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A Novel Approach to High Accuracy of Video-Based Microrheology
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Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611

ABSTRACT Video-based particle tracking monitors the microscopic movement of labeled biomolecules and fluorescent probes
within a complex cellular environment. Information gained from this technique enables us to extract the dynamic behavior of
biomolecules and the local mechanical properties inside the cell from a tracked particle’s mean-square displacement (MSD).
However, MSD measurements are highly susceptible to static error introduced by noise in the image acquisition process that
leads to an incorrect positioning of the particle. Static error can mask the subtle effects from the local microenvironment on
the MSD and potentially generate misleading conclusions about the biophysical properties of cells. An approach that greatly
increases the accuracy of MSD measurements is presented herein by combining experimental data with Monte Carlo simulations
to eliminate the inherent static error. This practical method of static error correction greatly advances particle-tracking techniques.
INTRODUCTION

Video-based particle tracking monitors the real-time motion

of tracer particles. The mean-square displacement (MSD) of

these tracer particles may be used to interpret cellular

biophysical properties, including the diffusivities of lipid

membrane and transmembrane proteins (1,2), intracellular

mechanics (3,4), and the dynamics of chromatin and nuclear

bodies (4–10). However, as more confined spaces are probed

with higher temporal resolution, the ability of particle

tracking to perform with consistent accuracy is diminished

by the inherent measurement error (11,12). For example,

when imaging with a charge-coupled device (CCD) camera,

the noise can fluctuate between individual pixels within

tracking frames causing a positioning error. This error will

be extended as static error to affect the accuracy of MSD

analysis because the MSD is calculated from a particle’s

displacement (12–14).

The characteristics of static error have been previously

discussed from a theoretical perspective (11–13). Webb’s

group (13) investigated the magnitude of positioning error

as a function of the number of detected photons and the

spot size, demonstrating that the most reliable results stem

from brighter, well-defined particles. In their studies,

a formula was derived to calculate the spatial resolution.

This formula enables a quick estimation of the spatial reso-

lution with ~70% accuracy when compared to their own

experimental results from tracking immobilized particles

(13). Later, Savin and Doyle (12) also developed a theoretical

model to describe the static error based on a signal-indepen-

dent Gaussian noise. Their work suggested that more accu-

rate MSDs could be obtained by directly subtracting the

extracted static error from experimental MSD results. These

works approximated the static error in tracking systems,

demonstrating the critical importance of correcting a poten-
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tially significant bias. However, a method to precisely extract

static error from individual experimental systems is not

currently known, and the accuracy of the MSD information

used to decipher the biophysical properties of cellular

systems has thus been limited.

In this article, a new, to our knowledge, approach is devel-

oped to accurately quantify static error. Using a Monte Carlo

approach over a statistically meaningful number of trials, the

standard deviation (the spatial resolution, 3) of the tracked

positions of a static particle in an image was used as a quan-

titative measurement of the static error (23
2) (12–14). In this

way, the dependence of static error on a particle’s signal

intensity, background intensity, radius, and center position

within a pixel was individually quantified. Simulated images

constructed from these controlling parameters were empiri-

cally mapped to experimental images so that the static error

extracted from simulations could be applied to correct the

MSD of actual experiments. An advantage of this strategy

is that it solely relies on experimental outcomes, bypassing

the details of complicated tracking algorithms and the

various hardware specifications of tracking systems

(12,13,15). More importantly, this method significantly

improves the resolution of particle-tracking experiments,

greatly reducing ambiguities and potential errors in the inter-

pretation of experiments.

The effectiveness of this approach was successfully tested

by tracking particles in glycerol. Rheological measurements

using this novel approach compare very well with con-

ventional macroscopic rheological measurements. Creep

compliance measurements of the cytoplasmic region of

serum-starved MC3T3-E1 fibroblasts using this method

revealed a greater degree of free diffusion in a shorter time-

scale than originally observed. Thus, this correction enhances

our capacity to assess accurate MSD and offers a powerful

approach for the significant advancement of particle-tracking

techniques used for the studies of cellular dynamics and

microrheology.

doi: 10.1016/j.bpj.2009.03.029
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MATERIALS AND METHODS

Preparation of glycerol samples with embedded
fluorescent particles

Glycerol samples with suspended 100-nm carboxylated polystyrene fluoro-

phores (Invitrogen, Carlsbad, CA) were made by well mixing at a 1:1000

volume ratio on a center area of a glass bottom dish (MatTek, Ashland,

MA). Slides for tracking immobile particles were prepared by air drying

1:1000 volume ratio 100-nm carboxylated polystyrene fluorophores in

ethanol onto a glass coverslip. The coverslip was mounted onto a glass slide

with a drop of Fluoromount-G (SouthernBiotech, Birmingham, AL) and

allowed to dry for 4 h before being sealed with nail polish.

