have also performed extensive simulations under 
other quantitative trait models and under qualitative trait 
models. The results all show similar patterns in compar-
isons of p values and of powers between conditional and 
marginal tests.

  3.2. Latent Inheritance Vectors 
 When the inheritance vectors are latent, we can draw 

MCMC samples of the inheritance vectors based on dense 
genetic marker data and summarize inheritance vector 
test results using randomized p values. Next, we present 
a simulation study to explain how the randomized p val-
ues provide information about both the significance and 
the uncertainty in a test result, and to demonstrate that 
the marginal and conditional tests can still provide useful 
information when the inheritance vectors cannot be 
completely determined.

  In this study, we simulated trait values and dense SNP 
marker data. We simulated data on one set of 200 pedi-
grees that are identical copies of the pedigree shown in 
 figure 3 . For each pedigree, we simulated inheritance vec-
tors at the two causal loci  �  1  and  �  2  and quantitative trait 
values on the 8 non-founder individuals the same way as 
in the last study. To simulate the SNP marker data, we 
first simulated inheritance vectors at marker positions, 
respecting constraints on recombination probabilities 
between marker positions and the two trait loci, and then 
simulated SNP variants at the markers by gene dropping. 
Two sets of dense SNP markers along the chromosome 
region were simulated. One set consisted of evenly spaced 
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  Fig. 5.   a  Powers of the marginal tests and the conditional tests, 
nominal level  �  = 0.05.  b  –log p values of the marginal tests and 
the conditional tests for 6 randomly chosen data sets. Two vertical 
dashed lines correspond to the two causal loci  �  1  and  �  2 . The hor-
izontal dashed line in  a  corresponds to  �  = 0.05. Solid line with 

circles: marginal tests. Dotted line with triangles: tests condition-
al on  S  j   – 1  and  S  j   + 1 . Dashed line with pluses: tests conditional on 
 S  j   – 2  and  S  j   + 2 . In  a , dot-dashed line with crosses: powers corre-
sponding to SOLAR LOD scores. 
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SNPs that are 0.25 cM apart. The other set consisted of 
SNP blocks that are 1 cM apart and have 3 SNPs per block. 
The recombination rates between adjacent SNPs within a 
block are 10 –6 . Each SNP block is comparable to a micro-
satellite marker. We set the rare allele frequency for each 
SNP to be 0.2. The polymorphism and density of these 
two marker sets are typical of currently available stud-
ies.

  Conditional on each SNP marker set, we used a ver-
sion of the MORGAN program lm_auto ( http://www.
stat.washington.edu/thompson/Genepi/MORGAN/
Morgan.shtml) to draw an MCMC sample of size 1000 of 
the inheritance vectors jointly across the test positions. 
Other types of genetic marker data, such as microsatellite 

markers, can also be used in this MORGAN program. 
The types of markers used influence the marginal and 
conditional tests only through the variability in the re-
sulting MCMC sample of the inheritance vectors. In this 
study, SNPs were simulated assuming linkage equilibri-
um. When SNPs are in linkage disequilibrium, we would 
need to estimate hyplotype frequencies within LD blocks 
and use (for example) the clustered SNPs approach of 
MERLIN  [31] . In practice, appropriately chosen tag SNPs 
 [32]  that are in linkage equilibrium will often provide 
sufficient information about the inheritance vectors.

  Based on the MCMC sample of the inheritance vectors 
and the simulated trait values, we performed the mar-
ginal and conditional inheritance vector tests at test posi-
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  Fig. 6.  Comparing log  w -scores to SOLAR LOD scores. The data 
sets correspond to figure 5b. The                    y -axis is on the LOD score scale. 
The log  w -scores were linearly transformed so that they have the 

same range as the LOD scores. Solid line with circles: log  w -scores. 
Dot-dashed line with crosses: SOLAR LOD scores.                         
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tions that are evenly spaced and 1 cM apart on the chro-
mosome. Note that the test positions can be chosen inde-
pendently from the marker positions and test positions 
do not have to be as dense as the marker positions. For 
the marginal and the conditional test, at each test posi-
tion, we computed 1000 p values based on the 1000 sam-
pled inheritance vectors. The collection of these 1000 p 
values provides an empirical distribution of a random-
ized p value. For the conditional tests, we conditioned 
each test on two positions that are 10 cM apart from the 
test position.

