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Theory of Raft Formation by the Cross-Linking of Saturated or Unsaturated
Lipids in Model Lipid Bilayers

G. Garbès Putzel and M. Schick*
Department of Physics, University of Washington, Seattle, Washington

ABSTRACT We consider the effect of cross-linking a small fraction of lipids, either saturated or unsaturated, in a mixture of
saturated and unsaturated lipids and cholesterol. The change in phase behavior is examined utilizing a recent phenomenological
model of the ternary system, which is extended to include a fourth component representing the cross-linked lipids. These lipids
are taken to be identical to monomeric ones except for their reduced entropy of mixing. We find that even a relatively small
amount of cross-linked lipids, less than 5 mol %, is sufficient to significantly expand the range of compositions within which there
is coexistence between liquid-ordered and liquid-disordered phases. Equivalently, the cross-linking of lipids increases the liquid-
liquid miscibility transition temperature, and therefore could bring about phase separation at a temperature at which, before
cross-linking, there was only a single liquid phase.
INTRODUCTION

Compositional inhomogeneities in the lipid content of the

plasma membrane, known as lipid rafts, are thought to be

involved in a number of signal transduction processes

(1,2). Many of these processes have in common that they

are initiated by the cross-linking of membrane components

(3), which suggests that these cross-linking events influence

the formation and composition of the lipid rafts themselves.

Indeed, insofar as rafts have been shown to exist in the

complex environments of plasma membranes, through deter-

gent resistance assays (4), fluorescent resonance energy

transfer (5), and other methods (6,7), the evidence indicates

that the cross-linking of signaling proteins can affect their

partitioning into rafts (8) or lead to the appearance of

micron-scale domains (9,10) denoted ‘‘clustered rafts’’ (2)

in the literature.

Properties of lipid rafts in membranes have been inferred

from the study of liquid-liquid phase separation in model

lipid bilayers. These systems, much simpler than the plasma

membranes they are designed to mimic, better lend them-

selves to rigorous characterization in terms of phase

diagrams (11–13) and partition coefficients (14). Just as

cross-linking of membrane components was shown to affect

raft formation in the complex plasma membrane environ-

ment, so too have experiments demonstrated that cross-link-

ing can influence the liquid-liquid phase behavior (15,16) of

model membranes.

Of great interest (17) is the observation that raft formation

is promoted not only by the cross-linking of lipids usually

associated with rafts, e.g., as in the case of monosialotetra-

hexosylganglioside (GM1) (15), but also by the cross-linking

of lipids which are not raft-associated, such as phosphatidyl-
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inositol 4,5 biphosphate, PIP2 (16). One would like to under-

stand why this should be so.

Several mechanisms by which aggregation or cross-

linking of saturated, raft-associated lipids could induce raft

formation have been proposed, and are discussed by Kusumi

et al. (18). They address in particular the dynamics of raft

formation. For example, a cluster could act as a nucleation

center for the raft, or the cluster could prevent other saturated

lipids from diffusing out of it. In contrast, in this article we

propose a simple thermodynamic mechanism by which

cross-linking increases the phase space in which raft forma-

tion occurs, namely the reduction in entropy of mixing which

occurs as a consequence of cross-linking. We examine its

effects by utilizing a simple phenomenological model,

proposed recently (19), of ternary systems of saturated and

unsaturated lipids and cholesterol. The model is extended

to include a fourth component, cross-linked lipids. We first

show that even a relatively small fraction of cross-linked

saturated lipids can have a significant effect on the phase

diagram, increasing the composition and temperature range

over which liquid-liquid phase separation can occur. We

then demonstrate that this increase in range over which raft

formation should be found also occurs if it is the non-raft-

associated unsaturated lipids that are cross-linked.

MODEL OF TERNARY LIPID BILAYERS AND ITS
EXTENSION

We begin with the phenomenological model (19) of a ternary

system of cholesterol, of concentration c, and saturated and

unsaturated lipids of concentrations s and u, respectively.

