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Improved Model of Fluorescence Recovery Expands the Application of
Multiphoton Fluorescence Recovery after Photobleaching in Vivo

Kelley D. Sullivan,†* William H. Sipprell III,‡ Edward B. Brown Jr.,§ and Edward B. Brown III‡
†Department of Physics and Astronomy, and ‡Department of Biomedical Engineering, University of Rochester, Rochester, New York;
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ABSTRACT Multiphoton fluorescence recovery after photobleaching is a well-established microscopy technique used to
measure the diffusion of macromolecules in biological systems. We have developed an improved model of the fluorescence
recovery that includes the effects of convective flows within a system. We demonstrate the validity of this two-component diffu-
sion-convection model through in vitro experimentation in systems with known diffusion coefficients and known flow speeds, and
show that the diffusion-convection model broadens the applicability of the multiphoton fluorescence recovery after photobleach-
ing technique by enabling accurate determination of the diffusion coefficient, even when significant flows are present. Addition-
ally, we find that this model allows for simultaneous measurement of the flow speed in certain regimes. Finally, we demonstrate
the effectiveness of the diffusion-convection model in vivo by measuring the diffusion coefficient and flow speed within tumor
vessels of 4T1 murine mammary adenocarcinomas implanted in the dorsal skinfold chamber.
INTRODUCTION

Fluorescence recovery after photobleaching (FRAP) was

developed in the 1970s as a method to probe the local mobility

of macromolecules in living tissue (1–4). Briefly, FRAP is

performed by using an intense laser flash to irreversibly pho-

tobleach a region of interest within a fluorescent sample and

then monitoring the region of interest with the attenuated

beam as still-fluorescent molecules from outside the region

diffuse inward to replace the bleached molecules. FRAP relies

on single-photon excitation of the fluorescent sample, which

generates fluorescence throughout the light cone of the objec-

tive. Fluorescence and photobleaching are therefore uncon-

fined in three dimensions, generally limiting the technique

to thin samples (~1 mm) for measurement of absolute diffu-

sion coefficients. FRAP with spatial Fourier analysis (5,6)

allows thicker samples to be investigated; however, deep-

tissue imaging is still prohibited due to the poor depth penetra-

tion of epifluorescence microscopy. The FRAP technique

was significantly enhanced with the advance to multiphoton

excitation. The intrinsic spatial confinement of multiphoton

excitation (7) allows multiphoton fluorescence recovery after

photobleaching (MP-FRAP) to be performed within thick

samples, while the greater depth penetration of multiphoton

imaging (8) allows MP-FRAP to be performed deep within

scattering samples (9).

The existing mathematical theory of MP-FRAP assumes

that diffusion is the only recovery mechanism and so does

not account for the possibility of convective flow within

the focal volume, a situation that is now likely to arise as

MP-FRAP is applied to a greater variety of in vivo applica-

tions. The presence of an unexpected significant convective
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flow in an MP-FRAP experiment can produce erroneously

high diffusion coefficients when the existing diffusion-

only model is used to analyze the data. It is important, there-

fore, to include convective flow in the MP-FRAP derivation

and to determine over what range of flow speeds the

MP-FRAP technique can thereby provide accurate diffusion

coefficients.

We expect this new diffusion-convection model to be

crucial for diffusion studies conducted in tissues with

above-average interstitial flow. Kidney studies, for example,

are already enjoying advances due to the application of multi-

photon imaging techniques (10–12). Interstitial flow within

the juxtaglomerular apparatus of the kidney has been

measured via multiphoton video imaging to be 27.9 5

7.2 mm/s (13), which is a significant enough flow speed to

elicit erroneous diffusion coefficients when measured via

MP-FRAP and fit to the diffusion-only model. MP-FRAP

with the new derivation may also find a place in the burgeon-

ing world of microfluidics, where measurements of diffusion

coefficients (and flow speeds) are already in demand (14–16).

