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A Mathematical Analysis of Obstructed Diffusion within Skeletal Muscle
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ABSTRACT Molecules are transported through the myofilament lattice of skeletal muscle fibers during muscle activation. The
myofilaments, along with the myosin heads, sarcoplasmic reticulum, t-tubules, and mitochondria, obstruct the diffusion of mole-
cules through the muscle fiber. In this work, we studied the process of obstructed diffusion within the myofilament lattice using
Monte Carlo simulation, level-set and homogenization theory. We found that these intracellular obstacles significantly reduce the
diffusion of material through skeletal muscle and generate diffusion anisotropy that is consistent with experimentally observed
slower diffusion in the radial than the longitudinal direction. Our model also predicts that protein size has a significant effect
on the diffusion of material through muscle, which is consistent with experimental measurements. Protein diffusion on the myofil-
ament lattice is also anomalous (i.e., it does not obey Brownian motion) for proteins that are close in size to the myofilament
spacing. The obstructed transport of Ca2þ and ATP-bound Ca2þ through the myofilament lattice also generates smaller Ca2þ

transients. In addition, we used homogenization theory to discover that the nonhomogeneous distribution in the troponin binding
sites has no effect on the macroscopic Ca2þ dynamics. The nonuniform sarcoplasmic reticulum Ca2þ-ATPase pump distribution
also introduces small asymmetries in the myoplasmic Ca2þ transients.
INTRODUCTION

Actin and myosin myofilaments are responsible for gener-

ating force in skeletal muscle. These myofilaments form

a regular lattice, linked together by myosin heads. However,

the myofilament lattice impedes the diffusion of molecules

such as Ca2þ through the muscle fiber. Furthermore, the

mitochondria, t-tubules, and sarcoplasmic reticulum (SR)

also obstruct diffusion within skeletal muscle. In this work,

we examine this process of obstructed diffusion within skel-

etal muscle using mathematical and Monte Carlo simulation

modeling techniques. We find that these intracellular obsta-

cles significantly reduce the diffusion of material through

skeletal muscle.

The microstructure of biological tissue limits the flow of

solutes through it in a manner dependent on the geometry

of the tissue. The resistive properties of tissue are described

by tortuosity factors, which have been calculated for

a number of different tissue types and different fixed regular

geometries (1,2). The tortuosity factor, t, is defined in this

article by the homogenized diffusion equation (3,4)

vc

vt
¼ tDV2c ¼ DeffV

2c; (1)

where D is the solute diffusion coefficient in free solution, c
is the solute concentration in the tissue, Deff is the effective

diffusion coefficient, and t is time. This equation describes

the macroscopic transport of the solute through the tissue.

The mean-squared displacement (MSD) of the solute is then�
r2ðtÞ

�
¼ 2dtDt; (2)
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where d is the spatial dimensionality, which can be used to

calculate the tortuosity factor.

The tortuosity factor for skeletal muscle has been measured

in a number of different species, and it has been observed that

diffusion in skeletal muscle is anisotropic, with diffusion

slower in the radial than the longitudinal direction. Engel

et al. (5) suggested that the anisotropic arrangement of diffu-

sion obstacles such as myofilaments and mitochondria is

responsible for this direction-dependent transport phenom-

enon. In this article, we use mathematical modeling tech-

niques to show that the myofilaments and myosin heads

within skeletal muscle generate diffusion anisotropy consis-

tent with experimental data.

The tortuosity factor for protein diffusion in skeletal muscle

is also dependent on protein size (6,7). This effect of protein

size on tortuosity is believed to be due to structural barriers

within the myoplasm acting as obstacles to diffusion (7,8).

We investigated this theory using both Monte Carlo simulation

and homogenization theory. Our model predicts that protein

size has a significant effect on both the longitudinal and radial

tortuosity factors in a manner consistent with experimental

measurements. Our modeling approach is therefore useful

for understanding the effect of cellular structural organization

on the transport of different metabolites in skeletal muscle (9).

METHODS AND RESULTS

Myofilament lattice geometry

The myofilament lattice geometry is shown in Fig. 1 A. The

myosin filaments lie on a hexagonal mesh with six actin fila-

ments surrounding each myosin filament (10). Myofilaments

are assumed to be cylindrical, with a diameter of ~11 nm, and

actin filaments have a diameter of ~6 nm (10–12). The distance

between the surfaces of the myosin and actin filaments is ~8 nm
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(10,13), and therefore, the distance between the centers of the

myosin and actin filaments is ~16.5 nm (14,15).

The myosin head geometry is shown in Fig. 1 B. This

geometry is based on the model of the myosin head developed

by Skubiszak and Kowalczyk (12), which was based on the

three-dimensional myosin head structure measured by Ray-

FIGURE 1 (A) The myofilament lattice geometry. The actin myofilaments are

larger in diameter than the myosin myofilaments. (B) The myosin head geometry.

Muscle Diffusion Model
ment and Holden (16). The myosin head length is ~15 nm

(10,17). The spatial positioning of the myosin heads is not

completely resolved (14,18,19) and we use a myosin head

configuration similar to that of Skubiszak and Kowalczyk,

(12). The myosin head placements on a myosin filament are

shown in Fig. 2. The arrangement of the cross-bridges is

described by the three-stranded model, where the myosin

heads are located on a three-stranded 9/1 helix of cross-

bridges (10). In this model, the six myosin heads located

within each 13 nm axial subunit is termed a crown. The

FIGURE 2 The location of the myosin heads on a single actin myofilament.
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distance between successive crowns is therefore 13 nm, and

the rotation between successive crowns is 40� (14,20). The

complete three-dimensional myofilament lattice geometry is

shown in Fig. 3.

Monte Carlo method

The structure of biological tissue impedes the diffusion and

transport of material through the tissue and this is referred

to as obstructed diffusion (21). A Monte Carlo random-

walk simulation technique to investigate obstructed diffusion

has been proposed by Saxton (22) and Olveczky and Verk-

man, (23). With this technique, tracers move by random

walk throughout a cubic mesh that defines an obstacle-free

domain. Tracers are obstructed by the obstacles, and

a particle to be moved across an obstacle remains in its orig-

inal position, which indicates that the particle is reflected at

the obstacle boundary. If the obstacles in a three-dimensional

domain are defined by Û, then a random walk, xðtÞ, on this

domain is given by

~xjþ 1 ¼ xj þ hj

ffiffiffiffiffiffiffiffiffiffiffi
6DDt
p

;
tjþ 1 ¼ tj þ Dt;

xjþ 1

�
tjþ 1

�
¼ ~xjþ 1; if

�
~xjþ 1 þ J

�
XÛ ¼ f

xj; if
�
~xjþ 1 þ J

�
XÛsf;

8>>>><>>>>:
(3)

where Dx ¼
ffiffiffiffiffiffiffiffiffiffiffi
6DDt
p

is the mesh size, Dt is the time step size,

hj is a random unit vector in one of the six Cartesian

axis directions, f denotes the empty set and J is a set that

FIGURE 3 The three-dimensional myofilament lattice geometry.
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defines the geometry of the spherical diffusing tracer

(J ¼ y˛R3 : kyk < d=2g
�

, where d is the diameter of the

tracer). An ensemble of tracer paths can then be used to

calculate the mean-squared displacement ðhr2ðtÞiÞ and the

effective diffusion coefficient, respectively (24):�
r2

i ðtÞ
�
¼
�
kxiðtÞ � xi0k2

2

�
;

ti ¼
Di

eff

D
¼ lim

t/N

�
r2

i ðtÞ
�

2Dt
;

(4)

where xðtÞ ¼ ½ x1ðtÞ x2ðtÞ x3ðtÞ � and x0 ¼ ½ x10 x20 x30 �.
We applied this technique to calculate random walks on

the myofilament lattice geometry in Fig. 3 (Dx ¼ 0.5 nm,

D ¼ 7:7� 10�6cm2=s).

