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Visual crowding is a breakdown in object identification that occurs
in cluttered scenes, a process that represents the principle restric-
tion on visual performance in the periphery. When crowded
objects are presented experimentally, a key finding is that observ-
ers frequently report nearby flanking items instead of the target.
This observation has led to the proposal that crowding reflects
increased noise in the positional code for objects; although how
the presence of nearby objects might disrupt positional encoding
remains unclear. We quantified this disruption using cross-like
stimuli, where observers judged whether the horizontal target line
was positioned above or below the stimulus midpoint. Overall,
observers were poorer at judging position in the presence of
crowding flankers. However, offsetting horizontal lines in the
flankers also led observers to report that the horizontal line in the
target was shifted in the same direction, an effect that held for
subthreshold flanker offsets. In short, crowding induced both
random and systematic errors in observers’ judgment of position,
with or without the detection of flanker structure. Computational
modeling reveals that perceived position in the presence of flank-
ers follows a weighted average of noisy target- and flanker-line
positions, rather than a substitution of flanker-features into the
target, as has been proposed previously. Together, our results
suggest that crowding is a preattentive process that uses averag-
ing to regularize the noisy representation of position in the
periphery.

peripheral visual field � texture recognition � context � lateral interaction

When multiple objects are presented in close proximity,
their identities can become obscured through a process

known as crowding (1, 2). This impairment in identification
occurs across a wide range of visual modalities (3–6) and
increases in magnitude when target items are presented periph-
erally, making crowding the principle restriction on our repre-
sentation of the peripheral visual field (7–9). Although a range
of theories have been proposed to explain crowding (reviewed
recently in ref. 8), there is little consensus regarding their
plausibility, and a scarcity of computational models that can
account for the effects of crowding with complex stimuli such as
letters.

One of the most striking features of crowding is that observers’
identification errors frequently arise from them reporting the
identity of a flanking item instead of the target (10–14). Such
errors are particularly apparent with multifeature stimuli such as
letters (15), where the subjective experience of crowding is that
features from each object become ‘‘jumbled’’ (9). This observa-
tion has led to the proposal that crowding results from noise in
the encoding of position, leading to an intermixing of either the
feature positions within each object (12, 16), or the gross position
of objects as a whole (14, 17). These proposals are supported by
the correlation between the magnitude of crowding—which
increases as objects move further into the peripheral visual field
(1)—and the decline in position encoding in the periphery
(18–20). Similarly, errors for both absolute judgments of position
(21) and saccades to eccentric targets (22) exhibit the same
asymmetric pattern as crowding (23, 24), with greater errors

along the radial axis from fixation than along the tangential (i.e.,
orthogonal) axis. It follows that the intermixing of target and
flanker features under crowding could simply be the result of the
positional uncertainty inherent to peripheral vision.

However, despite the apparent relationship between posi-
tional uncertainty and crowding, the precise effect of crowding
on the perceived position of objects and their features remains
unclear. Although crowding has been shown to affect judgments
of relative position in vernier tasks, with thresholds rising sharply
in the presence of additional f lanking lines (25, 26), vernier
acuity also relies upon luminance contrast and orientation
information (27, 28), making it unclear whether poor perfor-
mance reflects positional uncertainty per se. The range and
selectivity of these interactions also differs from patterns estab-
lished with crowding in other domains (9), suggesting that the
effects on vernier acuity may arise from processes more akin to
masking than crowding. The aim of the present study was thus
to directly examine the influence of crowding on the perceived
position of object features.

Of the many theories proposed to explain crowding, 2 clear
predictions emerge for the effect of crowding on position
encoding. First, the disproportionate amount of flanker-related
errors (10–14) suggests that crowding arises from the features of
flankers (or flankers in their entirety) being substituted into the
target. This substitution has been attributed to both low-level
processes such as positional uncertainty (12, 13, 16, 17), and
higher-order operations such as unfocused spatial attention (10),
a distinction that follows a more general debate regarding the
locus of crowding (8). A second prediction emerges from the
view that crowding is a preattentive and compulsory averaging
of target and flanker features. For example, crowded Gabor
elements can contribute to a global estimate of orientation (29),
although the exact combination of elements may follow more
directed pooling schemes according to the modality involved (5,
30). Were this model to apply in the positional domain, the
position of target and flanking objects would be averaged, an
effect that may serve to simplify the appearance of noisy
positional structure in the periphery.