Through application of the Stokes-Einstein relation, the

diffusion coefficient obtained from MP-FRAP measure-

ments can be used to calculate fluid viscosity. In a healthy

human, blood plasma viscosity maintains a narrow range

of values, 1.10–1.30 mPas at 37�C (17). An elevated plasma

viscosity, in the extreme case (greater than twice the normal

value) known as hyperviscosity syndrome (18), is indicative

of many disease states. For example, a positive correlation

has been found between the degree of plasma viscosity

elevation and the severity of coronary heart disease (19),

as well as the incidence of heart attack or stroke (20–22).

Hyperviscosity is often associated with Waldenström’s

macroglobulinemia and multiple myeloma (23). Elevated

plasma viscosity has been indicated in cancer development,

particularly among the gynecologic cancers (24). Plasma
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viscosity can also be used to assess changes in acute phase

response due to trauma (17,25). MP-FRAP offers a noninva-

sive, real-time measure of plasma viscosity, which could be

used to probe more deeply the connection between plasma

viscosity and these (and other) disease states and/or the

response of these disease states to treatments. However,

our results show that measurement of the diffusion coeffi-

cient, and therefore plasma viscosity, in blood vessels

requires the use of our diffusion-convection model for accu-

rate fitting of MP-FRAP recovery curves under the influence

of significant directed flow.

A fortunate benefit of the new derivation is that for a rela-

tively wide range of diffusion coefficients and flow speeds,

both parameters can be measured accurately. Other tech-

niques have addressed the possibility of combined convec-

tive flow and diffusive transport. Axelrod et. al. (2) derived

a diffusion-convection model similar to the one presented

here, but for conventional (one-photon) FRAP. Later

researchers utilized FRAP with Fourier analysis, which

uses a video-based analysis of photobleaching recovery

data to measure flow speeds and offer insight into flow direc-

tions (26–28). Fluorescence correlation spectroscopy is also

capable of measuring flow speeds (29), while single particle

tracking offers a true velocity vector (30,31).

As discussed, however, single-photon excitation tech-

niques fail to offer the combined spatial resolution and depth

penetration of MP-FRAP. Other techniques offering similar

spatial resolution as MP-FRAP include multiphoton fluores-

cence correlation spectroscopy (32,33) and the closely related

two-photon image correlation spectroscopy (ICS) (34). Both

of these techniques are capable of measuring flow velocities,

as well as diffusion, and two relatively new variations of

image correlation spectroscopy, k-space ICS (35), and spa-

tio-temporal ICS (36), explicitly offer the ability to measure

diffusion coefficients and velocity vectors simultaneously.

However, the need of the various correlation spectroscopies

for both low concentrations of fluorophores and low back-

ground noise, compared with the need of FRAP techniques

for high concentrations of fluorophores and subsequent resis-

tance to background noise, means that the correlation spec-

troscopies and the photobleaching recovery techniques are

complementary, not competitive.

In this article, we will first derive the theory of MP-FRAP

with both diffusion and convection. Then, we will use

computer-generated data to understand how MP-FRAP

curves evolve under flow and to predict how the diffusion-

only and diffusion-convection MP-FRAP models will fit

data with convective flow. Next, we will perform MP-FRAP

experimentally using tracers with known diffusion coeffi-

cients in situations with known flow speed, and determine

specific cutoff speeds that define regimes where the diffu-

sion-only and diffusion-convection models produce accurate

diffusion coefficients (and/or flow speeds). Lastly, we will

apply the diffusion-convection model in vivo under a range

of flow conditions.
THEORY

In the existing MP-FRAP model, diffusion is assumed to be

the only mechanism for recovery. The diffusive recovery

after a brief bleaching pulse is given by Brown et. al (37),

FðtÞ ¼ Fo

XN
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� 1
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where b is the bleach depth parameter, tD is the characteristic

diffusion time, and R is the square of the ratio of the axial to

the radial dimensions of the focal volume. The diffusion

coefficient is given by D ¼ ur
2/8tD, where ur is the radial

1/e2 radius of the two-photon focal volume. With only two

fitting parameters, b and tD, fits to the fluorescence recovery

using the existing model are very robust. In the absence of

flow, a three-to-four decade range of seed values for the

fitting parameters required by the fitting program will

produce convergence to the same, low-residual, fit.