Homogenization method

Homogenization theory can also be used to calculate the

effective diffusion coefficients of point tracers diffusing

through a porous medium (3). If the void myoplasmic space

is defined by the neighborhood U then homogenization

involves solving a system of equations for a small periodic

component in the concentration field (u) (25,26):

V2ui ¼ 0; x˛U
uiðxÞ ¼ 0; x˛Ci

vui

vy
ðxÞ ¼ 0; x˛Cj; jsi

bn$Vui ¼ bn$bei; x˛U
0
;

(5)

where U
0
denotes the surface of the myofilament lattice, bn is

the outward unit normal at the surface of the myofilament

lattice, bei is the macroscopic diffusion direction in the ith
Cartesian coordinate direction, and Ci are the planar faces

of the rectangular box, Ci ¼ x ¼ ½x1; x2; x3�f
˛R3jxi ¼ xi0 or xi ¼ xi1g that define the boundary of U.

The geometric tortuosity factor in the direction of bei is

then given by

ti ¼
1

A

Z
U

�
1� bei$Vui

�
dU; (6)

where A is the volume of the void myoplasmic space defined

by U.

Homogenization theory can also be used to calculate the

effective diffusion coefficients of spherical tracers diffusing

through a porous medium. If the tracer has diameter d,

then the tortuosity factor can be calculated using Eqs. 5

and 6 with a restricted myoplasmic void space

Ud ¼ y˛U : ðyþJÞXÛ ¼ fg
�

, where f denotes the

empty set, J is the set that defines the geometry of the spher-

ical diffusing tracer (J ¼ y˛R3 : kyk < d=2g
�

, and Û
defines the obstacles in the three-dimensional domain. The

restricted myoplasmic void space, Ud, can be calculated

directly using this definition or by solving the level-set equa-

tion for jðx; tÞ:
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dj

dt
þ jVjj ¼ 0;

jðx; t ¼ 0Þ ¼ 0; x˛U
0

jðx; t ¼ 0Þ > 0; x˛U
U
0

d ¼ fx : jðx; t ¼ d=2Þ ¼ 0g
Ud ¼ fx : jðx; t ¼ d=2Þ > 0g ;

(7)

where jðx; t ¼ 0Þ represents the signed distance to the

boundary of the myoplasmic void space (U
0
) and U

0

d denotes

the boundary of the restricted myoplasmic void space. Fast

methods for solving the level-set equation are described by

FIGURE 4 (A) The boundary of the myoplasmic void space (U
0
). (B) The

boundary of the restricted myoplasmic void space for a 6-nm spherical

particle (U
0

6) calculated using the level-set equation (Eq. 7).
Sethian (27). The myoplasmic void space boundary (U
0
) is

shown in Fig. 4 A, and the boundary of the restricted myo-

plasmic void space for a 6-nm spherical particle (U
0

6) calcu-

lated using Eq. 7 is shown in Fig. 4 B. This demonstrates

how the arrangement of the myoplasmic void space changes

as the particle size increases.

Anisotropic diffusion on the myofilament lattice

Engel et al. (5) observed that rat cardiomyocytes are aniso-

tropic with respect to Ca2þ transport. They found that

Ca2þ waves traveled faster in the axial than in the radial

direction and that the ratio of radial to axial velocity was

0.74 at 27�C. Engel at al. (5) suggested that the anisotropic

arrangement of diffusion obstacles such as myofilaments

and mitochondria is responsible for the direction-dependent

Ca2þ wave propagation velocities. Cleveland et al. (28)

also found that the diffusion of water in skeletal muscle

was anisotropic, with Dx=Dz ¼Dy=Dz ¼0:72. Kinsey et al.

(8) also measured the anisotropic diffusion of phosphocrea-

tine (0.8-nm diameter; relative molar mass (Mr) ¼ 226)

within fast- and slow-twitch fish muscle fibers. They found

that tx ¼ ty ¼ 0:58, tz ¼ 0:90, and Dx=Dz ¼Dy=Dz ¼0:64

in the fast fibers, and tx ¼ ty ¼ 0:5, tz ¼ 0:80, and

Dx=Dz ¼Dy=Dz ¼0:63 in the slow fibers. Diffusion in skel-

etal muscle is therefore highly anisotropic.

Aliev and Tikhonov (29) investigated the anisotropic

diffusion of low-molecular particles within a skeletal muscle

cell using a three-dimensional computer simulation model.

Their model included a regular lattice of actin and myosin

(without the myosin heads), the membranes of the SR, and

mitochondria surrounding the myofibrils and sets of myofi-

brils within a muscle cell. They found that tx ¼ ty ¼ 0:80,

tz ¼ 1:0, and Dx=Dz ¼Dy=Dz ¼0:80 when the SR and

mitochondria obstacles are ignored. This indicates that the

anisotropic arrangement of diffusion obstacles such as

myofilaments and mitochondria produces anisotropic diffu-

sion in skeletal muscle.

Using our model, which included not only the myofila-

ments but also the myosin heads, we calculated that

Dx=Dz ¼Dy=Dz ¼0:78, which is consistent with the find-

ings of Engel et al. (5) and Cleveland et al. (28). We

also found that tx ¼ ty ¼ 0:73 and tz ¼ 0:93, and there-

fore the myofilaments and myosin heads significantly

impede diffusion in skeletal muscle. When the myosin

heads were not included in our simulations, we found,

using both Monte Carlo and homogenization methods,

that tx ¼ ty ¼ 0:81 and tz ¼ 1:0, which is consistent

with the results of Aliev and Tikhonov (29). This small

difference between our tortuosity factor and that calculated

by Aliev and Tikhonov (29) is due to slightly different

myofilament geometries. The numerical solution of Eq. 5

with bei aligned with the x axis for a point particle is

shown in Fig. 5 A. Because of symmetry, the solution is

only shown on the repeating unit of the myofilament
Biophysical Journal 96(12) 4764–4778
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lattice. Our simulations therefore show that the myofila-

ments and myosin heads within skeletal muscle generate

diffusion anisotropy.

Protein diffusion on the myofilament lattice

Papadopoulos et al. (7) measured the longitudinal diffusion

of protein (e.g., cytochrome c, myoglobin, and hemoglobin)

in rat extensor digitorum longus muscle within an aqueous

solution at 22�C. Kinsey et al. (8) also measured the longitu-

dinal and radial diffusion of phosphocreatine within fast- and

slow-twitch fish muscle fibers. The radial diffusion coeffi-

cients of a range of different molecules (e.g., ATP, phospho-

creatine, and aequorin) have also been measured in other

skeletal muscle fibers (6,30,31). Those authors found that

molecule size had a significant effect on tortuosity, and their

measurements are shown in Fig. 6 (tortuosity factor relative

to a 24 g/dl protein solution). This effect of molecule size on

tortuosity is believed to be due to structural barriers within

the myoplasm acting as obstacles to diffusion (7,8) and

can be investigated with our mathematical model. The

numerical solution of Eq. 5 with bei aligned with the x axis

for a protein of diameter 5 nm is shown in Fig. 5 B (compare

with Fig. 5 A). For this scenario, we found that tx ¼ ty ¼
0:63 using both Monte Carlo and homogenization methods.