To examine the influence of crowding on position encoding
and so distinguish between ‘‘averaging’’ and ‘‘substitution’’ hy-
potheses, observers were presented with cross-like stimuli, and
judged whether the horizontal target line was above or below the
stimulus midpoint (see Methods and Fig. 1A). Stimuli were
‘‘letter-like’’ in that they were multifeatured and had proportions
equivalent to those of Sloan letters. An additional experiment
required observers to make a continuous (i.e., nondiscrete)
estimate of the position of target features, allowing a more
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detailed comparison of the predictions of averaging and substi-
tution models to human performance.

Results
In the absence of flankers, observers’ judgments of the position
of a horizontal target line (above or below the midpoint of a
cross-like element; Fig. 1 A) were unbiased, that is, their reports
were symmetrically distributed around the stimulus midpoint
(Fig. 1B, black curve). When 2 flankers were present, each with
horizontal lines positioned at the midpoint (midflankers), psy-
chometric functions become shallower (Fig. 1B, pale-gray
curve), indicating that larger shifts were needed to report the
position of the target-horizontal reliably (i.e., position discrim-
ination thresholds were elevated). The midpoint of functions
remained unchanged (i.e., centered target-horizontals still ap-
peared centered when crowded). Shallow functions are also
evident in conditions where flanking features were displaced
above or below the midpoint (up- and down-flankers, red and
blue curves in Fig. 1B, respectively) by a threshold-level dis-
placement (i.e., a positional shift that was just noticeable for
uncrowded elements). Furthermore, up-flankers also shift the
entire curve leftward (indicating more ‘up’ responses), which
results in a negative midpoint value as the subjective midpoint

(where observers were equally likely to say ‘up’ or ‘down’) is now
located at a negative (downward) position on the cross. The
opposite pattern occurred with down-flankers, where an in-
creased probability of ‘down’ responses results in a rightward
shift of the psychometric function.

These midpoint/bias values are plotted in Fig. 1C, highlighting
the finding that flankers with both subthreshold- and threshold-
level displacements below the stimulus midpoint produced an
increase in ‘downward’ responses, and a corresponding positive
shift in bias. This result demonstrates that judgments were
increasingly made in a direction consistent with flanking struc-
ture, which is also true of the up-flanker conditions, where
negative bias is evident for both displacements. Additionally, the
bias induced by subthreshold feature displacements (0.5�
threshold) demonstrates that crowding can alter position encod-
ing even when the flankers are difficult to distinguish from those
that do not produce bias (i.e., midflankers). That is, although
offsets in the subthreshold flanking-horizontals could be cor-
rectly identified as offset from the midpoint at only 13.3% above
chance (based on uncrowded performance, making the actual
percentage lower because of the crowding of flankers by the
target; 31), they nonetheless produced a significant level of bias
in observers’ responses to the crowded target. Importantly, the