The saturated chains are characterized by an order parameter,

d, which is intended to encapsulate their conformational

order. The form of the free energy per molecule, in units

of kBT, is taken to be
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~f liq;3ðT; u; s; dÞ ¼ ~f mix;3ðu; sÞ þ ~f chainðT; u; s; dÞ
þ ~f intðT; u; s; dÞ; (1)

~f mix;3ðu; sÞ ¼ c ln c þ s ln s þ u ln u; (2)

~f chainðT; u; s; dÞ ¼ Jss

�
k1ðd� 1Þ2þðd� 1Þ4

�
s2; (3)

~f intðT; u; s; dÞ ¼ Jusdus� Jcs

�
d� k2d2

�
cs; (4)

1 ¼ c þ u þ s: (5)

The first term, ~f mix;3, is the contribution to the free energy

density of the entropy of mixing. The next term, ~f chain,

describes the interactions of the saturated chains with one

another. Because the configurational order parameter is not

controlled externally, the value it takes, d(T, u, s), is that

which minimizes the free energy, ~f liq;3ðT; u; s; dÞ. The free

energy per molecule of the system, f(T, u, s), is then

f ðT; u; sÞ ¼ ~f liq;3ðT; u; s; dðT; u; sÞÞ. In the system consisting

of saturated lipids only, the order parameter would take the

value unity.

The third term, ~f int, describes the interaction of the satu-

rated lipids with the other two components and contains

the essence of the theory:

1. The strength of the repulsion between saturated and

unsaturated lipids, the interaction driving the phase

separation, depends upon the configuration of the satu-

rated chains.

2. The configurational order of the saturated chains

increases with the cholesterol concentration.

We extend this phenomenological model by adding

a fourth component to the mixture, which represents a cluster

of p cross-linked lipids. We first consider the case in which

these lipids are saturated, or raft-associated. Let the variable z
denote the mole fraction of individual saturated lipids

belonging to cross-linked clusters of p saturated lipids. We

assume that the cross-linked saturated lipids interact with

their surroundings in exactly the same way as monomeric

ones. In the free energy density of the four-component

system, therefore, only the entropy of mixing will be

changed, and the terms describing the behavior of the order

parameter and the molecular interactions will not distinguish

between the mole fractions of monomeric (s) and cross-

linked (z) saturated lipids:

~f liq;4ðT; u; s; z; dÞ ¼ ~f mix;4ðu; s; zÞ þ ~f chainðT; u; s þ z; dÞ

þ~f intðT; u; s þ z; dÞ; ð6Þ

~f mix;4ðu; s; zÞ ¼ c ln c þ s ln s þ u ln u þ z

p
ln; (7)

1 ¼ c þ u þ s þ z: (8)
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Note that the functions ~f chain and ~f int are the same as defined

above. The mixing entropy has an additional term for the

cross-linked saturated lipids, whose translational entropy is

reduced by a factor of p. This form is well known in the

Flory-Huggins theory of polymers where it represents the

reduction of translational entropy of p individual monomers

that have been joined to form a polymer (20). Again, the

order parameter takes the value d(T, u, s, z), which minimizes

the free energy ~f liq;4ðT; u; s; z; dÞ and the Helmholtz free

energy per molecule is given by

f ðT; u; s; zÞ ¼ ~f liq;4ðT; u; s; z; dðT; u; s; zÞÞ: (9)

Note that we have taken our model free energy per molecule

to be independent of the area per molecule, a, because we do

not believe the phase behavior of the system depends

crucially upon it; the area per molecule does not vary greatly

from one phase to another. Further, its absence simplifies the

description of the system. Our assumption of a free energy

that is independent of the area per molecule can be viewed,

equivalently, as restricting the system to a particular,

constant, value of a (21).

Coexistence between two phases characterized by u1, s1,

z1, and u2, s2, z2, respectively, is determined by the condi-

tions that the three independent chemical potentials of the

components are equal in each phase

muðT; u1; s1; z1Þ ¼ muðT; u2; s2; z2Þ; (10)

msðT; u1; s1; z1Þ ¼ msðT; u2; s2; z2Þ; (11)

mzðT; u1; s1; z1Þ ¼ mzðT; u2; s2; z2Þ; (12)

and that the surface tension, g (T, u, s, z), be equal in each

phase,

gðT; u1; s1; z1Þ ¼ gðT; u2; s2; z2Þ: (13)

The product of the surface tension and the constant area per

molecule is simply a Legendre transform of the free energy

per molecule,

ga ¼ f �
X

i

mixi: (14)

Equations 10–13 determine four of the six quantities speci-

fying the two phases. Thus, the coexistence region is

spanned by two independent variables for a given tempera-

ture.