FIGURE 5 (A) The numerical solution of Eq. 5 for a point particle withbei aligned with the x axis for the myofilament geometry excluding the

myosin heads. The tortuosity factor is t ¼ 0:79. (B) The numerical solution

of Eq. 5 for a protein of diameter 5 nm with bei aligned with the x axis for the

myofilament geometry excluding the myosin heads. The tortuosity factor is

t ¼ 0:63.
Biophysical Journal 96(12) 4764–4778
The model simulated effect of molecule size on tortuosity is

shown in Fig. 6 for longitudinal and radial protein diffusion

on the myofilament lattice with and without the myosin heads.

Calculations were made using both Monte Carlo and homog-

enization methods to check model computations. We found

that the myosin heads have a significant effect on the tortu-

osity factor for protein diffusion in skeletal muscle. Molecules

with a diameter >7.3 nm are unable to diffuse through the

myofilament lattice that contains the myosin heads. This

threshold molecule size of 7.3 nm is slightly smaller than

our assumed distance between the surfaces of the myosin

and actin filaments of 8 nm (10,13). We note that the measured

distance between the surfaces of the myosin and actin fila-

ments is variable, ranging from 8 to 15 nm (7), and this is

consistent with the observation that larger molecules, such

as ferritin (12.2 nm diameter), are able to diffuse within skel-

etal muscle (7).

Our model is consistent with experimental measurements

of the radial tortuosity factor for a range of molecules

(6,8,30,31,33) and of the longitudinal tortuosity factor for

small molecules (8). However, the model does not explain

the measured longitudinal tortuosity factors for large mole-

cules such as cytochrome c, myoglobin, and hemoglobin

(7). The myoplasmic diffusion data for larger molecules,

such as myoglobin, indicates that diffusion of large mole-

cules is isotropic (7,33,34). The model predicts that the

longitudinal and radial diffusion coefficients for large

proteins in skeletal muscle are significantly different, with

a different dependence on protein diameter. Therefore, our

model, based on the steric hindrance to diffusion by the

FIGURE 6 The model effect of protein size on radial tortuosity (tx) in

a myofilament lattice with (thick line) and without (thin line) the myosin

heads, along with the effect of protein size on longitudinal tortuosity (tz)

in a myofilament lattice with (thick dotted line) and without (thin dotted

line) the myosin heads. Also shown are experimental measurements in skel-

etal muscle of the effect of protein size on the radial tortuoisty factor (D)

(6,8,30,31,33) and the longitudinal tortuosity factor (B) (7,8,33). Protein

size has a significant effect of tortuosity.
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myoplasmic structures, explains the observed anisotropy for

small molecules such as phosphocreatine, but does not

explain the isotropic diffusion of larger molecules such as

myoglobin. This indicates that factors not included in our

model are responsible for this observed isotropic diffusion

of larger molecules within the myoplasm. Possible factors

include obstruction due to the Z-band, M-band, and C-protein

structures and hydrodynamic wall effects that come into play

for large molecules diffusing in confined spaces.

Anomalous diffusion on the myofilament lattice

We also observed that protein diffusion on the myofilament

lattice is anomalous (i.e., it does not obey Brownian motion)

for proteins that are close in size to the myofilament spacing.

The MSD for anomalous diffusion is characterized by�
r2ðtÞ

�
¼ Kata; as1 ; (8)

where Ka is a generalized transport coefficient and a is the

anomalous exponent, which is a measure of the irregular

movement of the protein. Anomalous diffusion is referred

to as subdiffusion if a < 1 and superdiffusion if a > 1. In

three dimensions, anomalous diffusion is a localized

phenomenon if a is greater than the percolation threshold,

~a ¼ 0:543 (35). Therefore, for a > ~a, diffusion is anoma-

lous over short distances, whereas over large distances it is

normal. The crossover length (R�) between anomalous and

normal diffusion is defined by (24)�
r2ðtÞ

�
� ta

t
;

r < R�

r > R�
:

�
(9)

The relationship between the protein diameter (d) and a in

radial and longitudinal directions is shown in Fig. 7. We

FIGURE 7 The relationship between the protein diameter (d) and the

anomalous diffusion exponent (a) in radial (dotted line) and longitudinal

(solid line) directions.
found that the anomalous diffusion exponent is different in

radial (ar) and longitudinal directions (az) and that proteins

with a diameter larger than ~d ¼ 7.4 nm are unable to diffuse

through the myofilament lattice. The difference between the

ar and az is only significant for proteins with a diameter near
~d. The anomalous diffusion is said to be obstructed if d < ~d
and confined if d > ~d.

Anomalous diffusion cannot be described by Eq. 1, but

must be described by the fractional diffusion equation (21)

vc

vt
¼ 0D1�ar

t Kar

v2c

vr2
þ 0D1�az

t Kaz

v2c

vz2
; (10)

where the Riemann-Liouville operator 0D1�a
t , for

0 < a < 1, is defined by

0D1�a
t xðtÞ ¼ 1

GðaÞ
v

vt

Z t

0

xðsÞ
ðt � sÞ1�a

ds; (11)

where GðaÞ is the gamma function. Experiments that

examine the diffusion of large proteins through the myofila-

ment lattice over a short time period must therefore be

analyzed using a fractional diffusion equation.

The effect of mitochondria and sarcoplasmic
reticulum on myoplasmic diffusion

The mitochondria and SR also obstruct diffusion in skeletal

muscle. Aliev and Tikhonov (29) have modeled the obstruc-

tion to diffusion by the mitochondria and SR by a semiperme-

able cylindrical sheath. They found that this semipermeable

cylindrical sheath had no effect on tz but a significant effect

on tx and ty, depending on the porosity of the sheath.

However, Aliev and Tikhonov (29) did not specify an appro-

priate level of porosity for the semipermeable cylindrical

sheath. Here, we estimate the appropriate level of porosity

using structural information about the mitochondria and

SR in skeletal muscle.

The structure of the mitochondria, t-tubules, and SR in

fast- and slow-twitch fibers has been imaged by Ogata and

Yamasaki (36), and a scanned reconstruction is shown in

Fig. 8 for a slow-twitch fiber. Myofibrils are approximately

cylindrical, with a diameter of 1 mm (37) and are packed

on a hexagonal lattice (38). Using our model, we found

that tx ¼ ty ¼ 0:91 and tz ¼ 0:97 for a slow-twitch fiber

with mitochondria, t-tubules, and SR, but without myofila-

ments. Mitochondria, t-tubules, and SR therefore have

a small but significant effect on intermyofibril diffusion in

skeletal muscle.

Obstructed diffusion due to the myofilaments and myosin

heads occurs on a nanometer spatial scale, whereas ob-

structed diffusion due to the SR and mitochondria occurs

on a micrometer spatial scale. Because these two spatial

scales are significantly different, the two obstructed diffu-

sion processes are largely independent. The combined effect

of the myofilament lattice, mitochondria, and sarcoplasmic
Biophysical Journal 96(12) 4764–4778
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reticulum on myoplasmic diffusion can therefore be calcu-

lated using homogenization theory. In this case, there are

nanoscopic, microscopic, and macroscopic spatial scales.