Microscope and CCD acquisition system

Nikon TE 2000-E inverted microscope equipped with a 60� oil-immersion,

N.A. 1.4 objective lens (Nikon, Melville, NY), and a Cascade 1K camera

(Roper Scientific, Tucson, AZ) were used to acquire the time-course images

of fluorescent particles for each sample. Ultraviolet-visible light from X-Cite

120 PC (EXFO, Mississauga, Ontario, Canada) incorporated with a G-2E/C

filter (528–553:590–630 excitation/emission, Nikon) was used to excite the

particles. Three-by-three binning, which resulted in the increment of pixel

size increasing three times to 390 nm, and region of interest control was

used to increase the frame reading rate to 30 frames per second (fps) and

enhance the signal/noise ratio (SNR) in read pixels. On-chip multiplication

gain functionality of the CCD was activated for effectively reducing the

CCD read noise and enhancing the SNR. Video was captured at 30 fps

over the course of 21.5 s, allowing 1.5 s for the frame rate to stabilize after

initiation and 20 s for a single particle-tracking realization.

Particle-tracking algorithm

Tracking images not only contain the signals from the objects that were

being analyzed, but also the system’s inherent noise and background signals.

To contrast the object signals from the noise and background, the images

needed to be filtered to reduce the noise and to subtract the background.

In this study, a Gaussian kernel filter (15) was selected to process the images.

Many filters are designed for this purpose, such as an Airy disk (2) for the

point-spread function; however, a Gaussian kernel filter is mathematically

more tractable and shows an insignificant difference in practice.

In this study, MSD obtained by three positioning algorithms, centroid,

Gaussian-fitting, and cross-correlation, have been cross-compared for fixed

particles (presumably the MSD is equal to zero). The results suggested that

the position determined by the Gaussian-fitting algorithm possessed the

smallest static error because it generated the lowest MSD values for fixed

particles. Moreover, the Gaussian-fitting algorithm not only yields an esti-

mated particle position but also a peak intensity and radius, which can

further be utilized in our simulation approach for predicting the static error

(see the Monte Carlo simulation section below).

Thereafter, the filtered images were subjected to direct Gaussian curve

fitting, as it had shown that this was the preferred method for particle local-

ization in comparison to the Centroid and cross-correlation methods (14).

Direct Gaussian curve fitting utilizes a least-squares algorithm on the loga-

rithmic two-dimensional Gaussian distribution formula,

log Ipðx; yÞ ¼ log
�
I
0��

�
x � m

0
x

�2þ
�
y� m

0
y

�2

2 � R02a
; (1)

to fit the particle intensity on the filtered images and to locate the particle

position from the local maximum intensity pixel and its adjacent four pixels

(14). In the equation, Ip represents the pixel intensity of an image and the

fitted parameters I0, Ra
0, mx

0, and my
0 represent the particle peak intensity,

particle image radius, and center position of the particle in x and y direction,

respectively.
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Captured videos of fluctuating microspheres were analyzed by custom

particle-tracking routines incorporated into MATLAB (The MathWorks,

Natick, MA). Individual time-averaged MSDs are expressed by the formula,�
Dr2ðtÞ

�
¼
�
½xðt þ tÞ � xðtÞ�2þ ½yðt þ tÞ � yðtÞ�2

�
; (2)

where x(t) and y(t) are the time-dependent coordinates of a nanoparticle in

the x and y directions, t is the elapsed time, t is the time lag, and the brackets

represent time averaging (16).

Extracting the noise amplitude and estimating the
mean signal intensity

Various combined sources of noise can occur in a CCD camera. The domi-

nant varieties of noise are shot noise, readout noise, and background noise

from out-of-focus particles (12,17). Under a uniform light source, each

sensing unit (i.e., a pixel) should receive the same quantity of photons to

be converted to the digital intensity output IP. However, the fixed pattern

noise suggested that each pixel unit inherently possesses an incomparable

random bias in photon measurement (17). The mean signal intensity (IPS)

of the whole image can be estimated from the mean intensity over all pixels

(IP). To eliminate the bias caused by fixed pattern noise, intensity subtraction

between two frames with the same amplitude of illumination power is used.

Therefore, the standard deviation (STD) of pixel intensity (IP) can mathe-

matically represent the noise amplitude (IPN):

IPN ¼
STDðIP1 � IP2Þffiffiffi

2
p : (3)

To estimate the background intensity (IB) from an experimental CCD image

with fluorescent particles present, the same method described in the previous

paragraph was applied but using only the particle-signal-free region instead

of the entire area. The particle signal region was found by looking for

a difference larger than one between two convolved images, i.e., Gaussian

kernel of half width (1 pxl) and Gaussian kernel of consistent size (2w þ 1,

7 pxl) (12). Therefore, the region where the signal difference was <1 was

selected for further background intensity analysis.