The resulting phase diagram involves three independent

compositions, and must therefore be plotted in a three-dimen-

sional space, such as the interior of a regular tetrahedron. It is

more convenient for us to plot a relevant two-dimensional

slice through the boundary of the two-phase region, as in

Fig. 1. Compositions are plotted based on the mole fractions

of unsaturated lipids, u, of cholesterol, c, and of all saturated

lipids, s þ z, irrespective of whether they are cross-linked or

not. Because of the constraint u þ c þ s þ z ¼ 1, the phase
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diagram can be plotted in the usual equilateral triangle. As to

the choice of coupling strengths in our free energy, Jss can be

set arbitrarily to unity, but Jus, and Jcs are constrained such that

there be no phase separation in the binary u, s lipid system and

in the binary c, s system. Other than this, they and the param-

eters k1 and k2 of the free energy, are adjusted so that they give

phase diagrams that resemble very well those of experiment.

The solid line in Fig. 1 shows, for p ¼ 5, the boundary

where the two-phase region intersects the plane z ¼ 0.03.

In other words, all points in the triangle shown represent

compositions with 3 mol % of cross-linked saturated lipids

belonging to clusters of five molecules each. The satu-

rated-lipid-rich, liquid-ordered phase with z ¼ 0.03 coexists

with a saturated-lipid-poor, liquid-disordered phase that

contains a much smaller concentration of cross-linked, satu-

rated lipids. Similarly, the liquid-disordered phase with

a concentration z ¼ 0.03 of saturated lipids that have been

cross-linked coexists, in general, with a liquid-ordered phase

with a much larger concentration of cross-linked saturated

lipids, one that we find can be as large as z ¼ 0.29. For

comparison with this phase boundary, that of the two-phase

region without cross-linking, z ¼ 0, is shown with a dotted

line. The temperature is taken to be above that of the main

chain transition of the saturated lipids.

Cross-linking saturated lipids expands the region of liquid-

liquid phase coexistence. Thus, the cross-linking of some

FIGURE 1 Effect of different saturated-lipid cross-linkers on the

boundary of the liquid-liquid two-phase region. The temperature is above

that of the main chain transition of the saturated lipid. The dotted line shows

the boundary of the two-phase region for a system with no cross-linkers. The

dashed and solid lines show the boundaries for concentrations z ¼ 0.03 of

cross-linkers with p ¼ 3 and p ¼ 5, respectively. Compositions are plotted

in terms of mole fractions of unsaturated lipids (u), cholesterol (c), and total

saturated lipids, including cross-linked lipids (s þ z). The particular compo-

sition of s ¼ 0.37, u ¼ 0.45, and c ¼ 0.18, noted in the text, is shown with

a dot. In all cases, the parameters used in Eqs. 3 and 4 are Jss¼ 1.0, k1¼ 1.0,

Jus ¼ 1.8, Jcs ¼ 2.4, and k2 ¼ 0.21.
saturated lipids in a previously uniform bilayer can trigger

liquid-liquid phase separation. Note that the expansion of the

phase boundary is greater in the disordered liquid, which is

rich in unsaturated lipids, than in the ordered liquid, which is

rich in saturated ones. Presumably this is due to the fact that

the concentration of saturated lipids is much less in the former

than in the latter, so that the cross-linking of a certain fixed

concentration of saturated lipid affects a larger fraction of these

lipids in the disordered liquid phase than in the ordered one.

The effect of varying the number, p, of saturated lipids

which are cross-linked into one cluster, is also shown in

Fig. 1 where the phase boundary for the case p ¼ 3 is shown

by a dashed line. The concentration is z ¼ 0.03, just as in the

case p ¼ 5, also shown there. Note, therefore, that the total

number of saturated lipids cross-linked is the same in the

two cases. For p ¼ 5, however, the number of cross-linked

clusters is only 60% of that in the system with smaller,

p ¼ 3 clusters. As the number of lipids in a given cluster,

p, is increased, the region of phase space is made larger, in

which cross-linking transforms what was a one-phase region

into a region of two-phase coexistence.

