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Stochastic Actin Polymerization and Steady Retrograde Flow Determine
Growth Cone Advancement

Timo Betz,* Daniel Koch, Daryl Lim, and Josef A. Käs
Division of Soft Matter Physics, Department of Physics, Universität Leipzig, 04103 Leipzig, Germany

ABSTRACT Neuronal growth is an extremely complex yet reliable process that is directed by a dynamic lamellipodial structure
at the tip of every growing neurite, called the growth cone. Lamellipodial edge fluctuations are controlled by the interplay between
actin polymerization pushing the edge forward and molecular motor driven retrograde actin flow retracting the actin network. The
leading edge switches randomly between extension and retraction processes. We identify switching of ‘‘on/off’’ states in actin
polymerization as the main determinant of lamellipodial advancement. Our analysis of motility statistics allows for a prediction
of growth direction. This was used in simulations explaining the amazing signal detection capabilities of neuronal growth by
the experimentally found biased stochastic processes. Our measurements show that the intensity of stochastic fluctuations
depend on changes in the underlying active intracellular processes and we find a power law h ¼ a*xa with exponent a ¼ 2.63 5

0.12 between noise intensity h and growth cone activity x, defined as the sum of protrusion and retraction velocity. Differences in
the lamellipodial dynamics between primary neurons and a neuronal cell line further suggests that active processes tune the
observed stochastic fluctuations. This hints at a possible role of noise intensity in determining signal detection sensitivity.
INTRODUCTION

Neuronal growth is a fundamental process for the correct

development of the central nervous system as well as for

neuronal plasticity and nerve regeneration. During growth,

neuronal cells form long extensions, called neurites, which

are guided toward their target sites by a motile structure at

their tip, the growth cone (Fig. 1, A and F). Morphological

changes driving this growth process are controlled by cyto-

skeletal activity within the lamellipodium, a flat actin rich

structure at the periphery of the growth cone (1). Neuronal

growth has been studied extensively from a molecular

biology perspective revealing many details about signaling

pathways (2), whereas cell biology has identified the detailed

structure of neuronal growth cones (3). Actin turnover plays

a crucial role for neuronal growth dynamics. It was shown

that actin is polymerized into a dense network at the leading

edge of the lamellipodium that pushes the membrane

forward resulting in lamellipodium protrusion (4). Simulta-

neously, polymerization is antagonized by the retrograde

actin flow, a continuous centripetal movement of the actin

network away from the leading edge (3,5). During this retro-

grade transport, the actin gradually depolymerizes, freeing

new monomers to repolymerize. In contrast to the dense

and flat actin network in the lamellipodium, growth cones

also show filopodia that consist of actin bundles extending

finger-like from the lamellipodium. The actin transport and

polymerization processes that determine the growth

dynamics in filopodia were studied in detail previously (5),

showing that the polymerization velocity at the filopodial
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tip is controlled independently from the retrograde flow.

More recent work suggests a similar mechanism for growth

cone lamellipodia, where leading edge actin polymerization

is regulated independently from the myosin motor driven

retrograde flow, and dominates the dynamics of lamellipo-

dial extensions (6).

Nevertheless, how the interplay between leading edge

actin polymerization and retrograde actin flow can lead to

controlled growth cone turning is still not resolved fully.

We have shown previously (7,8) that lamellipodial edge

dynamics can be quantitatively described by a random

walk of forward and backward steps where the stochastic

weight determines whether the growth cone advances or

retracts. The central role of stochastic processes in growth

cone motility is intriguingly counterintuitive considering

the importance of correct neuronal path finding. Further-

more, a recent theoretical investigation by deGennes

suggests that random processes might be important for the

collective behavior of many growth cones influencing each

other (9).

MATERIAL AND METHODS

Cell culture and image acquisition

Experiments were conducted with primary embryonic rat neurons, prepared

as described previously (12,13) and with NG108-15 cells, transfected with

a pEGFP-actin vector (Clontech, Mountain View, CA) to fluorescently label

the actin cytoskeleton. The transfection of the NG108-15 cells was carried

out using Nanofectin (PAA, Pasching, Austria) according to the product

manual. Cells were cultured in Dulbecco’s modified Eagle’s medium

(PAA) supplemented with 10% fetal bovine serum (PAA), 100 U/mL peni-

cillin/streptomycin (Sigma, St. Louis, MO) and 10 mM HEPES (Sigma), and

plated on laminin coated glass coverslips 24–48 h before observation.

During the observation period, cell viability was ensured by controlling

pH and temperature stability in a custom cell chamber. Fluorescence image
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FIGURE 1 Edge dynamics of NG108-15 and primary embryonic rat growth cones recorded for 20 min in 3- and 2-s time steps, respectively. (A) Fluores-

cence image of GFP-actin labeled growth cone at start of time series, and (F) phase contrast image of primary growth cone. Data presented are related to the

front sector of the growth cone. Vertical lines indicate regions cropped for the kymograph in (B and G). Scale bar¼ 10 mm. (B and G) Kymographs display the

leading edge’s time evolution. Scale bar ¼ 2 mm. (C and H) Temporal development of edge velocity (blue), polymerization (green), and retrograde flow (red)

along the direction shown in the kymographs. (D and J) Normalized mean velocity distributions of edge retraction and extension phases (blue), of polymer-

ization (green), and of retrograde flow (red). The histograms are fitted with a double Gaussian for the edge velocity and the fit values are listed in Table 1.