By adding a time-dependent coordinate shift to the stan-

dard model of diffusive recovery before its convolution

with the excitation laser profile (see Appendix), we arrive

at an improved diffusion-convection model that describes

fluorescence recovery in the presence of convective flow,

as well as diffusion:
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(2)

In this model, an additional fitting parameter, tv, is intro-

duced, which describes the characteristic recovery time due

to convective flow. For one-dimensional flow parallel to

the imaging plane, this equation reduces to

FðtÞ ¼ Fo

XN
n¼ 0

ð�bÞn

n!

�
exp

"
� 4nðt=tvÞ2
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#
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:

(3)

The flow speed is easily calculated as v¼ ur/tv. This form of

the equation readily reduces to that derived by Axelrod et. al.

(2) for thin samples with flow measured via one-photon

FRAP if the intensity profile is assumed to be two-dimen-

sional (square-root term in denominator disappears). For

the purpose of this article, we will focus on the one-dimen-

sional diffusion-convection form (Eq. 3), unless explicitly

stated otherwise. This formula produces MP-FRAP recovery
Biophysical Journal 96(12) 5082–5094
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curves that are indistinguishable from MP-FRAP recovery

curves derived using the diffusion-only formula (Eq. 1)

when flow speeds are extremely low. Increasing the flow

speed shortens the recovery time and alters the shape of

the MP-FRAP recovery curves, eventually producing curves

that approach an almost sigmoidal shape at high flow speeds

(see Fig. 1).

With the improved diffusion-convection model, we can

now measure diffusion accurately in the presence of flow

while simultaneously measuring the flow speed. However,

the introduction of a third fitting parameter complicates the

fit. We might now expect that when either diffusion or flow

dominates the fluorescence recovery, the fitting program will

yield inaccurate values for the nondominant parameter. Care

must be taken to define the range of flow speeds over which

the diffusion coefficient and flow speed may be measured

accurately.

METHODS

Computer-generated data and fitting

Fluorescence recovery curves were generated using the diffusion-convection

model and fit to both the diffusion-only and diffusion-convection models

using the lsqcurvefit function in MATLAB (The MathWorks, Natick,

MA). We added Poisson-distributed noise to the generated data in propor-

tion to the relative noise expected for either in vitro (3%) or in vivo (5%)

experiments, as determined from previous experience (37). Three experi-

mentally relevant bleach depths were also chosen: 0.2, 0.6, and 1.0 (37).

For each bleach depth/noise combination, a range of diffusion coefficients

and flow speeds was explored. After fitting the recovery curves, the ratio

of fit diffusion coefficient to input diffusion coefficient (with both the diffu-

sion-only and diffusion-convection models) and the ratio of fit speed to input

speed (with the diffusion-convection model) were plotted versus input

speed. Initial seed values for the fitting parameters required as inputs to

the lsqcurvefit function were generated via algorithms developed from limits

FIGURE 1 Comparison of the recovery of computer-generated MP-

FRAP curves for a macromolecule with D ¼ 9.2 mm2/s and differing values

of flow speed. The lower curve is a diffusion-only recovery (v ¼ 0 mm/s),

while the middle recovery curve has a moderate amount of flow (v ¼ 120

mm/s), and the upper recovery curve is flow-dominated (v ¼ 500 mm/s).

The shape of the curve changes as flow increases, eventually leading to an

almost sigmoidal shape for the flow-dominated recovery.
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to the diffusion-convection model equation and assumed no a priori knowl-

edge of the experimental system or of the particular diffusion coefficients

and flow speeds. Specifically, the formula used to calculate a seed value

for b was derived by solving the recovery equation (Eq. 3) at t ¼ 0 for

b in terms of F(0)/Fo, plotting a range of bleach depth parameters as a func-

tion of F(0)/Fo, and then choosing the best-fit polynomial to the curve. Seed

values for tD were easily estimated as the one-half recovery time of the MP-

FRAP recovery curve (t1/2). And the seed value for flow speed was approx-

imated as v¼ (x1/2)1/2(ur/t1/2), where x1/2 was determined by taking the limit

of the recovery equation as tD/N, then plotting F(x)/Fo, with x¼ (vt/ur)
2,

and finally picking the value at which F(x)/Fo was half recovered.