Monte Carlo simulation

Gaussian particles were simulated in the central area of a zero-intensity,

31 � 31 pixel zone image. Two-dimensional Gaussian distribution was

used to describe the intensity profile of a simulated Gaussian bead. A

noise-free Gaussian particle (IP) can be expressed as

IPðx; yÞ ¼ I � exp

�
�
ðx � mxÞ

2þ
�
y� my

�2

2 � R2
a

�
þ IB; (4)

where IP(x, y) is the pixel intensity value at the x, y position of an image; I

represents the peak intensity; mx and my are the subpixel location of Gaussian

particle in x and y direction, respectively; and Ra indicates the apparent

radius of particle intensity profile. Further, homogenous background inten-

sity (IB) is added to each pixel to mimic real imaging. The IP intensity array

represents the simulated noise-free image. Based on the experimental noise

extracted from the microscopic tracking system used, the IPN of each pixel is

correlated with its IPS, the individual pixel signal intensity (see Fig. 1 d).

Therefore, simulated images (IMG) that mimic real imaging conditions

can be represented by

IMGðx; yÞ ¼ ½IPðx; yÞ� þ StoNðIPðx; yÞÞ � Rð0; 1Þ: (5)

In the preceding function, StoN represents the empirically measured correla-

tion between IPS and IPN (in the case herein, it is a fourth-order polynomial;

see Fig. 1 c). R(0,1) represents a normally distributed random number with
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FIGURE 1 Mean square displacement (MSD) is corre-

lated to the peak intensity (I0) of microspheres tracked by

a charge-coupled device (CCD) camera. (a) A MSD versus

time lag plot of microspheres (n¼ 47) embedded in glycerol

shows the presence of MSD variation in a homogeneous

aqueous solution (arrowhead). The particle-tracking exper-

iments were conducted at a time resolution of 33 ms with

using 25% of full power of illumination. (b) A logarithm

plot of MSD (t ¼ 33 ms) versus peak intensity of micro-

spheres (n¼ 53) embedded in glycerol under 25% (:)

and 100% (-) power of illumination suggests a relationship

between increasing peak intensity and decreasing MSD

value. The error bar shows the mean and standard deviation

of the MSD (t¼ 33 ms). (c) Digital intensity signal (IPS) and

noise (IPN) values are extracted from uniform light sources:

the head light without a filter (open squares), the head light

with a red filter (þ), and the ultraviolet-visible light with

a red filter at different concentration of rhodamine B-tagged

70 kD Dextran (solid circles). The IPS-IPN relationship is ex-

pressed by a fourth-order polynomial fit. (d) Signal/noise

ratio (SNR) versus digital signal intensity may be deter-

mined by the curve fitting described in panel c to well-esti-

mate the SNR as a function of the digital signal strength

ranging between saturated signal (65,535 arbitrary units

(au)) and dark current (~1500 au).
zero mean and unit variance. Here a Gaussian noise was used to represent the

system noise over the full-intensity spectrum. The noise sources in a pixel of

CCD are mainly dominated by readout and photon shot noise. The noise

intensity histogram of the CCD camera of the experimental system displayed

a Gaussian distribution throughout the entire CCD signal sensing range from

1300 arbitrary units (au) to 65,535 au. The R-squared value from fitting

a Gaussian distribution to the entire spectrum of IPS in the experiment was

always higher than 0.98, suggesting that the use of a Gaussian random

number in the Monte Carlo simulation to represent IPS could be justified.

This is in agreement with previous independent studies, which demonstrated

that the combined noises, including shot noise, dark noise, and readout

noise, show a Gaussian distribution for a high influx of photons (13,17).

The simulated image was further processed through the particle-tracking

algorithm to estimate the simulated particle’s position. Six hundred trials

were tested for each condition to estimate the uncertainty in positioning

and the relative error for this estimation was found to be below 3%. The

position error (3p) is defined as the distance between the true position and

the position estimated by the tracking algorithm. Spatial resolution (3),

and hence static error (232), is estimated from the summation of standard

deviation in the x and y directions.

Rheometer

Conventional rheology studies on the glycerol samples were conducted

using an AR-G2 stress-controlled software-operated rheometer (TA Instru-

ments, New Castle, DE). Glycerol was loaded into a 60-mm cone-and-plate

sampler module (cone angle ¼ 1�). To determine the viscoelastic properties

of a glycerol, the sample was subjected to 0.05% sinusoidal shear strains

with the frequency gradually increasing from 0.01 to 50 Hz (frequency

sweep test) under isothermal conditions (23�C).