Homogenization theory allows the dynamics on a micro-

scopic scale to be incorporated into a macroscopic description

of the system dynamics. The idea is to undertake homogeni-

zation twice, first incorporating the structure at a nanoscopic

level into a homogenized description at the microscopic level

and then incorporating the structure at the microscopic level

into a homogenized description at the macroscopic level. If

the void myoplasmic space defined by the myofilaments is

Um with volume Am and the void space defined by the mito-

chondria and sarcoplasmic reticulum is USR with volume

ASR, then the geometric tortuosity factor in the direction ofbei at the macroscopic level is given by

ti ¼ tm � tSR

¼ 1

Am

Z
Um

�
1� bei$VuiðUmÞ

�
dU

� 1

ASR

Z
USR

�
1� bei$VuiðUSRÞ

�
dU

(12)

where uiðUÞ denotes the solution to Eq. 5. Thus, for diffu-

sion of a point particle on the muscle fiber spatial scale,

our model predicts that tx ¼ ty ¼ 0:73� 0:91 ¼ 0:66 and

tz ¼ 0:93� 0:97 ¼ 0:90.

The effect of Ca2þ buffering and binding
to troponin on Ca2þ diffusion

Ca2þ is highly buffered within the myoplasm by parvalbu-

min and ATP, and these buffers play an important role in

Ca2þ dynamics (39). Assuming mass-action kinetics, the

transport equations for Ca2þ (c) and buffer (b) are (40)

FIGURE 8 The structure of the mitochondria (blue), t-tubules (red), and

SR (green) in slow-twitch fibers based on the reconstruction by Ogata and

Yamasaki (36).
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vc

vt
¼ V$Dmuscle

c Vc þ k�b� kþ cðbt � bÞ; x˛U

vb

vt
¼ V$Dmuscle

b Vb� k�b þ kþ cðbt � bÞ; x˛U

Vc$bn ¼ 0; on U
0

Vb$bn ¼ 0; on U
0
; ð13Þ

where D is the corresponding diffusion tensor, U denotes the

void space characterized by the myofilament lattice, kþ and

k� are the association and dissociation rate constants, and bt

is the total concentration of buffer. Homogenization of Eq.

13 to account for the structure of the myofilament lattice

yields (41)

vc

vt
¼ V$GDmuscle

c Vc þ k�b� kþ cðbt � bÞ; x ˛R3

vb

vt
¼ V$GDmuscle

b Vb� k�b þ kþ cðbt � bÞ; x ˛R3

(14)

where G is the geometric tortuosity tensor. If it is assumed

that the buffer is immobile and the buffer kinetics are rapid,

reaching equilibrium at each location before significant

diffusion occurs, then (42)

vc

vt
¼ 1

1 þ q
V$GDmuscle

c Vc; x˛R3

q ¼ Kbt

ðK þ cÞ2 ;
(15)

where K ¼ k�=kþ. We show in Appendix A that Eq. 15 can

also be derived from Eq. 13 if the order of assumptions is

reversed—i.e., if it is assumed first that the buffer is immo-

bile and that the buffer kinetics are rapid, before undertaking

homgenization. There is therefore no interaction between the

assumptions of fast buffering and homgenization.

Anisotropic diffusion of Ca2þ and Ca2þ buffers will have

an important effect on the Ca2þ dynamics. Ca2þ (diameter

0.36 nm) has a diffusion coefficient of Dwater
Ca ¼ 7:78�

10�6cm2=s in free solution at 25�C (43). The viscosity of the

myoplasm is believed to be about twice that of water (44). It

follows that the Ca2þ diffusion coefficient in skeletal muscle

at 25�C is Dmuscle
Ca ¼ 3:89� 10�6cm2=s, and from Fig. 6,

GcD
muscle
c ¼3:89 �10�6½ 0:70 0:70 0: 91�I cm2=s; (16)

where In is the n� n identity matrix. Diffusion of Ca2þ in the

longitudinal direction is less impaired than in the radial direction.

ATP and parvalbumin are myoplasmic Ca2þ buffers that

are both mobile. ATP (~1.32 nm diameter; Mr ¼ 507) has

a diffusion coefficient of Dwater
ATP ¼ 3:54� 10�6cm2=s in

free solution at 25�C (31) and parvalbumin (~3 nm diameter,

Mr ¼ 12,000) has a diffusion coefficient of Dwater
Parv ¼ 1:48�

10�6cm2=s in free solution at 20�C (34). It follows that

Dmuscle
ATP ¼ 1:77� 10�6cm2=s and Dmuscle

Parv ¼ 0:75� 10�6 at

25�C, and from Fig. 6,
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GATPD
muscle
ATP ¼ 1:77 � 10�6½ 0:60 0:60 0: 86�I cm2=s

GParvD
muscle
Parv ¼ 0:75 � 10�6½ 0:38 0:38 0: 73�I cm2=s

:

(17)

The anisotropic diffusion not only of Ca2þ but of Ca2þ

buffers within the myoplasm therefore has a significant effect

on the Ca2þ dynamics.

plasm. We assume that the myofilaments are arranged to

produce maximum isometric tension so that the bridge

regions of the myosin filaments completely overlap with

the actin filaments. Our model of Ca2þ transport within the

half-sarcomere is based on the model by Baylor and Holling-

worth (39) and incorporates Mg2þ competition for Ca2þ

binding sites on ATP and parvalbumin:

vCa

vt
¼ DCa



GCa

x V2
x þ GCa

r

�
1

r
Vr þ V2

r

��
Ca� kon

T CaðTtot � ½CaT�Þ þ koff
T ½CaT�

�kon
CATPCa½ATP� þ koff

CATP½CaATP� � kon
CPCa½P� þ koff

CP½CaP�; 0 < x < L; 0 < r < R;

v½ATP�
vt

¼ DATP



GATP

x V2
x þ GATP

r

�
1

r
Vr þ V2

r

��
½ATP� � kon

CATPCa½ATP� þ koff
CATP½CaATP�

�kon
MATPMg½ATP� þ koff

MATP½MgATP�;
v½CaATP�

vt
¼ DATP



GATP

x V2
x þ GATP

r

�
1

r
Vr þ V2

r

��
½CaATP� þ kon

CATPCa½ATP� � koff
CATP½CaATP�;

v½P�
vt
¼ DP



GP

x V2
x þ GP

r

�
1

r
Vr þ V2

r

��
½ATP� � kon

CPCa½P� þ koff
CP½CaP� � kon

MPMg½P� þ koff
MP½MgP�;

v½CaP�
vt

¼ DP



GP

x V2
x þ GP

r

�
1

r
Vr þ V2

r

��
½CaP� þ kon

CPCa½P� � koff
CP½CaP�;

v½MgATP�
vt

¼ DATP



GATP

x V2
x þ GATP

r

�
1

r
Vr þ V2

r

��
½MgATP� þ kon

MATPMg½ATP� � koff
MATP½MgATP�;

v½MgP�
vt

¼ DP



GP

x V2
x þ GP

r

�
1

r
Vr þ V2

r

��
½MgP� þ kon

MPMg½P� � koff
MP½MgP�;

