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Abstract
In vivo microcirculatory imaging facilitates the fundamental understanding of many major diseases.
However, existing techniques generally require invasive procedures or exogenous contrast agents,
which perturb the intrinsic physiology of the microcirculation. Here, we report on optical-resolution
photoacoustic microscopy (OR-PAM) for noninvasive label-free microcirculatory imaging at
cellular levels. For the first time, OR-PAM demonstrates quantification of hemoglobin concentration
and oxygenation in single microvessels down to capillaries. Using this technique, we imaged several
important yet elusive microhemodynamic activities—including vasomotion and vasodilation—in
small animals in vivo. OR-PAM enables functional volumetric imaging of the intact microcirculation,
thereby providing greatly improved accuracy and versatility for broad biological and clinical
applications.

1. Introduction
The microcirculation plays a central role in the regulation of the metabolic, hemodynamic and
thermal state of the individual [1]. Many major diseases [2-8] are manifest in the
microcirculation before they are clinically evident, which provides a potential early perspective
on the origin and progression of such diseases. However, established clinical imaging
modalities such as computed tomography (CT), magnetic resonance imaging (MRI), positron
emission tomography (PET), and ultrasonography lack the resolution needed for microvascular
imaging [9]. Even with iodine contrast, x-ray imaging cannot image single capillaries. Thus,
optical microscopy has been widely used to assess the cellular and molecular features of the
microcirculation. Intravital microscopy (IVM), for example, is the gold standard for
microcirculation studies. It allows quantification of vessel count, diameter, length, density,
permeability, and blood flow velocity. Nevertheless, to observe capillaries in vivo, IVM
generally requires trans-illumination and surgical preparation [10], restricting its application
to limited anatomical sites and interfering with the intrinsic microcirculatory function.
Additionally, conventional IVM lacks depth resolution that is crucial for extracting the three-
dimensional (3D) microvascular morphology. Confocal microscopy [11] and two-photon
microscopy [12], noninvasive and possessing excellent depth-sectioning capability, have
difficulty in detecting microvessels without exogenous fluorescent agents, which, although
having greatly facilitated laboratory research, are still facing challenges in clinical translations
[13]. Orthogonal polarization spectral (OPS) imaging permits noninvasive microvascular
imaging without the use of fluorescent dyes [14], paving its way to the bedside. However, OPS
provides no depth information and lacks the measurement consistency [15] required for
longitudinal studies.
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To overcome these difficulties, we have developed optical-resolution photoacoustic
microscopy (OR-PAM), a noninvasive volumetric microscopy technology capable of detecting
the physiologically specific absorption signatures of endogenous chromophores, such as
hemoglobin, in vivo. The ability to introduce hemoglobin absorption contrast into the optical-
resolution microscopy regime leads to an extremely versatile technique for microcirculation
studies, without the limitations of fluorescent labeling and invasiveness. Besides the
morphological parameters, such as vessel count, diameter, and length, OR-PAM also validates
the quantification of important functional parameters, including total hemoglobin
concentration (HbT) and hemoglobin oxygen saturation (sO2) [16,17] down to the capillary
level. Multiple attractive features make OR-PAM a valuable tool for microcirculation studies
(Table 1), which is demonstrated below by noninvasively monitoring microhemodynamic
activities in vivo.

2. Methods
Our OR-PAM system employs nearly diffraction-limited optical focusing with bright field
illumination to achieve 5-μm lateral resolution. The axial resolution is calculated to be ∼15
μm, based on the transducer bandwidth and the speed of sound in tissue. The cross-sectional
scanning (B-scan) rate over a 1-mm distance is ∼1 frame per second. The detailed system
design is described in [18]. Through time-resolved ultrasonic detection and two-dimensional
raster scanning along the transverse plane, the OR-PAM system records the complete 3D
microvasculature of the tissue, which can be viewed in direct volumetric rendering (Media 1)
or maximum amplitude projection (MAP) image (Fig. 1). All experimental animal procedures
were carried out in conformance with the laboratory animal protocol approved by the School
of Medicine Animal Studies Committee of Washington University in St. Louis.

3. Results and discussion
Vasodilation, an important vessel activity in regulating tissue oxygen delivery, refers to an
increase in vessel diameter. In contrast, vasomotion is a periodic oscillation of the vessel
diameter and is not a consequence of the heart beat, respiration, or neuronal input [19].
Substantive experimental work has suggested that vasomotion might serve as a protective
mechanism under conditions of ischemia and be an important indicator of cardiovascular events
[20], but its physiological role and the underlying mechanism remain elusive [21].