(E and K) Underlying potentials of the probability landscape for the mean edge velocity during extension and retraction phases, data (black) and fit (blue).
time series for 5 to 20 min time periods with 3 to 6 s/frame time resolution

were recorded using an oil immersion objective (63� 1.4 NA; Leica Micro-

systems, Bensheim, Germany) on a confocal laser scanning microscope

(TCS SP2 AOBS; Leica Microsystems) with a resolution of 1024 � 1024

pixels and 4� line average in bidirectional mode. Considering the Nyquist

sampling theorem, we sample two to three times faster than the observed

protrusion and retraction phases that have a characteristic timescale in the

order of 10 s (7).

Primary neuronal cultures were prepared from embryonic Wistar rat brain

at the developmental stage of 16–18 days according to standard protocols

(12). In brief, the telencephalic cortical hemispheres were dissected from

embryonic brain. Cell dissociation was achieved by mild trypsination for

5 min at 37�C (0.12% trypsin/EDTA solution, 1:250; Gibco, Eggenstein,

Germany with DNase, 10 mg/mL) and stopped with fetal calf serum. Pieces

of tissue were triturated through a small pipette and filtration through a sterile

cell strainer (40 mm Nylon; Falcon, BD, Franklin Lakes, NJ). The resulting

cell suspension was centrifuged for 5 min at 200 � g and the cell pellet was

resuspended in Neurobasal medium (Gibco) supplemented with 2% B27

(Gibco), 500 mM L-glutamine, 50 mg/mL gentamycin, and 2% fetal calf

serum (Biochrom AG, Berlin, Germany). Cells were seeded in laminin-

coated tissue culture dishes. After 1 day in culture the medium was

exchanged with the above specified medium but without fetal bovine serum.

Phase contrast time series of 10–20 min with a time resolution of 1–2 s and

a spatial resolution of 1344� 1024 pixels have been recorded with a Hama-

matsu ORCA-285 IEEE 1394 -Based Digital Camera in 12-bit using an oil

immersion objective (100� 1.35 NA OIL PH3, Leica Microsystems) in
combination with a 2� C-mount on a standard inverted microscope

(DMIRB, Leica).

Data analysis

For analysis, images are turned to always have the same upward directionality

of the growth cone in the subsequent analysis. A threshold algorithm with

repeated dilation and erosion is used to extract a first binary shape of the growth

cone. The pixel-based center of mass (COM) with each pixel having the same

mass density is calculated from this binary shape and the average COM of

successive images is defined as COM for the image pair being analyzed. Rela-

tive to this COM the edge points in 500 angular directions are obtained with

subpixel resolution in the following way (Fig. 2): the image is smoothed

with a 7 � 7 Gaussian kernel and the derivative of the intensity values along

the line from the COM to the edge in each direction of the smoothed intensity

profile is fitted with a Gaussian and the maximum of this fit function is defined

as edge point (7). The change in the edge point position along each direction in

successive images gives the lamellipodium extension and retraction.

A mesh grid with a distance of 0.5 mm between grid points is defined on

the growth cone image within the detected shape. At each grid point

a template pixel area (MASK) of size 1.0 mm is cropped. For grid points

at which all pixels of MASK are within the shape, the MASK is overlaid

onto each pixel of a larger search area (SEARCH) at the same grid point

in the successive image and the cross-correlation value for each SEARCH

pixel is calculated. The size of SEARCH is set to the sum of the mask

size and the pixel distance corresponding to a maximum retrograde flow
Biophysical Journal 96(12) 5130–5138
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speed of 10 mm/min. This calculation finds the pixel area within SEARCH

that is most identical to the MASK and the position of the maximum cross-

correlation value defines the displacement vector at this grid point. In this

way the movement of a specific structure in the time from image 1 to image

2 within SEARCH is identified at each grid point and results in a discrete

displacement vector field. A three-dimensional convolution kernel on the

filtered discrete displacement field is used for interpolation to obtain the final

retrograde flow field. This three-dimensional convolution kernel is a normal-

ized Gaussian ranging 52 frames in time and with a radius of 5 mm in space

decreasing to 1/e in intensity at 1.0 mm. The convolution is only done for

cross-correlation values exceeding a threshold value of 0.6 and the kernel

values are linearly weighted with the respective retrograde flow value and

cross-correlation value at each point. In this way only the most reliable

values enter the convolution and the best detected ones have the highest

significance for the calculation.