v½CaT�
vt

¼
�
kon

T CaðTtot � ½CaT�Þ � koff
T ½CaT�

�

; (18)
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The binding of myoplasmic Ca2þ to troponin on the

myofilaments generates cross-bridge cycling and force

generation. The troponin binding sites are located on each

myosin head and two Ca2þ ions must bind to troponin to

activate the cross-bridges. The troponin binding sites are

therefore nonhomogeneous in their spatial distribution, and

we investigate the effect of this nonhomogeneous distribu-

tion on the macroscopic Ca2þ dynamics. We show in

Appendix B using homogenization that the nonhomoge-

neous distribution in the troponin binding sites has no effect

on the macroscopic Ca2þ dynamics. The binding sites of the

buffers ATP and parvalbumin are also nonhomogeneous in

their distribution. This is because the size of ATP and parval-

bumin is significant relative to the myofilament geometry,

and therefore the concentration of binding sites is signifi-

cantly lower in zones around the myofilaments. Our result

in Appendix B also applies in this situation, and the nonho-

mogeneous binding site distribution has no effect on the

macroscopic Ca2þ dynamics.

Ca2þ transport in skeletal muscle

In this section, we investigate the effect of the structure of the

myofilaments and the SR on Ca2þ transport within the myo-
where Ca; ½ATP ; ½CaATP ; ½P ; ½CaP ; ½MgATP ; ½MgP ;�
					

and ½CaT� denote the concentrations of Ca2þ, ATP, ATP-

bound Ca2þ, parvalbumin, parvalbumin-bound Ca2þ, ATP-

bound Mg2þ, parvalbumin-bound Mg2þ, and troponin-bound

Ca2þ. Model parameter values and definitions are defined

in Table 1. There is no flux of material across the Z-line

(x ¼ 0) or M-line (x ¼ L), so that

vY

vx






x¼ 0

¼ vY

vx






x¼ L

¼ 0;

Y˛fCa; ½ATP�; ½CaATP�; ½P�; ½CaP�; ½MgATP�; ½MgP�g: (19)

The Ca2þ transport between the myoplasm and the SR is

described by

G Ca
r DCa

vCa

vr




r¼R
¼
�

LeðCaSR � Caðx;RÞÞ

� nSRCaðx;RÞ
Caðx;RÞ þ KSR

JðxÞ
J
þWðtÞSðxÞ; vCa

vr
jr¼0 ¼ 0; ð20Þ

�

where CaSR is the SR [Ca2þ], the function JðxÞ defines the

SR density,
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TABLE 1 Model parameter values and definitions

Parameter Unit Definition (equation) Value Source

ySR mMmm ms�1 SR Ca2þ pump uptake rate 0.5 This work

KSR mM SR Ca2þ pump Michaelis constant 1 (39)

Le mm ms�1 SR Ca2þ leak constant 0.000014 (46)

CaSR mM SR [Ca2þ] 1500 (46)

L mm Half-sarcomere length (Z-line to M-line) 1.1 (46)

R mm Sarcomere radius 0.5 (46)

DC mm Width of terminal cisternae 0.1 This work

GCa
x — Longitudinal tortuosity factor for Ca2þ 0.91 This work

GCa
r — Radial tortuosity factor for Ca2þ 0.7 This work

GATP
x — Longitudinal tortuosity factor for ATP 0.86 This work

GATP
r — Radial tortuosity factor for ATP 0.6 This work

GP
x — Longitudinal tortuosity factor for parvalbumin 0.73 This work

GP
r — Radial tortuosity factor for parvalbumin 0.38 This work

DCa mm2ms�1 Calcium diffusion coefficient 0.389 (43)

DATP mm2ms�1 ATP diffusion coefficient 0.177 (31)

DP mm2ms�1 Parvalbumin diffusion coefficient 0.075 (45)

kon
T mM�1ms�1 Rate of Ca2þ binding to troponin 0.0885 (39)

koff
T ms�1 Rate of Ca2þ dissociation from troponin 0.115 (39)

Ttot mM Total concentration of troponin binding sites 140 (46)

kon
CP mM�1ms�1 Rate of Ca2þ binding to parvalbumin 0.0417 (39)

koff
CP ms�1 Rate of Ca2þ dissociation from parvalbumin 0.0005 (39)

Ptot mM Total concentration of parvalbumin binding sites 1500 (39)

ton ms Time constant for RyR channel opening 1.5 (39)

toff ms Time constant for RyR channel closing 1.9 (39)

A mMmm ms�1 Maximum RyR Ca2þ permeability 550 This work

[Mg2þ] mM Mg2þ concentration 1000 (39)

ATPtot mM Total concentration of ATP binding sites 8000 (39)

kon
MP mM�1ms�1 Rate of Mg2þ binding to parvalbumin 0.000033 (39)

koff
MP ms�1 Rate of Mg2þ dissociation from parvalbumin 0.003 (39)

kon
CATP mM�1ms�1 Rate of Ca2þ binding to ATP 0.15 (39)

koff
CATP ms�1 Rate of Ca2þ dissociation from ATP 30 (39)

kon
MATP mM�1ms�1 Rate of Mg2þ binding to ATP 0.0015 (39)

koff
MATP ms�1 Rate of Mg2þ dissociation from ATP 0.15 (39)
JðxÞ ¼

8<:1:0; 0 < x%0:25

0:25; 0:25 < x%0:55

0:05; 0:55 < x%L ¼ 1:1

J ¼
Z L

0

JðxÞdx;

(21)

which is based on human SR images by Ogata and Yamasaki

(36), and the function SðxÞ defines the location of the

terminal cisternae

SðxÞ ¼
0; 0 < x%1

2
L� 1

2
DC

1; 1
2
L� 1

2
DC < x%1

2
L þ 1

2
DC mm

0; 1
2
L þ 1

2
DC < x%L

;

8><>: (22)

where DC is the width of the terminal cisternae. The SR

Ca2þ pump uptake rate (ySR) was chosen so that the Ca2þ

removal rate is 1.5 mM ms�1 over the entire half-sarcomere

(39). The release of Ca2þ from the SR occurs at the midpoint

of the actin filaments in mammalian muscle (36) and can be

described by (46)

WðtÞ ¼ Að1� expð � t=tonÞÞexp
�
� t=toff

�
: (23)
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The effects of obstructed diffusion due to the myofilaments on

the myoplasmic Ca2þ transients are shown in Fig. 9. Shown

are the Ca2þ and ATP-bound Ca2þ (Ca2þ-ATP) transients

at the terminal cisternae (x ¼ 0.55 mm) at t ¼ 0.5 ms. The

myofilament lattice significantly obstructs the transport of

Ca2þ and ATP-bound Ca2þ into the myoplasm. Ca2þ-ATP

plays a significant role in the transport of Ca2þwithin the my-

oplasm (39). A smaller flux of Ca2þ away from the SR during

a Ca2þ transient ensures that Ca2þ is more quickly pumped

back into the SR and therefore generates a smaller Ca2þ tran-

sient. Obstructed diffusion due to the myofilaments therefore

plays a role in the distribution of myoplasmic Ca2þ.