Fig. 1. The effects of crowding on position encoding. (A) Example stimuli, with the middle target-cross depicted with the horizontal line centered along the
vertical axis. Flankers on the left have horizontal lines positioned above the midpoint (up-flankers), with the converse down-flankers on the right. The effect
of crowding can be seen by fixating near the bottom of the figure caption: Target-horizontals should appear shifted toward the flanker-horizontals. (B) Data
from 1 observer, with the proportion of ‘upward’ responses plotted as a function of the vertical position of the target-horizontal (shown schematically on the
abscissa), and fit with psychometric functions. 95% confidence intervals are depicted around the midpoints, obtained from bootstrapping. Data are presented
for targets in isolation (uncrowded), and crowded conditions with midflankers and up- and down-flankers offset by threshold-level displacements. Crowding
both increases the slope and shifts psychometric functions to a degree that depends on flanking structure. (C) Midpoints of the psychometric functions (bias)
for 3 observers in each condition, expressed as a proportion of stimulus size (scaled to � 1) and plotted as a function of the vertical position of flanker-horizontals
(expressed in multiples of the uncrowded threshold for position discrimination). Mean data are presented as gray bars, with individual points superimposed; error
bars (and hatched lines for uncrowded data) depict 95% confidence intervals. Positive shifts in flanker feature positions (even subthreshold ones) produce
negative shifts in bias, indicating an increase in ‘upward’ responses with up-flankers, and vice versa. (D) As in 1C for threshold elevation. The presence of flankers
produced a strong elevation of positional thresholds, regardless of their structure.
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more commonly observed effects of crowding are also apparent
in our data, with all configurations producing an equivalent level
of threshold elevation (Fig. 1D). These effects were also appar-
ent when observers judged the position of the vertical line
(left/right), albeit with less induced bias and higher threshold
elevation (supporting information and Fig. S1), which rules out
the possibility that our results were caused by observers inap-
propriately using the flanker-horizontals as a coaligned refer-
ence. The effect of crowding on midpoints and thresholds also
declined with increasing target-f lanker separation according to
the ‘Bouma law’ of spatial extent (1, 9), with interference zones
of 4–6° (0.3–0.4� eccentricity; Fig. S2). This similarity in spatial
extent is consistent with both effects arising from a common
source related to crowding. In sum, our data show that the
crowding of positional information involves both an elevation in
thresholds for position discrimination and a systematic bias that
shifts the position of target elements to resemble flanking
features.

We next sought to determine the precise mechanism under-
lying these effects. As detailed above, 2 predictions can be made
for the encoding of position under crowded conditions. First,
substitution processes would result in either the features of
flanking items, or flankers in their entirety, being substituted
into the target (10, 12, 16) so that the perceived position of target
features should alternate between the veridical location and that
of the flanking elements, producing a bimodal distribution of
perceived feature positions. Second, were averaging (29) to apply
in the positional domain, the perceived position of target fea-
tures should lie at the average of target and flanker feature
positions. Although more complex averaging schemes could
alter the precise weights assigned to target and flanker positions
(5, 30), the perceived target positions should nonetheless show
a unimodal distribution centered on an intermediate value. As
both models could produce the bias in Fig. 1 (Fig. S3), a more
precise examination of perceived feature positions is required to
differentiate between these accounts.

In Experiment 2, the horizontal target line was again pre-
sented at a range of positions, although flanker-horizontals were
now positioned relative to the target (when crowded), either above
or below the target line at either 2 or 4 times the threshold for
positional discrimination. This procedure allowed a continuous
range of both target and flanker positions, reducing the likeli-
hood that observers would preferentially indicate particular
feature positions (as they might were specific positions more
likely to be present). Following each trial, a response cross-
element appeared near fixation and observers adjusted the
horizontal-line position until it matched their percept of the
target. Results are presented in Fig. 2A, pooled across observers.
With single targets (Left), the perceived position of the hori-
zontal feature was largely veridical (lying along the white line),
although responses are clearly repelled away from the stimulus
midpoint to more extreme positions (i.e., observers rarely re-
ported the target as a ‘�’). This midpoint repulsion appears
similar to subjects’ general reluctance to report the reference in
discrimination tasks (31, 32). In our experiment, the stimulus
centroid (33, 34) is likely to have served as the reference.
Importantly, because this repulsion occurs with uncrowded
elements, it cannot be explained by decision processes such as the
‘signed-max’ rule that depend on stimulus set size (35), nor can
it explain the effects of crowding. In the presence of flankers
(Center and Right of Fig. 2 A), responses were pulled toward that
of the flanking features. Because the results were identical for
both up-flankers and down-flankers, the latter results were
inverted and pooled with those of the up-flankers to compute the
data in Fig. 2 A. With a small offset in flanking features (Center),
responses fell both on and between the flanking and target
positions, whereas with large offsets (Right) these responses
clearly lie between the target and flanker positions. The latter is

consistent with observers relying on the average of the target and
flanker feature positions, as opposed to the probabilistic sub-
stitution of flanker features. However, because of the effects of
positional uncertainty and midpoint repulsion, we also sought to
test this proposition formally using simulation.