Intracellular particle tracking and cytoplasmic
rheology

MC3T3-E1 (Riken Cell Bank, Tokyo, Japan) were cultured in aMEM sup-

plemented with 10% fetal bovine serum (Hyclone, Logan, UT), 100 IU/ml

penicillin, and 100 mg/ml streptomycin and maintained at 37�C in a humid-

ified, 5% CO2 environment. Cells were passed every 3–4 days and seeded

(~1 � 104 cells/ml) onto 10-cm cell culture dishes. Before particle-tracking
experiments, MC3T3-E1 cells were plated on 35-mm cell culture dishes and

subjected to ballistic injection of 100-nm carboxylated polystyrene fluoro-

phores (Invitrogen) using a Biolistic PDS-1000/HE particle-delivery system

(Bio-Rad, Hercules, CA). In the ballistic injection process, nanoparticles

were placed on macrocarriers and allowed to dry for 2 h. Rupture disk

with 1800-psi rupture pressure were used in conjunction with a hepta

adaptor (3). After injection, cells were plated again using aMEM supple-

mented with 5% fetal bovine serum on dishes coated with 20 mg/ml fibro-

nectin (EMD Chemicals, Gibbstown, NJ). Culture medium was replaced

the next day with serum-free aMEM. Cells were serum-starved for 48 h

before the particle-tracking experiments.

After the particle-tracking experiment, the MSD of each probe nanosphere

was directly related to the local creep compliance (18) of the cytoplasm,

G(t), as

GðtÞ ¼ 3pa

2kBT

�
Dr2ðtÞ

�
: (6)

The creep compliance (expressed in units of cm2/dyne, the inverse of

a modulus) describes the local deformation of the cytoplasm induced by

the thermally excited displacements of the nanoparticles. If the cytoplasm

around a nanosphere behaves as fluid-like (e.g., glycerol), then the creep

compliance increases continuously and linearly with time, with a slope

that is inversely proportional to the shear viscosity, G(t) ¼ t/h. If the cyto-

plasm behaves locally as solid-like (e.g., a gel), then the creep compliance

is a constant with a value inversely proportional to the elasticity of the

gel, G(t) ¼ 1/G0. The local frequency-dependent viscoelastic parameters

of the cytoplasm, G0(u) and G00(u) (both expressed in units of dyn/cm2,

a force-per-unit area), were computed in a straightforward manner from

the MSD (4). The elastic modulus, G0, and viscous modulus, G00, describe

the propensity of a complex fluid to resist elastically and to flow under

mechanical stress, respectively.

RESULTS

Light source affects the MSD values

The consistency of a purely homogeneous medium should be

reflected by an identical MSD value for each tracked particle
Biophysical Journal 96(12) 5103–5111
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at any given time lag. This was not observed for glycerol,

which had a distribution of MSDs inconsistent with a homo-

geneous medium, especially at shorter time lags (Fig. 1 a).

Analysis of this discrepancy revealed a correlation between

MSD (t ¼ 33 ms) and the peak intensity for individual

microspheres (Fig. 1 b). Emission outside of the micro-

scope’s focal plane or interference from other randomly

distributed particles obstructing the light path may affect

the light intensity emitted from a microsphere to the photon

detector, causing a distribution of peak intensity within

a sample. Additionally, the digitization of photon signals

by the detector introduces shot noise, and may also involve

other types of noise (17). The presence of this combined

noise could introduce significant bias in image analysis,

making it essential to correct MSD values in particle-tracking

experiments.

Subsequently, it was investigated whether the error

revealed by the variation in MSD directly stems from the

intensity fluctuations of the overall recorded signal. This

was accomplished by extracting the signal and noise infor-

mation from individual pixels throughout the whole image.

Different pixels do not generate purely random noise under

the same projected light due to noise inherent to the measure-

ment device such as dark current variation and fixed pattern

noise (17), which are consistently associated with an indi-

vidual pixel and independent of outside signals. To eliminate

this bias from each pixel, one reference image was set as

a standard, and a successive image with the same illumina-

tion was then subtracted from the reference image (17).

This procedure resulted in an even-weight (one bit of data

per pixel) array with nonbiased random noise. The random

noise had an approximate Gaussian distribution and zero

mean (consistently biased noise and the background inten-

sity are filtered by the reference image subtraction). There-

fore, the intensity of homogeneous light emitted from

a halogen bulb can be determined by the mean pixel intensity

(IPS) for pixels over the whole image, and a distribution

profile of random noise corresponding to the illumination

source can be determined to obtain the mean random noise

intensity (IPN) (see Materials and Methods).