The polymerization rate in each direction is calculated from the respective

retrograde flow value at the edge and the lamellipodium extension/retraction

value using Eq. 1.

vPolymerization ¼ vEgde � vRetrograde Flow;k; (1)

where vEgde is the edge extension/retraction rate along the direction of the

COM to the edge, vRetrograde Flow,jj is the retrograde flow rate component

parallel to this direction and vPolymerization is the resulting polymerization

rate along the same line.

Histograms of Fig. 1, D and J, are obtained by separating the data into

growth and retraction phases of the edge in the forward direction (Q ¼
36–144�) and calculating the mean value of the edge velocity, the polymer-

ization and the retrograde flow for each phase respectively. This procedure

ensured that the detection noise did not obscure the phase behavior.

Simulation of a neuronal growth cone

The simulation consists of a Monte-Carlo simulation, in which the move-

ment of the edge is modeled by numerical simulation of the Langevin equa-

tion presented previously:

dv

dt
¼ � dVðvÞ

dv
þ

ffiffiffiffiffiffi
2h

p
zðtÞ; (2)

which was numerically solved using the Euler method. In Eq. 2 v is the edge

velocity, V(v) is the velocity dependent potential, h is the noise intensity, and

z(t) represents Gaussian white noise.

The iterative method starts with a set value v0 and calculates the following

value by interpolating the integration of Dt with a constant value of the right

side of Eq. 2:

v1 ¼ v0 �
dVðvÞ

dv
jv0

Dt þ
ffiffiffiffiffiffi
2h

p
zðtÞ

ffiffiffiffiffi
Dt
p

: (3)

Thus, the (i þ1)th step is:

viþ 1 ¼ vi �
dVðvÞ

dv
jvi

Dt þ
ffiffiffiffiffiffi
2h

p
zðtÞ

ffiffiffiffiffi
Dt
p

: (4)

In the simulation, this scheme is used at 50 edge positions that are angularly

equally spaced, and the actual state of the edge point n at the time i is denoted

by vn
i . Because the analytical expression of the real bistable potential is

unknown, the potential was approximated by

VðvÞ ¼ 1=2
�
v2 � b log

�
1 þ v2

��
: (5)

The influence of external signals is introduces by tilting this potential to

favor growth in the direction of increasing external signal strength. This is

implemented in the simulation by adding a linear term to the potential. In

a real growth cone it is known that the growth direction is influenced by

chemical gradients. To account for this it was assumed that the potential

tilt at any edge position depends on the difference between an external signal

and the mean of this external signal over the whole growth cone. In a math-

ematical way, this can be expressed by adding the linear term l ðcn
i � cÞ v to

the potential in Eq. 5, where cn
i denotes the external gradient at the time i and

at the edge position n. Thus, we get the final potential for the simulation

VðvÞ ¼ 1=2
�
v2 � b log

�
1 þ v2

��
þ l

�
cn

i � c
�

v; (6)

with the negative derivative

� dVðvÞ
dv

¼ �v þ v b=
�
1 þ v2

�
� l

�
cn

i � c
�
: (7)

The simulation starts with an initial edge velocity vn
0 ¼ 0 for all edge posi-

tions and a starting COM-edge distance rn
0 ¼ 5mm. Then the program first

calculates the subsequent edge velocities according to Eq. 4. Subsequently

the new edge velocity is used to get the updated COM-edge distance rn
iþ1.

So far, no line tension and area conservation have been included in the simu-

lation. Both constraints are reasonable, because the cell membrane smooth

FIGURE 2 Edge detection and retro-

grade flow extraction from successive

images. (A) Fluorescence image of

growth cone showing the second frame,

the detected edge, the mesh grid, the

center of mass, the angular direction

Q, and the displacement in a search

area at an example grid point. Scale

bar ¼ 10 mm. (B) Intensity profile along

line from outside the edge to the COM.

The intensity values rise at the edge.

The derivative of the profile is fitted

with a Gaussian and the fit maximum

is set as edge position giving subpixel

resolution. (C) Left: Mask area cropped

from first frame (not shown). Mask

size ¼ 1 mm. Middle: Search area crop-

ped from second frame (A). Right: Over-

lay of search area and mask showing the

detected new mask position and the grid.

(D) Surface plot of the cross-correlation

value. The peak value gives the center

position of the displaced mask.
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the edge contour and the volume of a growth cone should be conserved due

to material conservation. To include these constraints, we first smoothed the

simulated edge velocity vn
i by a moving average of width 3¼ 4, and calculate

the next updated COM-edge (rn
iþ1) distance by:

rn
iþ 1 ¼ rn

i þ vn
i Dt|ffl{zffl}

smooth contour

þ k

�
R� rn

i

�3

jðR� rn
i Þj

Dt

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
conserved volume

; (8)

where the second term ensures a smooth contour, whereas the nonlinear last

term allows small changes in overall growth cone volume, but prevents large

fluctuations (the parameter k allows to adjust the influence of the volume

conservation, and R is the desired radius that should be conserved).