To explore vasomotion and vasodilation in response to tissue oxygen variation, first we selected
a 1-mm-by-1-mm region in a nude mouse ear. Structural and sO2 images (Fig. 2) were acquired
by a dual-wavelength measurement under systemic normoxia. According to the sO2 value, we
selected an arteriole-venule pair (A1 and V1 in Fig. 2b), which were almost perpendicular to
the B-scan direction (marked by the yellow dashed line in Fig. 2b). In this case, the B-scan
image delineates the actual vessel cross section.

Then, we repeated the selected B-scan continuously for seventy minutes, during which the
physiological state of the animal was switched between systemic hyperoxia and hypoxia
(indicated by the red and blue time segments, respectively, in Figs. 3a-c) by alternating the
inspired gas between pure oxygen and hypoxic gas (5% O2, 5% CO2 and 90% N2). Vasomotion
and vasodilation were clearly exhibited by the diameter oscillation and expansion of the vessel
cross section, respectively, in response to the changes in the physiological state (Figs. 3a, b).
To provide quantitative analysis, we estimated the vessel diameter by calculating the full width
at half maximum (FWHM) value of the blood vessel signal in each B-scan. The time course
of the arteriolar diameter change (Fig. 3c and Media 2) and the corresponding Fourier transform
analysis (Fig. 3d) show that arteriole A1 had a significant vasomotion under hyperoxia, with
an oscillation frequency of ∼1.6 cycles-per-min (cpm), which is in good agreement with the
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observation from a previous invasive study [22]. Compared with arteriole A1, venule V1 had
a much weaker vasomotion with a similar oscillation frequency (Figs. 3c, e). To isolate the
vasodilation effect, we smoothed out the diameter oscillation due to vasomotion by 60-point
moving averaging (Fig. 3c). The smoothed curve clearly suggests a significant increase of 96
±3% in the arteriolar diameter under hypoxia, whereas the change in the venous diameter is as
small as 26±5%. Our results, again, are in good agreement with recent work done by scanning
laser ophthalmoscopy with the aid of fluorescent particles [23]. The temporal resolution
provided by OR-PAM also enabled us to estimate the 10-90% full-scale response time of
vasodilation to systemic hypoxia to be ∼3 minutes.

4. Perspectives
In future studies, quantification of the local metabolic rate of oxygen consumption would be
an exciting extension [24]. To this end, we need to measure the vessel diameter, blood
oxygenation, and blood flow. The first two parameters are currently measurable with OR-PAM,
and the photoacoustic Doppler (PAD) technique has been suggested for blood flow
measurement in the microcirculation [25]. One of our future directions is to integrate PAD
flow measurement into the OR-PAM system to assess the local metabolic rate at a microscopic
level.

Another interesting direction is to combine OR-PAM with other high-resolution imaging tools,
such as confocal microscopy and two-photon microscopy, for multi-modality imaging. The
fruitful cellular and molecular information provided by them, based on scattering or
fluorescence contrast, will be highly complementary.
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Fig. 1.
A representative microvascular network in a nude mouse ear imaged in vivo by OR-PAM. (a)
MAP image. (b) 3D morphology (Media 1).
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Fig. 2.
Structural and functional microvascular imaging by OR-PAM in a nude mouse ear in vivo. (a)
Structural image acquired at 570 nm. (b) Vessel-by-vessel sO2 mapping based on dual-
wavelength (570 nm and 578 nm) measurements. The calculated sO2 values are shown in the
color bar. PA: photoacoustic signal amplitude. A1: a representative arteriole; V1: a
representative venule. Yellow dashed line: the B-scan position for Fig. 3.
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Fig. 3.
Vasomotion and vasodilation in response to switching the physiological state between systemic
hyperoxia and hypoxia. (a) B-scan monitoring of the changes in the cross section of arteriole
A1 (Media 2). (b) B-scan monitoring of the changes in the cross section of venule V1. (c)
Changes in arteriolar and venous diameters in response to changes in physiological state (raw
data were smoothed via 60-point moving averaging to isolate the effect of vasodilation). (d)
Power spectrum of the arteriolar vasomotion tone. (e) Power spectrum of the venous
vasomotion tone.
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