The predictions of averaging and substitution models of
crowding were compared using a 3-stage model of each process
(depicted in Fig. 2B, see Methods). Both began by registering
feature positions with added positional noise, reflecting raised
positional uncertainty in the periphery (18–20). This stage was
unaffected by crowding, consistent with the invariance of con-
trast-detection thresholds for crowded stimuli (9, 36). The
second stage involved the computation of either a weighted
average of target and flanker positions or a probabilistic sub-
stitution of flanker features into the target. Both the strength of
weighting and the probability of substitution were free to vary.
Finally, crowded target-position estimates were pushed away
from the midpoint to simulate the observed midpoint repulsion.
For each model, the best-fitting parameters were selected as
those that minimized the least-squares error between the pre-
dicted responses and those plotted in Fig. 2 A.

These simulated responses for both averaging and substitution
are plotted in Fig. 2C. In the absence of flankers (Left), both
models correctly predict a percept of the targets that is close to
veridical, albeit subject to positional uncertainty and repulsion
away from the stimulus midpoint. Under crowded conditions, the
averaging model produces estimates that initially lie on a line
running parallel between the target and flanker positions (see
Fig. S4), with the final-stage repulsion then pushing these
responses away from the midpoint. With a small feature offset
(Center), the final predicted responses lie along the target and
flanker lines, because of the repulsion of the averaged values.
Larger offsets (Right) produce responses that are intermediate
between the target and flanking positions, closely replicating the
pattern in our data. By contrast, predictions from the substitu-
tion model were initially distributed bimodally between the
target and flanker positions, before the midpoint repulsion in the
final stage. Although this process produces a pattern that
approximates our data with small f lanker offsets (Center), the
predicted values for large flanker offsets (Right) fall at consid-
erably more extreme positions than those perceived by our
observers. Substitution is thus inconsistent with the data in this
condition, in comparison with the close match produced by a
weighted average of the noisy target- and flanker-feature
positions.

It is important to note that neither of these models adds any
noise in the second (crowding) stage, each adding only bias from
the flanking features. Indeed, the addition of a second noise
parameter to these simulations did not produce a significant
improvement in the predicted responses (see Methods). At first
glance, this lack of additional noise would appear to conflict with
our finding that crowding induces both bias and an elevation of
thresholds (Fig. 1). However, model simulations of Experiment
1 demonstrate that threshold elevation does arise from the
combination of a noisy representation of the target position with
an equally noisy representation of the flanker feature positions
(see Fig. S3). An averaging of target and flanker positions can
thus account for both the bias and the threshold elevation
observed in the perceived position of crowded target features.

Discussion
We have demonstrated that crowding has 2 main effects on the
perceived position of object features. First, crowding elevates
thresholds for the discrimination of feature positions, consistent
with the performance impairments seen for vernier acuity (25,
26) and across a range of other modalities (3–6). Second,
crowding produces a systematic shift in the perceived position of
object features, bringing them into alignment with those of
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f lanking objects. When the perceived position of these crowded
features was examined, in conjunction with computational mod-
eling of these processes, the observed responses were predicted
by a weighted average of position estimates, as opposed to the
substitution processes more commonly discussed in the posi-
tional domain. This finding is broadly consistent with the aver-
aging observed when oriented Gabor elements are crowded (29),
although the weights incorporated into our averaging model can
also account for the modulatory effects of target-f lanker simi-
larity (4, 9) and target-f lanker separation (23). The necessary
inclusion of midpoint repulsion in our model is also consistent
with prior research suggesting that a simple averaging approach
is unlikely to completely encapsulate crowding in other domains
(5, 30).

Although substitution processes are typically invoked to ex-
plain phenomena such as the high proportion of flanker-related
errors in crowding tasks (10–14), an averaging of feature posi-
tions between target and flanker objects would also give rise to
these effects. This outcome is particularly likely given the
nonlinear weighting in our model that can produce effects akin
to substitution with an extreme weighting toward the flankers.
These simulations also demonstrate the difficulty in separating

predictions from averaging and substitution models, with the
combination of midpoint repulsion and high positional uncer-
tainty producing identical predictions in the presence of flankers
that differ from targets by small positional offsets. Both models
made identical predictions for the results of Experiment 1,
demonstrating that both a fine response scale and large posi-
tional offsets are required to disambiguate averaging and sub-
stitution accounts of crowding. This procedural issue could
explain the lack of averaging observed with oriented Gabor
stimuli using a coarse response scale (31), which would make the
presence of near-averaged stimuli difficult to determine. It is
only with large positional offsets and a fine response scale that
the predictions from the substitution model can be shown to be
untenable.