  In  figure 7 , we show the 10-th, 50-th and 90-th percen-
tiles of the randomized p values for the marginal and 
conditional tests at all applicable test positions. From the 
randomized p value plots, we see that with such informa-
tive marker data, the uncertainty in the marginal and 
conditional test results is small. With this amount of un-
certainty, the marginal and conditional tests can still re-
veal useful linkage and localization information. For ex-
ample, for this data set, we can successfully localize caus-
al locus  �  2 , since 90-th percentile of the conditional test p 
value at a nearby locus is below 0.01.

  4. Discussion 

 In this paper, we introduced conditional inheritance 
vector tests and demonstrated using simulation studies 
that these conditional tests provide useful information 
for gene localization. Conditional inheritance vector 
tests provide a statistically valid way to accurately assess 
linkage localization information in a data set. These 
conditional tests are robust to trait model assumptions: 
they do not rely on correct specification of the number 
and effects of the causal genes to work. These condition-
al tests are applicable to general pedigrees and can be 
implemented for both qualitative and quantitative 
traits.

  We can contrast the conditional test approach with the 
confidence interval approach to gene localization by 
comparing the different questions they answer. In a con-
fidence interval approach, the investigators specify a sig-
nificance level, the resulted confidence interval provides 
the localization precision. In our conditional test ap-
proach, we specify the desired localization precision, 
which is the size of the test region, the test p value will 
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  Fig. 7.  10-th, 50-th, and 90-th percentiles of the –log randomized 
p values for the marginal and conditional tests. The top two plots 
are for the marginal tests, the bottom two plots are for the condi-
tional tests. For results on the left, the marker data used to infer 

the distribution of the inheritance vectors are SNP blocks that are 
1 cM apart and have 3 SNPs per block with recombination rates 
10 –6  between adjacent SNPs in a block. On the right, the marker 
data used are evenly spaced SNPs that are 0.25 cM apart.                                                 
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inform us whether the data provide enough evidence to 
achieve this localization precision.

  We compared conditional tests with marginal tests 
(Section 3.1). Any marginal test reflects linkage informa-
tion about the entire chromosome. A significant margin-
al test result does not provide specific localization infor-
mation. There are also difficulties in interpreting ex-
treme values of the marginal test statistic (linkage peaks) 
as corresponding to the locations of causal genes. First, in 
the simulation study, we saw that the marginal test statis-
tic curve can have many peaks, not all corresponding to 
causal genes. Second, assuming a single causal gene, 
Cordell  [33]  discussed how sample sizes and the effect of 
the gene can influence the location of a linkage peak. 
Third, with two causal genes, Hauser et al.  [34]  demon-
strated that a linkage peak may not occur at either gene 
position. With the number and effects of the genes un-
known, the linkage peaks will be even less interpretable.

  In contrast, results of the conditional tests are easy to 
interpret and provide specific localization information. 
When a conditional test shows significance, the result in-
dicates there is a causal locus in the specified test region. 
Conditional tests are less powerful than the marginal 
tests performed at the same positions. The relative lack of 
power in conditional tests, however, is a reflection of the 
fact that linkage localization is a more challenging task 
than linkage detection. In practice, we recommend using 
marginal tests to scan for linkage signal and then using 
conditional tests on chromosomes with detected linkage 
signals to extract more specific localization information. 
For linkage detection, a more stringent p value could be 
used.

  Precise gene localization will demand substantially 
more data than linkage detection. The conditional test 
approach enables us to specify the localization precision 
according to the amount of data available. It is possible 

that the conditional tests may not be able to localize genes 
with small effect at the pre-specified localization preci-
sion. In a situation where a strong causal locus is success-
fully detected and then localized to a small region, we can 
perform a further conditional test in a region with no 
previously detected gene to detect additional linkage sig-
nals (Section 2.4). This further conditional test could use 
a wider test region to increase power for detection.

  When the inheritance vectors are latent and cannot be 
fully determined from genetic marker data, we use ran-
domized p values to extend both marginal tests and con-
ditional tests using an MCMC sample of the inheritance 
vectors. This randomized p values summarize both the 
significance and the uncertainly in the test results (Sec-
tion 3.2). Our simulation results show that with highly 
informative marker data, the uncertainty in randomized 
p values for both marginal and conditional tests is small 
and these tests can still reveal useful linkage and localiza-
tion information.

  In the simulation studies, we used the  w -score as the 
test statistic. Other test statistics can be used in our mar-
ginal or conditional tests. The qualitative behavior of the 
marginal and conditional tests will not depend on the test 
statistic used. The comparison between the  w -scores and 
the variance component LOD scores confirms this (Sec-
tion 3.1). It will be of practical interest to know the relative 
power resulted from different test statistics. In future 
work, we will systematically compare w-scores with oth-
er possible test statistics.
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