Due to the last term in Eq. 8, the simulated growth cone tends to keep

a COM-edge distance in the order of R. This means, that the COM that is

used to define all rn
iþ1, needs to be repositioned to allow the simulated growth

cone to move. Hence, the new COM is calculated using the new rn
iþ1 and the

growth cone is moved to be centered on the newly calculated COM. To not

modify the spatial position of the edge, the change of the COM is compen-

sated by changing the rn
i accordingly. In the final step, this new COM-edge

distance is used to draw the new contour, and the whole scheme is repeated

as illustrated in Fig. 3. For the analysis of optimal noise, we applied the

described experimental data analysis method on the simulated data and

recovered the potential used in the simulation. This leads to the noise value

that was used in the representation of noise over signal detection capabilities

as shown in Fig. 4 D.

RESULTS AND DISCUSSION

We sought to better understand growth cone motility by

measuring the dynamics of the actin cytoskeleton in the la-

mellipodium. We used eGFP-actin (10) transfected neuronal

cells (NG108-15 (11)) to fluorescently visualize the actin-

based internal growth cone dynamics (Fig. 1 A). Because

neuronal cell lines often differ in their behavior from primary

neurons, yet primary cells cannot be stably transfected with

eGFP-actin, phase contrast recordings of primary embryonic

rat cortical neurons were used to validate the physiological

relevance of our results (Fig. 1 F) (12). Time series of

FIGURE 3 Illustration of the in silico growth cone properties that are used

in the simulation. The edge is defined by a set of edge points n that are

equally spaced. At each edge point a potential Vn(n) is defined and the tilting

of this potential depends on the difference between the external signal

strength cn and the average signal strength over the growth cone c. During

the simulation the actual edge velocity is calculated using the potential,

and an updated COM-edge distance rn
i for the next step is calculated. To

ensure that the COM is always in the center, the COM is first updated,

and then the resulting COM-edge distances rn
iþ1 are calculated. Finally the

new shape is drawn and the same scheme is repeated.
primary cells were recorded with a time resolution of 1–2 s

using phase contrast microscopy (DMIRB, Leica) and fluo-

rescent time series of eGFP-actin transfected NG108-15 cells

were acquired with a time resolution of 3–6 s using a confocal

laser scanning microscope (TCS SP2 AOBS, Leica Micro-

systems) (Supporting Material, Movie S1 and Movie S2).

Leading edge velocity, actin polymerization at the leading

edge, and inward actin flow, i.e., retrograde flow, were

analyzed with high resolution edge detection algorithms

(7) together with fluorescence and phase contrast pseudo

speckle microscopy (14).

FIGURE 4 Motion of in silico growth cones. (A) Simulated movement of

a growth cone without external field (i.e., chemical gradient) (Movie S4).

The green line represents the center of mass movement, whereas the black

shapes represent the growth cone at different times. (B) Movement of a simu-

lated growth cone in a field caused by a gradient of an external growth signal

(Movie S5). The height and the color coding represent the signal intensity

and the blue line is the path of the growth cone. (C) The scaling of the

mean-square displacement with time is a measure for random nature of

the movement. The green line represents the simulated data of A that fits

to an exponent b ¼ 1 in the fit function msd(Dt) ¼ 4DDtb. This scaling is

characteristic for a random walker. The blue line represents the scaling for

the motion of the growth cone in B that is superdiffusive (b > 1), i.e., it

is directed. (D) Correlation between the path of the growth cone and the

optimal signal path for various noise values. The peak at hopt ¼ 0.09*DV

shows that the growth cone has its optimum signal detection capabilities

at a weak noise intensity compared to the potential barrier, well in agreement

with Kramers approximation on which the data analysis is based.
Biophysical Journal 96(12) 5130–5138
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TABLE 1 Lamellipodium dynamics for NG108-15 and primary rat neuronal cells

Cell type n cedge,pol cedge, retro cretro,pol vedge,retr [mm/min] vedge,prot [mm/min] vpol,off [mm/min] vpol,on [mm/min] vretro [mm/min]

NG108-15 44 0.91 5 0.02 �0.05 5 0.05 �0.11 5 0.07 �1.55 5 0.61 2.04 5 0.68 �0.14 5 0.38 3.38 5 1.00 �1.46 5 0.54

Primary rat 26 0.92 5 0.02 �0.08 5 0.05 �0.03 5 0.05 �8.83 5 1.55 10.68 5 2.48 �2.38 5 1.47 16.66 5 2.43 �6.43 5 0.80

Fig. 1, NG108 1 0.91 5 0.04 �0.06 5 0.04 �0.14 5 0.04 �1.26 5 0.04 1.36 5 0.04 0.21 5 0.06 2.75 5 0.05 �1.42 5 0.01

Fig. 1, primary rat 1 0.91 5 0.03 �0.06 5 0.04 �0.04 5 0.04 �8.68 5 0.20 9.62 5 0.32 �0.75 5 0.17 17.13 5 0.35 �7.87 5 0.04