Importantly, neither of the models examined added any noise
to the operations associated with crowding, each adding only bias
from the flanking features on any given trial. Both the systematic
bias and random effects associated with crowding could thus be
attributed to the combination of a noisy representation of the
target feature position with noisily represented flanker feature
positions. In other words, the deleterious effects of crowding on
position encoding can be accounted for by simple recourse to the

Fig. 2. The perceived position of horizontal line components in our stimuli, alongside model simulations. (A) Data for the perceived position task, plotted
according to the presented position on the x axis and the perceived position on the y axis (as indicated schematically). The frequency of each response is shown
using the associated color map. White lines in each plot indicate veridical target reports, with relevant flanker positions shown as a gray line. Data are shown
for uncrowded stimuli (Left), and for crowded conditions with small (Center) and large (Right) positional offsets in the flanker-horizontals. Data have been
pooled to be consistent with ‘‘up-flankers’’, with a schematic in the Right depicting the effects of crowding on perceived target position: the perceived position
of target features is pulled toward that of the flankers. Averaging processes are most evident with large flanker offsets, where perceived positions cluster around
values in-between the presented target positions and those of the flankers. (B) Two models of crowding. Both share an identical first stage, where the positions
of target and flanker features (if present) are corrupted by Gaussian positional uncertainty (red distributions). In the averaging model, a second stage consists
of a weighted average of target and flanker positions, although the substitution model involved a probabilistic switching between target and flanker positions.
Both models converge on an identical final stage, where positional estimates are subject to midpoint repulsion. The 3 free parameters for each model are
indicated in red. (C) Simulated responses from the 2 models, depicted in an identical fashion to those in panel A. Responses of the averaging model closely
approximate those of our observers in all conditions, while the substitution model predicts perceived positions with large flanker offsets that are considerably
more extreme than those reported.
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inherent positional uncertainty in the peripheral visual field
(18–20). This aspect of our model is similar to a recent model of
feature binding (37), where the high positional noise in the
periphery causes target features to be erroneously associated
with adjacent elements within coarse feature maps. Additionally,
because there are also intrinsic levels of uncertainty in other
domains affected by crowding (3–6), such as orientation (38) and
direction (39), our model raises the intriguing possibility that
crowding could involve the averaging of features across all
affected modalities, as opposed to the addition of noise sug-
gested by the historic focus on error rates in crowding tasks.

As a whole, our results are most consistent with a preattentive
basis for crowding. The observation that crowding can occur with
flanker offsets below the threshold for positional discrimination
(Fig. 1) in particular suggests that crowding does not require an
awareness of flanking structure. Although we cannot rule out the
possibility that this bias arose from the veridical f lanker dis-
placements reaching awareness on a small proportion of trials
(e.g., 40), the nature of this bias is also inconsistent with the
mechanisms typically proposed to link attention with crowding.
Attentional theories proposing that crowding causes the loss of
target identities from awareness (41) would predict random
responses (i.e., threshold elevation; 42) without a bias toward
flanker identities, whereas theories with an unfocused atten-
tional spotlight that causes the substitution of flankers for the
target (10, 11) would follow the failed predictions of our
substitution model (Fig. 2). It is nonetheless conceivable that the
attentional spotlight could perform a local averaging of crowded
elements, and the observed averaging of feature positions could
thus be attributed to either low-level or attention-based
mechanisms.