Because the phase boundaries are significantly altered by

cross-linking, it follows that there will be a change in the

partition coefficients, Ki, of the components, which is simply

the ratio of the concentration of the component in the liquid-

ordered phase to that in the liquid-disordered phase. The size

of this change depends, of course, upon the particular

average concentration of the system within the coexistence

region. For purposes of illustration, we have chosen concen-

trations s ¼ 0.37, u ¼ 0.45, and c ¼ 0.18, a point shown in

Fig. 1 by a dot. In the system with no cross-linkers, the

concentration of saturated lipids in the two phases is 0.52

and 0.36, respectively, so that the partition coefficient is

Ks¼ 1.44. After p¼ 5 cross-linking of 3 mol % of saturated

lipids, the concentration, s þ z, of all saturated lipids, cross-

linked or not, is 0.63 and 0.31 so that the partition coefficient

is now Ksþz ¼ 2.03, an increase of ~40%.

The effect of increasing the concentration of cross-linkers

of a given kind is shown in Fig. 2, which plots the extent of

stability of one-phase regions for the case of p ¼ 5 cross-

linkers with a concentration z ¼ 0.03 (dashed line) as in

Fig. 1, and a concentration of z¼ 0.05 (solid line). The effect

of increasing the concentration of cross-linkers is again to

increase the region of two-phase coexistence. Note that

with this larger fraction of cross-linkers, the unsaturated

lipids can undergo separation from the cross-linked saturated

ones in the complete absence of cholesterol (the locus c ¼ 0

in the triangle) or in the complete absence of unlinked, satu-

rated lipids (the locus s þ z ¼ 0.05, i.e., s ¼ 0.) This separa-

tion is completely analogous to that which occurs very

commonly in binary polymer blends due to the small entropy

of mixing of the polymers.

Next, we consider a system below the temperature at which

the pure saturated lipids undergo a transition to the gel phase.

The extension of the free energy to this case follows that of
Biophysical Journal 96(12) 4935–4940
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Putzel and Schick (19), and will not be repeated here. In Fig. 3,

the cross-linkers of p ¼ 5 are present in a concentration of

z ¼ 0 (dashed line) and z ¼ 0.03 (solid line), as in Fig. 1.

One notes that cross-linking does not affect greatly the phase

FIGURE 2 Effect of different compositions of the same saturated-lipid

cross linker, p ¼ 5, on the boundary of liquid-liquid two-phase coexistence.

Again, the dotted line shows the phase boundary in the absence of any cross-

linkers, while the dashed and solid lines show the boundaries for concentra-

tions of z ¼ 0.03 and z ¼ 0.05. In the latter case, the concentration s þ z

cannot be less than 0.05, so that region is shown shaded. The parameters

are the same as in Fig. 1.

FIGURE 3 Effect of a saturated-lipid cross-linker with p ¼ 5 on the phase

boundaries of the system below the temperature of transition to the gel phase

of the pure, saturated lipid system. Again, dotted lines show the phase bound-

aries without cross-linkers, while solid lines show the boundaries for

a concentration z ¼ 0.03 of cross-linkers. The values of the parameters

are (see (19)) Jss ¼ 1.0, k1 ¼ 1.0, Jus ¼ 1.8, Jcs ¼ 2.4, k2 ¼ 0.21,

k3 ¼ �0.25, J0us ¼ 0.7, and J0cs ¼ 0.0.
Biophysical Journal 96(12) 4935–4940
boundary of the gel phase, presumably because this phase is

rich in saturated lipids, so that the cross-linking of a fixed

small concentration of them causes only a small relative

change in the number of unlinked, saturated, lipids.

The case in which it is the unsaturated, non-raft-associ-

ating lipids, which are cross-linked, is easily dealt with.

The free energy(see Eqs. 6–8) in this case is

~f liq;4ðT; u; s; z; dÞ ¼ ~f mix;4ðu; s; zÞ þ ~f chainðT; u þ z; s; dÞ

þ~f intðT; u þ z; s; dÞ; ð15Þ

~f mix;4ðu; s; zÞ ¼ c ln c þ s ln s þ u ln u þ z

p
lnz; (16)

1 ¼ c þ u þ s þ z: (17)

The results for the case of simple dimerization, i.e., p¼ 2, are

shown in Fig. 4 for a temperature above that of the main

chain transition of the saturated lipid. The concentration of

lipids which have been dimerized is z ¼ 0.03 (solid line).