The significant asymmetric distribution in the SR density

(36) and, consequently, the SR Ca2þ-ATPase pump density

(Fig. 10) is expected to generate an associated asymmetric

Ca2þ distribution. The effect of the nonuniform SR Ca2þ-AT-

Pase pump distribution on the myoplasmic Ca2þ distribution

near the surface of the SR (r ¼ R) is shown in Fig. 10. The

nonuniform SR Ca2þ-ATPase pump distribution introduces

only very small asymmetries in the myoplasmic Ca2þ tran-

sients. The reason for this small asymmetry in the myoplasmic
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Ca2þ distribution is that Ca2þ diffusion and buffering is fast

enough to counteract any asymmetry introduced by the asym-

metric SR density.

DISCUSSION

The diffusion of small molecules in skeletal muscle has been

observed to be highly anisotropic (5,8,28,47). For example,

Kinsey et al. (8) measured the anisotropic diffusion of phos-

phocreatine within fish fast- and slow-twitch muscle fibers

and found that tx ¼ ty ¼ 0:58 and tz ¼ 0:90 in the fast

FIGURE 9 The effect of obstructed diffusion due to the myofilaments on

the myoplasmic Ca2þ transients. Shown are typical Ca2þ and ATP-bound

Ca2þ (Ca2þ-ATP) transients (solid line) that account for the obstructed diffu-

sion along with the transients without obstructed diffusion (dotted line).

Transients are shown for x ¼ 0.55 mm (i.e,. at the terminal cisternae) and

t ¼ 0.5 ms. The myofilament lattice significantly obstructs the transport of

Ca2þ and ATP-bound Ca2þ into the myoplasm.

FIGURE 10 The myoplasmic Ca2þ distribution near the surface of the SR

(r¼R).The nonuniformSRCa2þ-ATPase pump distribution (dotted line) intro-

duces very small asymmetries in the myoplasmic Ca2þ transients (solid line).
fibers, and tx ¼ ty ¼ 0:5 and tz ¼ 0:80 in the slow fibers.

The anisotropic diffusion of molecules within skeletal

muscle is important for determining whether intracellular

gradients in energy metabolites such as phosphocreatine

occur during muscle fatigue in large-diameter skeletal

muscle fibers (8). Using our mathematical modeling

approach, we found that the myofilaments, myosin heads,

SR, t-tubules, and mitochondria significantly impede diffu-

sion in skeletal muscle. Because obstructed diffusion due

to the myofilaments and myosin heads occurs on a spatial

scale significantly smaller than that of obstructed diffusion

due to the SR, t-tubules, and mitochondria, it follows that

these two obstructed diffusion processes are independent.

For diffusion on the muscle fiber spatial scale, our model

therefore predicts that tx ¼ ty ¼ 0:73� 0:91 ¼ 0:66 and

tz ¼ 0:93� 0:97 ¼ 0:90 for a point particle and tx ¼
ty ¼ 0:58 and tz ¼ 0:85 for phosphocreatine, which is

consistent with the tortuosity measurements for phosphocre-

atine in muscle fibers by Kinsey et al. (8).

Many biological processes within skeletal muscle, such as

calcium transport, need only be considered on the myofibril

scale. For diffusion on the myofibril spatial scale, the myofila-

ments and myosin heads are the major obstacles: the SR,

t-tubules, and mitochondria do not significantly impede diffu-

sion within an individual myofibril. For a point particle

diffusing on the myofibril spatial scale, our model therefore

predicts that tx ¼ ty ¼ 0:73 and tz ¼ 0:93. Calcium has an

atomic radius of 0.18 nm, so for calcium diffusion on the

myofibril spatial scale, our model predicts that tx ¼
ty ¼ 0:70 and tz ¼ 0:91. The myofilaments and myosin heads

therefore significantly impede the diffusion of calcium within

skeletal muscle, and this process has not been accounted for

in existing models of calcium transport within skeletal muscle.

Protein size has a significant effect on tortuosity in skeletal

muscle. This effect of protein size on tortuosity is believed to

be due to structural barriers within the myoplasm acting as

obstacles to diffusion (7,8) and was investigated with our math-

ematical model. We found that the myosin heads have a signif-

icant effect on the tortuosity factor for protein diffusion in

skeletal muscle. Although our model predictions of the radial

tortuosity factor are consistent with experimental measure-

ments of the radial tortuosity factor (6,8,30,31,33), the model

does not explain the measured longitudinal tortuosity factors

for large molecules such as cytochrome c, myoglobin, and

hemoglobin (7). The model also predicts that the longitudinal

and radial diffusion coefficients for large molecules in skeletal

muscle are significantly different and that therefore the diffu-

sion of large molecules is anisotropic. However, the myoplas-

mic diffusion data for larger molecules, such as myoglobin,

indicates that diffusion of large molecules is isotropic

(7,33,34). Therefore, our model, based on the steric hindrance

to diffusion by the myoplasmic structures, explains the

observed anisotropy for small molecules such as phosphocrea-

tine, but does not explain the isotropic diffusion of larger

molecules, such as myoglobin. This indicates that factors not
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included in our model are responsible for this observed isotropic

diffusion of larger molecules within the myoplasm. Possible

explanatory factors include obstruction due to the Z-band, M-

band, and C-protein structures, hydrodynamic wall effects

that come into play for large molecules diffusing in confined

spaces, and the molecular motion that the myosin heads and

the other myofilament proteins undergo continuously.

The arrangements of the Z-band, M-band, and C-protein

structures in skeletal muscle have been measured (10) and

the interfilament distances within the Z-band and M-band

have been estimated to be 15–20 nm (7). Although this inter-

filament distance is comparable to the interfilament distance

within the A-band, the diffusion of large molecules through

the Z-band and M-band could be significantly impeded by

the a-actinin and M-bridge structures, respectively. Ferritin

(12.2 nm diameter) was observed to be able to diffuse in the

longitudinal direction of muscle fibers (7), so the obstruction

by the a-actinin and M-bridge structures is not too restrictive.

Furthermore, the Z-band and M-band lattices include obsta-

cles that are oriented in directions both longitudinal and

perpendicular to the fiber, and diffusion within the Z-band

and M-band would not be expected to be significantly aniso-

tropic. Anisotropic diffusion of large molecules in the Z-band

and M-band, with preferential transport in the radial direction,

would be required to counteract the preferential transport of

large molecules in the longitudinal direction within the

A-band that have been estimated in this article to generate

isotropic diffusion through the entire fiber. Although the

Z-band and M-band structures will impede the longitudinal

transport of large molecules, they will most likely impede,

to a similar degree, the radial transport of large molecules,

and they are unlikely to completely explain the observed

isotropic diffusion of large molecules in skeletal muscle.