Finally, the averaging processes observed in the present study
appear remarkably similar to processes of contour integration
(43), whereby spatially distinct elements are grouped into ex-
tended edges. In our stimuli in particular, averaging would have
the effect of pulling the position of all feature elements in line
with extended contours, consistent with a recent suggestion that
crowding may underlie many reported phenomena in contour
integration (44), including the insensitivity to curved contour
structure in the periphery (45). The strong bias induced by
collinear (Fig. 1C) compared with parallel features (Fig. S1) is
also consistent with the tuning of contour integration for ‘snakes’
vs. ‘ladders’ (43). These interactions are likely to serve a bene-
ficial role, with pooling along contours able to relieve the
positional uncertainty inherent in the peripheral visual field (18).
This finding raises the possibility that crowding processes may
actively simplify image representation in the peripheral visual
field by generating extended contours in an attempt to overcome
both the low spatial sampling and high positional uncertainty
within these regions.

Materials and Methods
Observers. Two of the authors (J.A.G. and S.C.D.) and 1 naïve observer (D.K.)
participated in each experiment. All had normal or corrected-to-normal visual
acuity.

Apparatus. Experiments were programmed using MATLAB (MathWorks, Ltd.)
running on a Macintosh computer with PsychToolbox software (46). Stimuli
were presented on a CRT monitor (LaCie Electron Blue) (22), with a resolution
of 1152 � 870 pixels and a 75-Hz refresh rate. The monitor was calibrated using
a photometer and linearized in software, giving a mean and maximum
luminance of 50 and 100 cd/m2, respectively. Stimuli were viewed with the
dominant eye from 57 cm, with responses made using the keyboard (Experi-
ment 1) or mouse (Experiment 2).

Stimuli and Procedures. Stimuli were white ‘cross-like’ elements (50% Weber
contrast above mean luminance; Fig. 1A), with a stroke width equal to one-fifth
the line length (equivalent to Sloan letters) and a total size set to twice the
size-acuity thresholds for each observer. Targets were presented at 15 ° eccen-

tricity in theuppervisualfield,witha0.7�0.7 °crosspresentedatfixation.Under
crowded conditions, 1 flanker was presented to the left and 1 to the right of
targets. The centre-to-centre separation of the target and flankers was 2.5 ° in
Experiment 1 [well within the tangential region of interference; (9, 23)], with
additional target-flanker separations tested separately (Fig. S2). Test stimuli were
presentedfor200ms, followedbyadense20 °�5 °maskingarrayof cross stimuli
with randomized feature positions for a further 200 ms.

Size-acuity thresholds were first estimated by having subjects judge the ori-
entation (4AFC) of a cross-element configured to resemble a ‘T’ in 1 of 4 cardinal
orientations. Stimulus size was determined using QUEST (47), which converged
on 62.5% identification. This procedure was repeated 5 times for each observer,
with the mean of these thresholds being 0.8 ° for both JAG and SCD, and 0.75 °
for DK. Stimuli were subsequently presented at twice these sizes.

Next, baseline thresholds for position discrimination were measured using
a single cross. The x-position of the vertical line was fixed at the midpoint of
the horizontal line (as in upright/inverted Ts), with the horizontal line of
targets presented at 1 of 17 positions along the vertical line. Observers judged
whether the presented position was above or below the stimulus midpoint
(2AFC). Each position was repeated 10 times, with 5 blocks run according to
the method of constant stimuli. Raw data were fit with cumulative Gaussian
functions to determine the midpoint (50% upward) and threshold (75%
upward) for each run. Thresholds for uncrowded position displacements were
0.14 ° for DK and SCD, and 0.18 ° for JAG. Midpoints did not differ significantly
from 0, indicating a lack of bias in unflanked judgments of position.

To assess the effect of crowding on position encoding (Experiment 1),
judgments of the vertical position of the horizontal line were made in the
presence of 2 flanking elements. The horizontal lines of flankers were pre-
sented at 1 of 5 positions: the vertical midpoint of the stimulus (midflankers),
and above or below the midpoint with either threshold or half-threshold
displacements (up-flankers and down-flankers, respectively, using the un-
crowded position thresholds obtained earlier). Unflanked thresholds were
monitored throughout the experiment (allowing calculation of the frequency
that subthreshold flanker displacements were likely to have been detected),
resulting in 6 interleaved conditions. As before, the horizontal target line
appeared at each position 10 times, with each block repeated 5 times. Data
were again fit with cumulative Gaussian functions, with 95% confidence
intervals determined for midpoints and thresholds using 1,000 repetitions of
a bootstrap.