Values are given as mean 5 SD except for the velocity values of the individual growth cones from Fig. 1 where the errors represent the 95% confidence

interval of the Gaussian fits. cedge,pol denotes correlation values between edge velocity and polymerization, cedge,retro between edge velocity and retrograde

flow, and cretro,pol between polymerization and retrograde flow. vedge,retr is the most probable velocity of edge retraction phases, vedge,prot of edge protrusion

phases, vpol,off of polymerization ‘‘off’’ state, vpol,on of polymerization ‘‘on’’ states, and vretro of the retrograde flow.
As illustrated in the kymographs in Fig. 1, B and G, our

measurements indicate that the edge of the lamellipodium

fluctuates between protrusion and retraction phases whereas

the retrograde flow remains almost stationary (Fig. 1, C and

H). To further quantify these dynamics, we separated the

data into growth and retraction phases along 500 equally

spaced angular directions with respect to the pixel based

center of mass (COM). Subsequently, we determined the

probability distribution of the respective mean rates of

edge velocity, polymerization and retrograde flow as shown

in Fig. 1, D and J. Like the edge velocity, the polymeriza-

tion switches between two prominent states as indicated by

the double peak distributions. In contrast, the retrograde

flow is peaked around a single average value. The main

difference between the embryonic rat cortical neurons and

the NG108 line is the pace. The measured velocities for

edge fluctuations, actin polymerization and retrograde

flow are ~3–4 times faster in primary cells (Table 1). The

widths of the fitted Gaussian distribution for the primary

cells are also 3–4 times larger than that of the cell line.

Nevertheless, besides the increased velocities, the observed

behavior is similar in cell lines and primary cells, as can be

seen in Fig. 1, D and J. These collective properties demon-

strate that our statistical analysis on NG108 cell lines is

also relevant for the description of growth cones from

primary cells and suggest that the underlying processes

controlling the edge dynamics are similar in both cell

types.

In contrast to previous studies of the random movement of

neurons and cells that focused on the overall path of growth

cones (15,16), we analyze the local intracellular movement

in the entire growth cone’s leading edge. First, we are inter-

ested in the edge velocity. The fluctuating movement of the

leading edge switching between advancement and retraction

can be quantitatively explained as a stochastic process in

a velocity dependent potential V(v) that is perturbed by

a stochastic noise with intensity h (7). Using this description,

the potential V(v) (Fig. 1, E and K) can be related to the mean

edge velocity histograms by p(n) ¼ const�exp(�V(n)/h),

where p(v) is the probability distribution of the mean veloc-

ities as measured in the histogram (Fig. 1, D and J), V(v)/h is

the potential scaled by the stochastic noise h and const is a

normalization constant. The resulting bistable potential is

obtained using V(n)/h ¼ const � ln(p(n)). Kramers theory
Biophysical Journal 96(12) 5130–5138
(17) applied to V(v)/h is used to calculate a Kramers rate

for the random hopping process between protrusion and

retraction (7). Strictly speaking, Kramers theory is only

valid if the potential barrier is large compared to the noise.

As shown in our previous work (7), this is only partially

valid in the experimental analysis, where the potential

barrier is about twice the noise intensity. However, in this

analysis we ignore the error that we make, as it is expected

to account for only ~30% (18) of the measured ratio

between noise and potential barrier. The error is systematic,

and not of importance in the current analysis as we are

focusing not on absolute values but rather a qualitative, rela-

tive comparison. The derived Kramers rates allow us to

quantify the edge fluctuation’s noise intensity and the abso-

lute potential V(v) (8). Hence, the local movement of the

growth cone edge can be understood as a stochastic process

that evolves in this potential that follows the Langevin equa-

tion (8,19): dvðtÞ=dt ¼ vVðvÞ=vvþ
ffiffiffiffiffiffi
2h
p

zðtÞ. This is

a stochastic equation of motion including Gaussian white

noise, represented by the function z(t). Final edge move-

ment is determined by the interplay between the bistable

potential and the stochastic noise. Consequently, the growth

cone edge acts as a random walker and the shape and depth

of the two minima of the potential V(v) determine the prob-

abilities for the edge’s advancement or retraction. Thus, the

edge fluctuations reflect which direction a growth cone will

take.

It should be noted that this model does not account for

lateral waves that have been reported previously in different

cell types (20,21). In our measurements, we see lateral move-

ments of filopodia, which are detected as extreme values in

edge velocity. Such lateral movements originate from filopo-

dia alignment that is not radial, but diagonal to the edge.