A potential explanation of the isotropic diffusion of large

molecules is the hydrodynamic wall effects that come into

play for large molecules diffusing in confined spaces. There

is increased hydrodynamic drag on diffusing molecules near

obstacles and therefore a reduction in the mobility of the

diffusing molecule (48,49,50). This hydrodynamic drag is

proportional to the diameter of the diffusing molecule relative

to the dimension of the porous media (49). This increased

hydrodynamic drag near the boundary of an obstacle ensures

that diffusion of large particles is slow in all directions relative

to the boundary as opposed to being slow only in directions

toward the interior of the obstacle as in the case of steric

hindrance of point particles. This hydrodynamic drag effect

ensures that diffusion becomes more isotropic as the size of

the diffusing particle increases, as per measurements of diffu-

sion in skeletal muscle. Another potential contributing factor

for the isotropic diffusion of large molecules is the continuous

molecular motion that the myosin heads and the other myofil-

ament proteins undergo, which results in localized mixing of

the large molecules. The effect of mixing on the transport of

large molecules is expected to be isotropic in nature and

more significant for larger molecules.
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The mitochondria, t-tubules, and SR also obstruct diffu-

sion in skeletal muscle. However, the level of obstructed

diffusion due to these obstacles is unknown. We estimated

this level of obstruction using a scanned reconstruction of

an image of the mitochondria, t-tubules, and SR in muscle

fibers by Ogata and Yamasaki (36). Using our model, we

found that tx ¼ ty ¼ 0:91 and tz ¼ 0:97 for a slow-twitch

fiber with mitochondria, t-tubules, and SR but without

myofilaments. Mitochondria, t-tubules, and SR therefore

have a small but significant effect on intermyofibril diffusion

in skeletal muscle. Furthermore, differences in the structure

of the SR, t-tubules, mitochondria, and myofilaments

between fiber types will have a small but significant effect

on tortuosity that could potentially be characterized using

our model. Our modeling study is therefore useful for under-

standing the role of cellular structural organization on the

transport of different metabolites in skeletal muscle.

Homogenization theory allows the dynamics on a micro-

scopic scale to be incorporated into a macroscopic description

of the system dynamics. Homogenization of microscopic

spatial structure and fast buffer kinetics are assumptions

that are used to simplify models of Ca2þ transport. We found

that theoretical models based on both of these assumptions

are independent of the order in which the assumptions

are applied. There is therefore no interaction between the

assumptions of fast buffering and homgenization. We also

investigated the effect of the nonhomogeneous spatial distribu-

tion in the troponin binding sites on the macroscopic

myoplasmic Ca2þ dynamics. Using homogenization theory,

we found that the nonhomogeneous distribution in the troponin

binding sites has no effect on the macroscopic Ca2þ dynamics.

We also investigated the effect of the nonhomogeneous SR

distribution on the myoplasmic Ca2þ transients. The signifi-

cant asymmetric distribution in the SR density and, conse-

quently, the SR Ca2þ-ATPase pump density are expected

to generate an associated asymmetric Ca2þ distribution.

However, we found that the nonuniform SR Ca2þ-ATPase

pump distribution introduces only very small asymmetries

in the myoplasmic Ca2þ transients. The reason for this

small asymmetry in the myoplasmic Ca2þ distribution is

that Ca2þ diffusion and buffering are fast enough to counteract

any asymmetry introduced by the asymmetric SR density.

The effect of the structure of the myofilaments and the SR

on Ca2þ transport within the half-sarcomere was also charac-

terized. Our model of Ca2þ transport within the half-sarco-

mere is based on the model by Baylor and Hollingworth

(39) and incorporates Mg2þ competition for Ca2þ binding

sites on ATP and parvalbumin. We found that the myofila-

ment lattice significantly obstructs the transport of Ca2þ

and ATP-bound Ca2þ into the myoplasm. Ca2þ-ATP plays

a significant role in the transport of Ca2þ within the myo-

plasm (39), even though ATP is obstructed by the myofila-

ment lattice to a greater degree than Ca2þ due to its larger

size. A smaller flux of Ca2þ away from the SR during

a Ca2þ transient ensures that Ca2þ is more quickly pumped
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back into the SR and therefore generates a smaller Ca2þ tran-

sient. Obstructed diffusion due to the myofilaments therefore

plays a role in the distribution of myoplasmic Ca2þ.

APPENDIX A

Our homogenization analysis proceeds along the lines described by Goel

et al. (41). If it is assumed that the buffer is immobile and the buffer kinetics

are rapid, reaching equilibrium at each location before significant diffusion

occurs, then the Ca2þ dynamics are described by (42)

vc

vt
¼ 1

1 þ q
V$AVc; x˛U

q ¼ Kbt

ðK þ cÞ2
; A ¼ GDmuscle

c

Vc$bn ¼ 0; on U
0
;

(A1)

where U denotes the void myoplasmic space and K ¼ k�=kþ. We visualize

the myofilament lattice as forming a periodic network with period 3 and

domain U3. The Ca2þ concentration within this domain is denoted by c3

(where the subscript 3 denotes a quantity dependent on the period 3 of the

domain) and we consider a family of problems and their solutions in the limit

3/0. It follows that

vc3

vt
¼ 1

1 þ q
V$A3Vc3; x˛U 3

q ¼ Kbt

ðK þ c3Þ2

A3Vc3$bn3 ¼ 0; on U
0

3

;

(A2)

where A3 ¼ aijðx=3Þ denotes the diffusion coefficient and bn3 denotes the

exterior normal to the boundary U
0

3. We introduce the periodic unit cube

with microscopic variable y ¼ ½y1; y2; y3 ¼ x=3� , yi˛½0; 1� and define y˛Uc

if x ¼ y3˛Ue. We assume that c3 is a function of both x˛U and y˛Uc:

c3 ¼ cðx; y; tÞ; (A3)

with asymptotic expansion

c3 ¼ c0ðx; y; tÞ þ 3c1ðx; y; tÞ þ 32c2ðx; y; tÞ þ .
cnðx; y; tÞ ¼ cnðx; y þ 1; tÞ : (A4)

Defining V ¼ v=vxi þ 3�1v=vyi we obtain

V$A3V ¼



v

vxi

þ 3�1 v

vyi

�
aijðyÞ

 
v

vxj

þ 3�1 v

vyj

!
¼ 3�2A0 þ 3�1A1 þ A2; (A5)

where the operators Ai are

A0 ¼
v

vyi

 
aijðyÞ

v

vyj

!

A1 ¼
v

vyi



aijðyÞ

v

vxj

�
þ v

vxi



aijðyÞ

v

vyj

�

A2 ¼ aijðyÞ
v2

vxivxj

:

(A6)

It follows from Eqs. A2, A3, and A5 that

vc3

vt
¼ 1

1 þ qðc3; xÞ
�
3�2A0 þ 3�1A1 þ A2

	
c3; x˛U ; y˛Uc

a3
ij



v

vxi

þ 3�1 v

vyi

�
n3i ¼ 0; x˛U

0

3
; y˛U

0

c;
ðA7Þ

where ni denotes the exterior normal to the boundary U
0

c. Since

it follows that

vðc0 þ 3c1 þ 32c2 þ .Þ
vt

¼ 1

1 þ qðc0Þ
�
1� 3f1 þ 32f2

þ.�½3�2A0 þ 3�1A1 þ A2�ðc0 þ 3c1 þ 32c2 þ .Þ

a3
ij



v

vxi

þ 3�1 v

vyi

�
n3i ¼ 0; x˛U

0

3
; y˛U

0

c :

(A9)

We proceed by equating coefficients of 3 in Eq. A9. The equation at order

3�2 require

A0c0 ¼ 0; y˛Uc; (A10)

and the boundary conditions at order 3�1 require that

aijðyÞ
vc0

vyj

ni ¼ 0; y˛U
0

c: (A11)

Since cnðx; y; tÞ ¼ cnðx; yþ 1; tÞ it follows that c0 ¼ c0ðx; tÞ. The equation

at order 3�1 require

A1c0 þ A0c1 ¼ 0; y˛Uc; (A12)

and the boundary conditions at order 30 require

aijðyÞ
 

vc0

vxj

þ vc1

vyj

!
ni ¼ 0; y˛U

0

c: (A13)

1

1 þ qðc0 þ 3c1 þ 32c2 þ .Þ ¼
1

1 þ qðc0Þ þ 3c1q
0 ðc0Þ þ 32c2q

0 ðc0Þ þ .