To determine the perceived position of target features (Experiment 2), hori-
zontal target lines were again presented at a range of positions along the vertical
line, either in isolation or crowded. Parameters in this experiment were equated
across observers, with both positional displacements and stimulus size set to the
maximum values of Experiment 1 (0.18 ° and 1.6 °, respectively) and the target-
flanker separation decreased to 1.75 ° to maximize crowding. Under crowded
conditions, flanking horizontal lines were positioned either above or below the
target position by a small (2� threshold, 0.36 °) or large (4� threshold, 0.72 °)
displacement. To avoid positions exceeding stimulus dimensions, target positions
varied between � 0.4 ° of the stimulus midpoint in uncrowded and small flanker-
offsetconditions,orwerefocused ineithertheupperor lowerhalfof thestimulus
(again spanning 0.8 °) with large flanker offsets, depending on the sign of offset.
Following the mask, a response cross (identical to experimental stimuli) was
presented 2 ° above fixation. Using the mouse, observers adjusted the horizontal
line (initially randomly positioned) until it matched their percept of the target.
Each run contained 3 presentations of each target position, with 21 positions per
condition; 5 repetitions of each run were undertaken. Responses were smoothed
with a Gaussian filter (� � 1 pixel/0.04°, the difference between each presented
position). As responses to upward and downward flankers were mirror images of
one another, the latter were inverted and both were pooled. Data were also
pooled across observers, as all showed an identical pattern of performance.

Model Simulations. Predicted perceived positions (Experiment 2) were simu-
lated using 2 versions of a 3-stage model, 1 employing a weighted average of
target/flanker positions and the other a substitution of flanker features (both
depicted in Fig. 2B). Each had 3 free parameters. The first and third stages were
identical for each model. The first stage consisted of noisy estimates of flanker
and target positions:

y � s � a�e [1]

where s could represent st (the target-horizontal position), or sf1 and sf2

(flanker-horizontal positions), �e represents the Gaussian positional error and
a is a free parameter—the magnitude of this error. Feature positions and
Gaussian noise were clipped between � 1, corresponding to the upper and
lower extremes of the stimuli. When flankers were present, a second combi-
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natorial stage was used, which could take 2 forms. In the weighted average
model, combinations of the stimuli (yc) were:

yc �
�ytwt � yf1wf1 � yf2wf2�

�wt � wf1 � wf2�
[2a]

where wt, wf1 and wf2 are the weights for the target and flankers, respectively.
These weights summed to 1, with the proportion of the target weight as the
second free parameter. The result is an average of the target and flanker
positions that can be biased toward or away from the target representation.
In contrast, substitution was produced using a conditional probability:

if �psubyf � �1 � psub�yt� then �yc � yf� else �yc � yt� [2b]

Here, psub is the probability of flanker substitution, which is the second free
parameter for the substitution model. Multiplication of this value with the
strength of the target and flankers (i.e., their distance from the stimulus
midpoint) determined the final report. The output of these 2 stages is shown
in isolation in Fig. S4. Finally, the output of both models underwent reference
repulsion: an inverse parabolic function pushed the estimated target position

away from the stimulus midpoint. This equation produced our final estimate
of target position (yfinal):

yfinal � yc � r�1 � yc�
2 � �d [3]

Here, r is the magnitude of reference repulsion, the third free parameter.
Additional decisional noise (�d) was also introduced that was not parameter-
ized, as it does not alter the output of the 2 models qualitatively, but was set
to be proportional to the degree of repulsion.

Data obtained in Experiment 2 was used to set the 3 free parameters for
each model (a, r, and either w or psub). The final parameter set minimized the
least-squares error between model predictions (1,000 trials per point) and
psychophysical data. Simulations of the 2AFC data in Experiment 1 were also
produced (Fig. S3). Finally, simulations were run with a fourth parameter,
which set the magnitude of an additional Gaussian error term in the second
stage of both models. The inclusion of this term did not significantly improve
model fits in either case, as determined by the Akaike Information Criterion
(48). Because in both cases the 3-parameter models produced a smaller AIC
than the 4-parameter fits, the inclusion of this second noise term was deemed
unnecessary.
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