Again, the case with no cross-linking is shown for compar-

ison (dashed line). Note that it is now predominantly the

region of large saturated lipid concentration where the

increase in two-phase coexistence occurs. Again, this is

presumably because the concentration of unsaturated lipids

is smaller there, so that the effect of cross-linking a certain

fraction of them is larger. We also note that the effect of

FIGURE 4 Effect of an unsaturated-lipid cross linker with p ¼ 2 on the

phase boundary of the system above the main-chain transition temperature.

The dashed line shows the boundary of one-phase stability for no cross-

linkers, while the solid line is for a concentration z ¼ 0.03 of cross-linked

unsaturated lipids. Compositions are plotted in terms of mole fractions of

total unsaturated lipids, including cross-linked ones (u þ z), cholesterol

(c), and saturated lipids (s). The particular composition of s ¼ 0.49,

u ¼ 0.27, and c ¼ 0.24, noted in the text, is shown with a dot. Parameters

of the system are the same as in Fig. 1.
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cross-linking the unsaturated lipids is, if anything, even

greater than the cross-linking of the saturated ones.

An illustration of the effect on the partition coefficient of

the unsaturated lipids is provided by a composition s ¼ 0.49,

u ¼ 0.27, and c ¼ 0.24, a point shown with a dot in Fig. 4.

Before cross-linking, the concentrations of the unsaturated

lipids in the liquid-ordered and -disordered phases are 0.21

and 0.47, respectively, so that their partition coefficient is

Ku ¼ 0.45. After p ¼ 2 cross-linking of 3 mol % of unsatu-

rated lipids, the total amount of unsaturated lipids, u þ z,

cross-linked or not, is 0.17 and 0.54 so that the partition coef-

ficient is decreased to Kuþz ¼ 0.31, a 30% reduction.

DISCUSSION

We have proposed a simple thermodynamic mechanism, the

reduction in entropy of mixing, by which cross-linking of

lipids, either saturated or unsaturated, leads to an increase

in the range of compositions and temperatures over which

liquid-liquid coexistence occurs. The workings of the mech-

anism are easily understood, as is the reason that cross-link-

ing of either raft- or non-raft-associated lipids is effective.

Rafts are identified with one of the two phases that arise

from the phase separation of saturated and unsaturated lipids.

This separation is opposed by the entropy of mixing. There-

fore any process, such as cross-linking, which decreases the

entropy of mixing of either component enhances the

tendency to phase-separate.

Our results are in accord with experiments on the cross-

linking of raft-associated GM1 by cholera toxin (15) and

on the cross-linking of non-raft-associated PIP2 (16). We

found that the effect was strong even if the number of lipids

cross-linked was only two, i.e., as in dimerization.

We note also that the mechanism is also effective when the

lipids that are cross-linked are far apart, as might be expected

to be the case when the linker is actin. That the mechanism

does not depend upon proximity of the lipids cross-linked

distinguishes it from other mechanisms which rely upon

the effects of cross-linking on raft dynamics (18).

There is one other point to be made which relates to the

efficacy of the mechanism when applied to non-raft-associ-

ated lipids, those which comprise the major part of the inner

leaflet of the plasma membrane (22,23). Because of the

coupling of the inner and outer leaves of the membrane,

a membrane phase must be specified by the compositions

of both leaves. Similarly, the difference between phases

which coexist must be specified by, inter alia, composition

differences in both leaves. Given the large population of

unsaturated lipids in the inner leaf, it is conceivable that

the difference in inner leaflet composition between ‘‘raft’’

and ‘‘sea’’ could be small even in the presence of a large

difference in outer leaflet composition (21,24–26). Were

this the case, such a raft would not be very useful as the small

composition difference in inner leaflet would make it diffi-

cult for any chain which anchors there to distinguish one
region from another. However, as we have shown, the cross-

linking of unsaturated lipids tends to amplify the composi-

tion difference between phases, and therefore could turn

a useless raft into a functional one.
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