Using the above method, images of water were taken

under a homogeneous field of collimated light from a halogen

bulb, either with or without a 590-nm cut-off (red) filter in the

light path, or with various concentrations of rhodamine

B-labeled dextran with a red filter, to extract the IPS and

the IPN particular to the microscope being used. Using a

CCD camera, a consistent correlation between IPS and IPN

emerged from each of the three different experimental

settings, over the full working range of light intensity

(Fig. 1 c). Therefore, the correlation between IPS and IPN

suggests that a tracking system could possess a digital output

signal dependent noise, which cannot be simply expressed by

only shot noise (IPN ¼ IPS
1/2) (14), Gaussian noise (IPN ¼ N,

where N is a constant) (12), nor a combination of both

(IPN ¼ IPS
1/2 þ N) (13).
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Consequently, this information was used to effectively

estimate the SNR (IPS/IPN) for pixels over the full spectrum

of IPS (Fig. 1 d). These data further revealed that varying

light intensity drastically affects the SNR for the camera

readout, with brighter particles yielding better spatial resolu-

tions. Furthermore, because the settings of a CCD camera

(such as the gain in on-chip multiplication) can alter the

correlation between IPS and IPN, the method demonstrated

here offers a generic procedure to easily extract the SNR

profile from any CCD camera-based tracking system for

static error determination.

Interplay of several factors determines the static
error

The SNR determined for the tracking system was then

applied to create simulated images, which were used as

a basis for investigating the conditions governing IPS fluctu-

ations and the degree of particle positioning bias. A

Gaussian-shaped simulated bead was constructed (see Mate-

rials and Methods), which had a defined peak intensity (I),
radius (Ra) and subpixel location (mx ¼ my ¼ 0 for the center

of the pixel), with a homogeneous background intensity (IB).

Once the bead parameters were assigned, the appropriate

level of random noise was added to individual pixels in the

simulated image based on the established SNR (Fig. 1 d).

Subsequently, the simulated image containing the ‘‘system-

noise’’ was added to the particle-tracking algorithm to deter-

mine the ‘‘experimental’’ tracked position of the bead. These

images were reconstructed multiple times to represent sepa-

rate tracking trials under the given initial parameters, and the

spatial resolution (i.e., standard deviation of the positioning

distribution) of the bead was obtained after conducting

a statistically meaningful number of such trials (Fig. 2 a).

Using this Monte Carlo approach, an investigation was

conducted of the relationship between the peak intensity of

particles (I) and the resulting positioning distributions. Trials

for three different Gaussian bead peak intensities (mx ¼
my¼ 0, Ra¼ 0.54 and I¼ 5000, 10,000, and 50,000, respec-

tively) with a uniform background intensity (IB¼ 3000) sug-

gested that the positioning error is related to the peak inten-

sities (Fig. 2 b, left). In addition, the brighter peak intensities

resulted in a tighter distribution of tracked positions and

a smaller positioning error (Fig. 2 b, right). Because the

spatial resolution (3) can be quantitatively linked to the static

error (232) (12–14), the brighter peak intensities directly

translate to a diminished static error. Moreover, static error

versus the peak intensity was plotted for Gaussian beads

having three sets of IB and Ra values to demonstrate the

dependence of static error on these additional parameters

(Fig. 2 c). In each case, the static error always decreased

incrementally with Gaussian bead peak intensity.

The final Gaussian bead parameter that could have an

effect on the static error profile was the subpixel location.

Under a uniform IB, Gaussian beads with a fixed I and Ra



Static Error Correction in Microrheology 5107
a b c

d e

FIGURE 2 Static error (232) can be

estimated using simulated Gaussian

beads. (a) A flow diagram demonstrates

how to estimate static error by Monte

Carlo simulation. (b) Distribution

patterns of tracked positions were gener-

ated by running 600 independent trials

incorporating pixel noise into simulated

images using three different intensities

of Gaussian beads (I ¼ 5000 (blue),

10,000 (gray), and 50,000 (yellow))

with mx ¼ my ¼ 0, Ra ¼ 0.54, and IB ¼
3000 (left panel). Three histograms in

the right panel indicate the distribution

of the experimental position error, 3p

(the displacement between the experi-

mental center and the assigned center).

Beads possessing a higher intensity

generate smaller experimental errors

with sharper distributions. (c) Static error

versus the assigned peak intensity (I) is

plotted for the three different Gaussian

beads. (d) Left: The distribution of the tracked center after 600 simulations for Gaussian beads initially in three subpixel locations within the lower-left pixel quad-

rant ((0, 0), (�0.25,�0.25) and (�0.5,�0.5)) is shown. Right: A histogram of 6000 positioning error simulations for Gaussian beads located at the pixel center

was set as a reference for off-center beads, and differences in count of the tracked displacements suggest that the subpixel location of a microsphere affects the size

of its positioning error. (e) The intensity diagram illustrates the correlation between static error and the Gaussian particle subpixel location at a resolution of 0.01

pixels. The intensity bar indicates the range of static error.
were assigned different subpixel locations, i.e., (mx, my) ¼
(0, 0), (�0.25, �0.25), and (�0.5, �0.5), where mi ¼ 0 cor-

responded to the pixel center and mi ¼ �0.5 corresponded to

the pixel edge, respectively. The static error extracted from

the set centered within the pixel was used as a reference to

observe deviations in the error distribution at other bead

locations. Monte Carlo simulations suggested a trend of

increasing error as Gaussian beads move closer to the pixel

edge (Fig. 2 d). To further understand this trend, the evalua-

tion of subpixelation effects on the static error was repeated

throughout a whole pixel quadrant (because there is

symmetry about the pixel center in both the x- and y-axis).