Lateral filopodia movement is well known (22), and does

not represent real lamellipodia growth. Hence, such move-

ments are not lateral polymerization waves but filopodia

moving through the line profile that is used for edge detec-

tion. They show up in the edge velocity analysis as a brief

moment of high positive edge velocity immediately followed

by a negative phase. This can be seen in Fig. S1, which gives

the spatial-temporal map of the measured edge velocities of

the growth cone shown in Fig. 1 A. In this study we exclude

filopodia and focus on a description of the lamellipodium

dynamics.
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FIGURE 5 Growth cone time evolu-

tion while turning to the right and corre-

sponding potential landscapes in the

direction of extension and in the oppo-

site direction, shown in time intervals

of 300 s. (A–C) Images of a GFP-actin

labeled growth cone shown at the

beginning (0, 300, 600 s) and the corre-

sponding growth cone perimeter

outlines (white line) at the end (300,

600, 900 s) of time intervals. Colored

cones illustrate direction of extension (red) and the opposite direction (blue), and matching colored insets show the respective potentials. The potential’s shape

determined the direction of protrusion. This is reflected by the mean velocity in each direction, which is negative/positive for the direction of retraction/exten-

sion, respectively (A: blue, �0.89 mm/min; red, 0.25 mm/min; B: blue, �0.98 mm/min; red, 0.49 mm/min; C: blue, �1.62 mm/min; red, 0.80 mm/min). Scale

bar ¼ 10 mm.
Characteristics of growth cone turns

The experimental relevance of the extracted potential can be

directly validated in a turning growth cone. For this purpose

we measured how the potential differs in the direction of

advancement with respect to the opposite direction. Fig. 5

shows a time series of a NG108 growth cone turning to the

right (Movie S3). The fitted potentials are presented for

both the turning and the opposite direction. As presented

in Fig. 5, the potential in the direction of the turn favors

edge protrusion as compared to the potential in the opposing

direction. During the three time intervals presented in Fig. 5

we find that the potential in the direction of growth is tilted to

favor protrusion over retraction in the growth direction with

respect to the opposite direction. The tilting can result in

different characteristic potential shapes as represented in

Fig. 5. We find pure tilt of the potential (Fig. 5 A), a tilt

with a widening of the potential for the protrusion processes

(Fig. 5 B) and a tilt with a deeper potential well for the

protrusion (Fig. 5 C). Whether the integrated area of the

extension part or the retraction part of the bistable potential

is larger determines if the growth cone advances or retracts

in the respective direction. This is reflected in the mean

velocity that corresponds to given potential as presented in

Fig. 5. The mean velocity is always larger in the direction

of extension than in the stationary direction. Hence, the

turning of a growth cone is the outcome of changes in the

stochastic processes that control its edge dynamics, substan-

tiating our description of growth cone motility by a Langevin

equation. Table S1 shows that in extending growth cones, the

overall dynamics in the direction of the extension is system-

atically higher as compared to the full growth cone. Addi-

tionally, the respective values for stationary growth cones

are provided.

Stochasticity increases the reliability of neuronal
path finding

The characteristic tilting of the potential opens the possibility

of enhancing the growth cone’s sensitivity to chemotaxis.

Thus, it could possibly explain the neuronal growth cone’s

amazing signal detection capabilities that was shown to
permit a sensitivity close to the single molecule level even

in noisy environments (23). Nonlinear potentials modulated

by external signals can significantly enhance signal detection

in stochastic processes (24). For this recently discovered

possibility the term stochastic resonance has been coined.

In stochastic resonance the signals vary temporally, whereas

for a growth cone, guidance cue signals change spatially.

Because we find that a tilting of the potential correlates

with growth direction (Fig. 5) we consider that an external

signal (e.g., guidance cue) can tilt the potential by modifying

the stochastic fluctuations. To generate an in silico growth

cone in a Monte Carlo simulation (Fig. 4) we used the derived

Langevin equation, which explains our experimental obser-

vations. At each edge point of the simulated growth cone

we defined a bistable potential analog to the measured poten-

tials (Fig. 1). This potential was tilted to the same degree as

we found in turning growth cones on the side where the

leading edge of the growth cone experienced an external

signal intensity. Surface tension and conservation of area

were included to achieve a smooth growth cone contour.

Because we exclusively focus on the dynamics of the lamel-

lipodium, filopodia are excluded from the simulation.

Based on our experimental measurements, it was possible

to simulate growth cones that show the same statistical char-

acteristics as real growth cones. The simulation results in

a random walk of the growth cone in the absence of an

external guidance cue (Fig. 4 A, Movie S4). However, if

an external signal tilts the potential as experimentally

observed (Fig. 5), the simulated growth cone follows this

signal while the edge still fluctuates (Fig. 4 B, Movie S5).

The random nature of the growth cone motility is reflected

in the mean-squared displacement of the growth cone’s

path (Fig. 4 C), defined by the relation msd(Dt) ¼ 4DDtb.