¼ 1

1 þ qðc0Þ

"
1� 3c1q

0 ðc0Þ
1 þ qðc0Þ

� 32c2q
0 ðc0Þ

1 þ qðc0Þ
þ
 

3c1q
0 ðc0Þ

1 þ qðc0Þ

!2

þ.

#

¼ 1

1 þ qðc0Þ
�
1� 3f1 þ 32f2 þ .

	
; where f1 ¼

c1q
0 ðc0Þ

1 þ qðc0Þ
; f2 ¼

 
c1q

0 ðc0Þ
1 þ qðc0Þ

!2

; (A8)
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If we define u to be the solution to

v

vyj

"
aijðyÞ

 
vuk

vyj

þ djk

!#
¼ 0; y˛Uc

aijðyÞ
�vuk

vyj

þ djk

�
ni ¼ 0; y˛U

0

c

ukðx; y; tÞ ¼ ukðx; y þ 1; tÞ ;

(A14)

then

c1 ¼ ui

vc0

vxi

þ c1ðx; tÞ: (A15)

The equation at order 30 requires that

½1 þ qðc0Þ�
vc0

vt
¼ ðA2c0 þ A1c1 þ A0c2Þ; y˛Uc;

(A16)
and the boundary conditions at order 31 require that

aijðyÞ
 

vc1

vxj

þ vc2

vyj

!
ni ¼ 0; y˛U

0

c: (A17)

Integrating the left-hand side of Eq. A16 over Uc yieldsZ
Uc

½1 þ qðc0Þ�
vc0

vt
dy ¼ ½1 þ qðc0Þ�

vc0

vt
gc; (A18)

where
R

Uc
dy denotes the volume of Uc within the unit cell. Integrating

Eq. A16 over Uc yieldsZ
Uc

ðA2c0 þ A1c1 þ A0c2Þdy

¼
Z

Uc

v

vxi



aijðyÞ



vc0

vxj

þ vc1

vyj

��
dy

þ
Z

Uc

v

vyi

 
aijðyÞ

 
vc1

vxj

þ vc2

vyj

!!
dy; (A19)

and substituting Eq. A15 into the first term on the right-hand side of Eq. A19

yieldsZ
Uc

v

vxi

�
aijðyÞ

�vc0

vxj

þ v

vyj

�
ui

vc0

vxi

þ c1ðx; tÞ
���

dy

¼
Z

Uc

v

vxi

�
aijðyÞ

�
djk þ

vuk

vyj

�vc0

vxk

�
dy

¼ v

vxi

�
~aikðyÞ

vc0

vxk

�
;

where ~aikðyÞ ¼
Z

Uc

aijðyÞ
�

djk þ
vuk

vyj

�
dy;

(A20)

where djk is the Kronecker delta. By applying the divergence theorem to the

second term on the right-hand side of Eq. A19 and using Eq. A17 we obtainZ
Uc

v

vyi

 
aijðyÞ

 
vc1

vxj

þ vc2

vyj

!!
dy ¼ 0: (A21)

From Eqs. A18–A21, we arrive at
Biophysical Journal 96(12) 4764–4778
½1 þ qðc0Þ�
vc0

vt
gc ¼

v

vxi



~aikðyÞ

vc0

vxk

�
; (A22)

where ~aikðyÞ=gc are the effective diffusion coefficients for the homogenized

problem.

APPENDIX B

The troponin binding sites are nonhomogeneous in their spatial distribution

and are located within the domain J. We assume that the immobile binding

sites are located periodically in space and that the buffer kinetics are rapid,

reaching equilibrium at each location before significant diffusion occurs.

The Ca2þ dynamics are then described by

vc

vt
¼



1 þ



1

1 þ q
� 1

�
HðxÞ

�
V$AVc; x˛U ¼ R3

q ¼ Kb�t
ðK þ cÞ2

; b�t ¼ bt=a; ðB1Þ

where a is the fraction of the domain occupied by the binding sites and

HðxÞ ¼ 1 if x˛J and HðxÞ ¼ 0 if x;J. We visualize the binding sites

as forming a periodic arrangement with period 3 and domain U3 and intro-

duce the periodic unit cube with microscopic variable y ¼ ½y1; y2; y3 ¼�
x=3, yi˛½0; 1� and y˛Uc if x ¼ y3˛Ue. We define HðyÞ ¼ 1 if x ¼ y3˛J

and HðyÞ ¼ 0 if x ¼ y3;J. The Ca2þ concentration within the domain

U3 is denoted by c3 (where a subscript 3 denotes a quantity dependent on

the period 3 of the domain) and we consider a family of problems and their

solutions in the limit 3/0. We assume that c3 is a function of both x˛U and

y˛Uc:

c3 ¼ cðx; y; tÞ; (B2)

with asymptotic expansion

c3 ¼ c0ðx; y; tÞ þ 3c1ðx; y; tÞ þ 32c2ðx; y; tÞ þ .

cnðx; y; tÞ ¼ cnðx; y þ 1; tÞ:
(B3)

It follows that

vc3

vt
¼
�
3�2A0 þ 3�1A1 þ A2

	�
c0 þ 3c1 þ 32c2 þ .

�
� ½1� HðyÞ� þ 1

1 þ qðc0Þ
�
1� 3f1 þ 32f2 þ .

	
�
�
3�2A0 þ 3�1A1 þ A2

	�
c0 þ 3c1 þ 32c2 þ .

�
�HðyÞ; y˛Uc; (B4)

where Ai and fi are defined in Eqs. A6 and A8, respectively. We proceed

by equating coefficients of 3 in Eq. B4. The equation at order 3�2 requires

that

A0c0bðyÞ ¼ 0; y˛Uc

bðyÞ ¼ ½1� HðyÞ� þ HðyÞ
1 þ qðc0Þ

; (B5)
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and since cnðx; y; tÞ ¼ cnðx; yþ 1; tÞ it follows that c0 ¼ c0ðx; tÞ. The

equation at order 3�1 requires that

A1c0 þ A0c1 ¼ 0; y˛Uc; (B6)

as in Appendix A. The equation at order 30 requires

1

bðyÞ
vc0

vt
¼ ðA2c0 þ A1c1 þ A0c2Þ; y˛Uc: (B7)

Integrating the left-hand side of Eq. B7 over Uc yieldsR
Uc

1

bðyÞ
vc0

vt
dy ¼

Z
Uc

ð1 þ qÞ
ð1 þ qÞ½1� HðyÞ� þ HðyÞ

vc0

vt
dy

¼ ð1 þ qÞvc0

vt

Z
Uc

1

ð1 þ qÞ½1� HðyÞ� þ HðyÞdy

¼ ð1 þ qÞvc0

vt

�
a þ 1� a

1 þ q

�
¼ ð1 þ q�Þvc0

vt
; q� ¼ qa ¼ Kbt

ðK þ cÞ2
;

(B8)
and it follows that

vc

vt
¼ 1

1 þ q�
V$AVc; x˛R3

q� ¼ Kbt

ðK þ cÞ2
:

(B9)
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