It was found that the subpixel position can augment

static error up to 1.5-fold (from ~6 � 10�3 mm2 to ~9 �
10�3 mm2) for a single set of assigned bead parameters

(Fig. 2 e). Thus, the subpixel localization of the bead center

also contributes to the static error, revealing that several bead

parameters collectively contribute to the propagation of such

error.

Direct parameter mapping can be used to
accurately estimate the static error

Although the static error extracted from the Monte Carlo

trials is affected by the individual manipulation of peak

intensity, radius, subpixel location, and background intensity

values, these parameters may not be independent or constant

throughout an actual experiment. As particles move out from

the focal plane, their projected image will simultaneously

appear to have a larger radius and a dimmer peak intensity

than if they were in focus (19). The background intensity
also changes for different microscopic and environmental

conditions. Furthermore, some microenvironments constrain

particles so that the total displacement of a particle during

short lag times can be less than the pixel size (i.e., a particle

embedded in highly viscous and/or highly elastic media). In

this case, subpixel localization of the particle will be a domi-

nant factor for static error in the tracking analysis. Therefore,

the accurate representation of experimental particles necessi-

tates a case-by-case assignment of the proper Gaussian bead

parameters to validate the Monte Carlo approach of extract-

ing the spatial resolution using simulated images.

Particle-tracking algorithms independently process micro-

spheres in the acquired images and produce a set of experi-

mental parameters, (Ra
0, I0, mx

0, and my
0) to describe each

tracked microsphere. However, these parameters cannot

represent the true characteristics of particles because they

have been processed by convolution of the tracking algo-

rithm, and cannot be directly used to extract the static error

by Monte Carlo simulation. A mapping procedure has been

developed to estimate the true parameters (Ra, I, mx, and my)

of the original microsphere from the convolved images of the

nonlinear algorithm tracking analysis (Fig. 3 a). During this

process, the addition of extracted system noise to the simu-

lated images was omitted to avoid generating additional

variation in the image data that would only corrupt the

comparisons.

The mapping begins by assuming that the absolute posi-

tion of a simulated Gaussian bead, (mx, my), is the same as

the experimentally tracked positions, (mx
0, my

0). This assump-

tion has previously been evaluated with the conclusion that

the pixilization effects can only generate up to 0.02 pixels
Biophysical Journal 96(12) 5103–5111
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b c

FIGURE 3 Method to relate extracted static error from

simulated beads to experimental microsphere images is

demonstrated. (a) The left flow chart demonstrates the

process of estimating static error from raw particle image.

The process retrieves tracked parameters from a raw image,

maps the adequate parameters to simulate experimental

images with the complementary Gaussian particle, and

applies Monte Carlo simulation to estimate the static error.

The right flow chart shows the procedure used to map

parameters for simulated Gaussian beads to match experi-

mental tracked parameters. (b) A fourth-order polynomial

equation can be adopted to describe the relationship

between the radius of the simulated Gaussian bead, Ra,

and the radius of tracked microsphere, Ra
0, with perfect

fitting (R2¼ 1). This result is independent of the peak inten-

sity, I, and background intensity, IB. (c) The Gaussian bead

peak intensity (I) versus the experimental peak intensity

(I0), plotted for three different Gaussian bead radii, showing

a linear correlation between I and I0. The plot also suggests

that the correlation is independent of the pixel background

because lines are overlaid at the same Ra despite having

pixel backgrounds that are set differently.
of error (12). Several simulated Gaussian bead images gener-

ated by a series of Ra values (from 0.38 to 1.80 pixels), and

different peak and background intensities were subjected to

the tracking algorithm to retrieve the corresponding apparent

radii (Ra
0). A scatter plot of Ra to Ra

0 fit by a fourth-order

polynomial with perfect regression (R2 ¼ 1) (Fig. 3 b) is

evidence that the correlation of Ra and Ra
0 depends only on

the tracking algorithm and is independent of the peak inten-

sity of the Gaussian bead and the background pixel intensity.

Having accounted for all other Gaussian bead parameters,

the relationship between I and I0 was uncovered using a linear

curve fitting (Fig. 3 c). The entire mapping procedure was

repeated for a range of Gaussian bead parameter configura-

tions until a clear link between simulated and experimental

tracking images was evident. Through this simple process,

any typical microsphere experimental image can be precisely

simulated by a corresponding Gaussian bead image (Fig. 4).