Without external signal, the in silico growth cone exhibits

normal diffusion (exponent b ¼ 1), whereas an external

signal shifts the characteristics to superdiffusive behavior

(b > 1). Moreover, the simulation shows that the stochastic

detection of an external signal depends dramatically on the

actively acting noise. Signal detection was quantified by

calculating the correlation value between the simulated and

the optimal growth path. The noise intensity was measured
Biophysical Journal 96(12) 5130–5138
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by analyzing the simulated growth cone contours using the

same method that was applied to the experimental growth

cones. This allowed the extraction of the same characteristic

noise as measured previously. As shown in Fig. 4 D, optimal

signal detection occurs not at minimal noise, but at a noise

intensity of about hopt¼ 0.09�DV, where DV is the potential

barrier between the bistable states. At such small noise inten-

sities, Kramers approximation of weak noise is valid. If the

system is exposed to nonoptimal noise, the simulated growth

cone still detects the initial external signal, but is not able to

adapt to changes of the external signal. If the added noise

intensity is too high, the growth cone effectively remains

stationary. The simulations show that stochastic signal ampli-

fication by noise tuning (24,25) is feasible for migrating

growth cones in spatial gradient of external stimuli. However,

it remains to be shown by independent experiments that the

noise intensity is indeed controlled by the cell as a response

to an extracellular signal. Nonetheless, the simulation shows

that the proposed stochastic model would allow for optimal

signal detection at an optimal noise level.

The possibility that certain noise intensity is increasing

signal detection in stochastic processes poses the questions

of whether and how growth cones regulate their internal noise

intensity. Nontunable thermal noise is inherent due to the small

size of the growth cone and the general weak binding constants

in biochemistry. Furthermore, ATP consuming processes like

motor activity and actin polymerization result in an activity-

dependent (i.e., tunable) increase of stochastic fluctuations

called active noise (26–28). Thus, we suspect that noise inten-

sity depends on the growth cone’s overall activity. To consider

both activities, actin polymerization and retrograde flow, we

define as a measure of activity the distance between peaks in

the edge velocity distribution as the maximal change in

velocity (Fig. 1, D and J, blue) (8). This definition was chosen

because it incorporates the two ATP consuming processes of

polymerization and myosin motor activity in a single quantita-

tive parameter. Plotting the measured noise intensity over the

so defined activity, shows a surprising scaling behavior with

a scaling coefficient of a ¼ 2.63 5 0.12. In previous work,

we reported the dependence of noise on the activity for

NG108 cells (8). However, investigation of the lamellipodium

dynamics in primary embryonic rat cortical neurons showed

dramatically higher activity values for the latter. Combining

the data of NG108 and primary cells shows the scaling

behavior of the noise intensity on the activity across different

cell types and allows for a much more reliable determination of

the power law. Hence, we now clearly find a nonlinear depen-

dence between noise intensity and the growth cones’ activity,

as show in Fig. 6 for 44 NG108-15 and 26 primary growth

cones, all combined in one graph. This is a remarkable result,

because it gives a direct quantitative description of the active

noise in a biological system and simultaneously describes

the data of two different neuronal cell types. According to

this data growth cones can control noise intensity by modu-

lating their activity. Thus, we conclude that growth cones
Biophysical Journal 96(12) 5130–5138
can indeed control their stochastic noise, which might be

used for optimal signal detection. Such a mechanism would

include an increase of actin polymerization alone or in combi-

nation with an increase in retrograde flow in response to small

guidance signals. Unfortunately, the current state of knowl-

edge on the signal detection remains limited.

Changes in actin polymerization control leading
edge motion

The movement of the lamellipodium results from the addi-

tive interplay of retrograde flow that retracts the network

and leading edge actin polymerization, which pushes against

the membrane (29). To understand the role of these processes

for stochastic switching between leading edge protrusion and

retraction, we measured the correlation between time-series

of leading edge velocity, polymerization, and retrograde

flow. For the 44 NG108 (and 26 primary) growth cones

investigated, we find a high mean correlation between the

actin polymerization and the edge velocity cpol,edge¼ 0.91 5

0.02 (0.92 5 0.02), whereas correlations between the retro-

grade flow and the edge velocity cretro,edge ¼ �0.05 5 0.05

(�0.08 5 0.05) or between retrograde flow and the polymer-

ization cretro,pol ¼ �0.11 5 0.07 (�0.03 5 0.05) are very

minor (Table 1). The high correlation between actin poly-

merization and edge movement means that the dynamics

of the edge is controlled by actin polymerization and not

by retrograde actin flow. This is further supported by the

histograms of retrograde flow and actin polymerization

velocities (Fig. 1, D and J). The probability distribution of

actin polymerization velocity shows a double peak distribu-

tion similar to edge velocity but shifted to higher values. In

the investigated cases of a NG108 and a primary growth

cone, the left peak is centered at a polymerization speed of

0.21 5 0.06 mm/min and �1.75 5 0.19 mm/min,

FIGURE 6 Log-log plot of the noise intensity over activity as measured in

44 NG108-15 (diamond) and 26 primary rat (square) growth cones. The

straight line represents a fitted power-function a*xa with a ¼ 0.05 5 0.01

and an exponent a ¼ 2.63 5 0.12, that represents all measurements of

the two cell types by a single power law. This shows how growth cones

of different cell types can tune their internal noise to optimize signal detec-

tion. By changing their retrograde flow and the actin polymerization

velocity, cells can vary their internal noise following the reported power-

law, which provides a physical mechanics for intracellular noise tuning.