The mapped values of the pixel intensity in a 3 � 3 pixel

region are comparable between the simulated bead and the

experimentally tracked microsphere. This result demon-

strates that the correlations determined by our procedure

can be used to define experimentally relevant Gaussian beads

to determine static error.

Procedure verification using in vitro and in situ
experimental systems

The accuracy of the mapping procedure was verified by

imaging static particles. Several microspheres were immobi-

lized onto a coverslip and their MSDs were tracked. Immobi-

lized microspheres should exhibit approximately no

movement, and the detected MSD values are expected to

represent the static error. The mapping procedure was applied
Biophysical Journal 96(12) 5103–5111
to estimate the static error from the experimental images.

Comparing the experimental static error of each microsphere

to its peak intensity revealed that static error invariably

reduces when the peak intensity of the corresponding micro-

sphere increases (Fig. 5 a). Using the Monte Carlo simulation

trials, the static error (232) was extracted and correlated to the

experimental static error in a log-log plot showing that the

simulated static error is in agreement with the experimental

results (MSD), having a strong linear correlation (R2 ¼
0.99) (Fig. 5 b). This strong correlation confirms that the

FIGURE 4 Gaussian bead with the parameters determined by the

mapping procedure in this article can represent the experimental micro-

sphere. The experimental (left) and simulated (right) data are in agreement,

as evident in their images and the pixel intensity of the 3 � 3 area

surrounding the brightest pixel.
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FIGURE 5 Static error can be corrected for the MSD of

microspheres embedded in glycerol. (a) A sample of fixed

microspheres is used to verify the estimated static error

from simulations by representing the tracked MSD values

as the spatial error generated from the experimental system.

In a logarithm scale, the individual microsphere’s peak

intensity is inversely proportional to its MSD (the approx-

imate experimental static error). (b) The logarithm of exper-

imental static error (MSD at 33 ms) and the corresponding

estimated simulated static error strongly correlate with a

linear fit, R2 ¼ 0.99. (c) Raw MSD data from particle

tracking under 25% power of illumination (n¼ 47) exhibits

a degree of heterogeneity in the data, but raw MSD data

(n ¼ 53) and its corrected MSD both obtained under

100% power of illumination share a similar scale and trend

as the corrected MSD from low illumination (25%). (d) The

mean viscous modulus, G00, of glycerol is estimated at time

lags of 33 ms from the raw and corrected MSD values at

25% and 100% power of illumination, respectively. The

dashed line indicates the viscous modulus measured by

a conventional rheometer, and the star denotes the signifi-

cantly lower G00 of the raw MSD at 25% power of illumina-

tion using a two-tailed t-tests with p < 0.05. (e) The

illustration explains how errors generated from the experi-

mental system can affect the MSD result in the cases of

glycerol: measured MSD is the culmination of system

MSD and static error.
Monte Carlo simulation approach explained herein can

successfully estimate real-time static error.

MSD data from a standard tracking analysis in glycerol

was corrected using this technique by directly subtracting

the estimated static error value. Comparison between the

raw and corrected results under low (25%) and high

(100%) illumination suggests that the correction produce

significantly more precise results, reflecting the true nature

of the homogeneous Newtonian fluid (Fig. 5 c). When the

generalized Stokes-Einstein Relation was used to convert

the MSDs to the viscous modulus, it was found that the

values are underestimated in the raw MSDs of low illumina-

tion, but are accurate when the MSDs are calibrated or are

obtained from high-illumination experiments (Fig. 5 d).

This provides another validation of the fact that static error

is important in tracking experiments and should be elimi-

nated using the correction algorithm (Fig. 5 e).

Further investigations demonstrated the use of the correc-

tion technique for tracking particles inside cells and

calculating the creep compliance from the MSD data. One-

hundred-nm diameter, carboxylated fluorescent micro-

spheres were ballistically bombarded into the cytoplasm of

a MC3T3-E1 fibroblasts culture. After serum-starving for

48 h, the majority of particles were evenly distributed into

the cytoplasmic region of the cells (Fig. 6 a). In comparison

with a standard cell culture, serum-starved cells lack massive
actin-cytoskeletal structures in most of their cytoplasmic

region (20), and in this cytoskeletally depleted zone, parti-

cles are permitted to exhibit a relatively greater degree of

free diffusion. Yet, the timescaling profile of the raw

MSDs obtained from particle tracking indicate that almost

all such particles in the cytoplasmic region move subdiffu-

sively (Fig. 6 b). In contrast, the corrected MSD values

obtained by the approach herein suggest that these particles

are less subdiffusive (Fig. 6 c). This analysis strongly advo-

cates the necessity of eliminating static error from MSD

measurements for correctly probing the cellular biophysical

properties using particle tracking.

DISCUSSION

MSD inaccuracy due to static error is ubiquitous in CCD

camera-based particle-tracking systems. However, the

complex interplay between multiple tracking parameters

had precluded the development of a practical method to mini-

mize the errors. The correction approach explained herein

significantly minimizes static error. This approach circum-

vents the complication of direct static error calculation by

employing a simulation-based method to correct experimental

particle-tracking measurements. This considerably enhances

the accuracy of the MSD and improves the subsequent estima-

tion of diffusivity as well as rheological properties.
Biophysical Journal 96(12) 5103–5111
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FIGURE 6 Static error can be corrected for the MSD of

100-nm carboxylated polystyrene particles embedded in

MC3T3-E1 fibroblast cells under red-fluorescence. (a) An

image acquired from our CCD camera. Square dots indicate

the positions of microspheres within the frame. (b) A MSD

versus time lag plot extracted from the cellular system (80 parti-

cles in seven cells) implies subdiffusive particle motion at

shorter lag times, indicating a range of local microenvironments

that the microspheres are encountering. (c) Using our method to

subtract out the estimated static error in the system revealed

a new MSD profile, which implies more diffusive particle

motion throughout the cellular environment at short lag times.
Tracking of particles in a homogenous glycerol solution

resulted in a wider MSD distribution at short lag times

with decreasing light source intensity. This result indicates

that static error can significantly bias the MSD profile, poten-

tially causing a misinterpretation of the underlying physical

properties (11). Static error in the tracking system used

herein can be estimated to be between ~2 � 10�5 mm2 and

~10�3 mm2 by tracking immobilized microspheres, suggest-

ing that measured MSD values within this range are clearly

unreliable. However, elimination of this static error allows

for an accurate MSD measurement with a resolution of

~10�6 mm2 from a sufficiently bright particle.

In the simulation approach, the simulated Gaussian bead

has a single ‘‘point’’ position expressing the peak intensity,

which is an appropriate model to match with the Gaussian

fit algorithm. The particle diameter used in this study was

100 nm, whereas many in vitro studies have applied particles

of a larger size for tracking. Compared to larger particles, the

100-nm particle is more suitable to be considered as a ‘‘point’’

light source. Meanwhile, a previous study (P.-H. Wu, and

Y. Tseng, unpublished data) suggested that the estimated

static error is comparable to the measured MSD obtained

from fixed 1-mm particles. In essence, this method can be

applied to the current particle-tracking experiments regardless

of the particle size.

However, there are some additional advantages to the use

of 100-nm particles that were chosen for this work. Light scat-

tering by tracking particles can directly affect the background

signal in a tracking video while simultaneously depleting the

detectable peak intensity within the exposure time. These

effects can have a detrimental outcome on the proper estima-

tion of MSD. Based on the Mie theory, the main parameter to

consider in elastic light scattering is the size parameter,

x ¼ 2pR/ l, where l is the wavelength and R is the radius of

the particle. The wavelength of the light used in the

video-based particle-tracking experiment ranges between

~400 and 700 nm. Therefore, the 100-nm size particle has

an x ~ 0.5, in which the extinction coefficient is negligible

and light scattering effects are minimized. Meanwhile, Ray-

leigh scattering will not affect the particle-tracking results

unless the size of the particle is reduced to ~10 nm.

For a 1-mm particle, the size parameter of light scattering

is approximately equal to 5, and the extinction coefficient

approaches the maximum value. Therefore, light absorbance
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by 1-mm particles is inevitable. Nevertheless, the emitted

signal from a 1-mm particle is much higher than the detectable

threshold (SNR is much greater compared to the 100-nm

particle). The larger particle should have much smaller static

error. However, when the particle size increases from 100 nm,

the extinction coefficient consequently increases as well,

which would generate heat and increase the temperature to

the microenvironment. Therefore, heat effects on the experi-

ments would need to be assessed.

To ensure that the discrepancy of MSD values of 100-nm

particles embedded in glycerol was not an effect of heat

generated from different power settings of the light source,

particle tracking was repeated successively three times on

a sample at full power of light intensity. In this case, the

sample was exposed to constant light for more than 1 min.

The three tracking results were carefully compared to eval-

uate whether the MSD values shift toward higher or lower

values. The result showed that there was no heat accumula-

tion, which would affect a change in the MSD (data not

shown). The short lag-time MSD values for the first 5-s

period and the last 5-s period in the same experiment were

also evaluated to examine the transient heat build-up, and it

was concluded that the difference of MSD values were not

caused by the heat effect for the 100-nm particles.

In summary, this correction technique is not limited to the

particular system used herein, but is broadly applicable to

any tracking system. The transition to another system

requires simple steps of determining the correlation between

the pixel signal and noise, and appropriately selecting correct

tracking parameters. By closely following the methodology

described herein, static error can be significantly eliminated,

leading to a greater clarity when interpreting the MSD values

from a particle-tracking experiment.

We thank Drs. H. Hess and T. Lele for helpful comments on the manuscript.
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