Stochastic Neuronal Growth Dynamics 5137
FIGURE 7 Effect of CD (that inhibits

the actin polymerization by capping the

polymerizing actin filament ends) on

the lamellipodium of a growth cone.

The time series visualize the collapse

of a growth cone at (1) 0 min, (2)

5 min, and (3) 10 min after application

of 20 nM CD. The line marks the de-

tected outline of the growth cone. The

growth cone area decreases to 62%,

which is calculated by dividing the

collapsed growth cone area (3) by the

initial, untreated growth cone area (1).

Moreover, the change in growth cone

area was measured in dependence of

the applied concentration of CD. As

shown in the plot, the normalized area

decreases sharply at a CD concentration

of 12 5 1 nM to a final area of ~70%.

Thus, there is a critical CD concentra-

tion that induces growth cone collapse.
respectively. The right peak is found at 2.75 5 0.05 mm/min

and 16.5 5 0.79 mm/min, respectively. However, the retro-

grade flow only shows a single Gaussian peak at �1.41 5

0.01 mm/min and �7.39 5 0.04 mm/min, respectively. As

mentioned previously, besides the three to four times faster

dynamics of primary growth cones, both cell types show

similar characteristics in the statistical analysis. The poly-

merization is mostly independent from retrograde flow,

because polymerization and retrograde flow do not correlate

(see above). Furthermore, the lack of correlation between

retrograde flow and actin polymerization agrees with recent

results stating that in growth cones, retrograde flow is not prin-

cipally driven by polymerization but by myosin motors (6).

The independence of actin polymerization and retrograde

flow in filopodia was shown previously (5). Our investiga-

tion finds similar results for the polymerization dynamics

within the lamellipodium, where actin polymerization

switches between ‘‘on’’ and ‘‘off’’ states. The polymeriza-

tion distribution peaks for its on state at high velocities,

whereas the peak for its off state is naturally found around

zero because in the off state solely minimal polymerization

occurs (Table 1). The peak for leading edge extension is

the sum of the peak for the polymerization on state and the

peak for the counteracting retrograde flow. The retraction

peak coincides with the retrograde flow peak indicating

that actin polymerization is switched off during retraction

and the actin network is pulled back by molecular motors.

Thus, for a growth cone the observed stochastic edge fluctu-
ations are the superposition of a steady retrograde flow and

an actin polymerization switching between on and off states.

To investigate this polymerization-related instability, we

manipulated actin polymerization in a controlled experi-

ment by applying substochiometric amounts of cytochalasin

D (CD). CD is a strong actin filament capper that binds the

polymerizing F-actin barbed ends with high affinity, prevent-

ing further addition of actin monomers (30,31). CD was

applied at miniscule concentrations of 5–20 nM, and the con-

centration dependent response of the growth cones was

measured. We quantified the effect of CD by measuring the

change in growth cone area 10 min after application. It was

expected that CD blocks actin polymerization, thus leading

to a retraction of the lamellipodium. This was observed at

concentrations above 12 5 1 nM CD (Fig. 7, Movie S6).

The concentration dependent effect as presented in Fig. 7

shows that CD concentrations below a threshold did not influ-

ence the area of the growth cone, whereas a sharp transition

was observed at the threshold concentration. This effect is

unusual as compared to the concentration dependent response

of other cell types to CD (32). In all observed growth cones,

the transition to growth cone collapse happened sharply at

the same critical concentration. Whether the observed sharp

transition is due to collective biochemical effects or a sign

of a stochastic instability of actin polymerization remains to

be investigated. A stochastic instability would be consistent

with the found on/off states of the polymerization. In this

context, the miniscule concentrations of CD might affect the
Biophysical Journal 96(12) 5130–5138
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mechanism responsible for stochastic switching, driving it to

the point where the polymerization becomes unfavorable,

thus resulting in a sharp transition. However, a cooperative

biochemical effect could also explain the observed transition,

and further investigation will help in understanding the

nonlinear response of growth cone area to CD concentration.

CONCLUSION

Growth cone extension and retraction is determined by

whether the rate of actin polymerization or retrograde flow

is higher. On the timescales investigated, we find that leading

edge motion does not depend on changes in the retrograde

flow velocity. Instead, forward and backward motions are

controlled by the activity of actin polymerization switching

randomly between on and off states. Inherently, small systems

like neuronal growth cones are subject to strong thermal and

chemical fluctuations. To reliably operate, these systems have

to tolerate this intrinsic noise. The stochastic nature of growth

cone dynamics provides significant advantages for the growth

cone because it is robust against errors in the growth cone’s

intracellular molecular processes, allowing for immediate

error corrections through its fluctuations. Moreover, the noise

might be exploited to provide an increased sensitivity to

signals through noise tuning (33), which could explain the

incredible chemosensitivity (23) of neuronal growth.

SUPPORTING MATERIAL

Six movies, a figure, and a table are available at http://www.biophysj.org/

biophysj/supplemental/S0006-3495(09)00796-6.
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