Experimental apparatus

Laser light was generated by a tunable, mode-locked Ti:Sapphire laser (Mai

Tai; Spectra Physics, Mountain View, CA), yielding 80-fs pulses at a repeti-

tion rate of 100 MHz. Rapid modulation of the laser power to produce

monitor and bleach intensities was provided by a KDP* Pockels Cell (model

No. 350-80; Conoptics, Danbury, CT). Timing of the bleach and monitor

pulses was delivered by a pulse generator (model No. DG535, Stanford

Research Systems, Sunnyvale, CA), while the voltage output to the Pockels

Cell was set and switched by a specially designed control box. The output of

the Pockels Cell was directed through an Olympus Fluoview 300 laser-scan-

ning microscope to the back aperture of the objective lens (0.8 NA, 40�
water immersion; Olympus, Center Valley, PA). Proper overfilling of the

back aperture of the objective lens was achieved for all experiments (see

PSF Calibration below). Overfilling is accomplished when the 1/e radius

of the laser beam is greater than or equal to the radius of the back aperture

of the lens. The objective lens focused the excitation beam within the fluo-

rescent sample (Fig. 2). The fluorescence emission was separated from the

excitation light by a short-pass dichroic mirror (model No. 670 DCSX-2P,

Chroma Technologies, Brattleboro, VT). For the in vitro experiments, emis-

sion signals were further separated by a second dichroic mirror and each was

detected by a photomultiplier tube (PMT) (Hamamatsu, Bridgewater, NJ).

The output from the PMT monitoring the green channel (fluorescent dye;

see in vitro MP-FRAP below) could be directed to a photon counter (model

No. SR400; Stanford Research Systems, Sunnyvale, CA), for general

inquiry into the fluorescence behavior, or to a multichannel scaler/averager

FIGURE 2 Equipment diagram of MP-FRAP apparatus. To obtain line-

scan images for flow speed comparison, a laser scanning system was

included in the system. For in vitro experiments, an additional dichroic

mirror and PMT were added to separate and measure the red fluorescence

of the polystyrene beads.
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(model No. SR430; Stanford Research Systems), for fluorescence recovery

data collection. Output from the PMT monitoring the red channel (fluores-

cent microspheres; see In vitro MP-FRAP below) was directed to the

Olympus imaging software. For increased throughput, data collection was

largely automated via LabVIEW (National Instruments, Austin, TX).

PSF calibration

The 1/e2 radial and axial dimensions of the two-photon excitation volume

were verified by scanning the excitation volume across subresolution fixed

fluorescent beads (Molecular Probes/Invitrogen, Eugene, OR). For the radial

dimension, xy scans were taken and the intensity profiles of the beads were

measured using ImageJ (National Institutes of Health, Bethesda, MD). For

the axial dimension, z-stack images were acquired, then the intensity profiles

of the beads in each image in the stack analyzed in ImageJ to determine the

peaks of the intensity profiles and the peak values plotted versus image depth

to build intensity profiles in the axial direction. The results of both measure-

ments were compared against theoretical values. For this work, we defined

the 1/e2 radii of the focal volume to be 0.403 mm in the radial direction and

2.22 mm in the axial direction for a 0.8 NA objective, properly overfilled

with 780-nm laser light.

In vitro MP-FRAP

For in vitro testing of the flow model, fluorescent samples were produced by

mixing fluorescein isothiocyanate (FITC) conjugated to bovine serum

albumin (BSA) or 2000 kDa dextran (dextran) (Molecular Probes/Invitro-

gen) diluted to 1 mg/mL in phosphate buffered saline (PBS) with 1 mL/mL

red fluorescent microspheres (FluoSpheres; Molecular Probes/Invitrogen).

The solution was suspended in a syringe and allowed to flow freely through

a thin tube (0.28 mm radius) and into a channel, capped by a No. 1.5 cover-

slip and immersed in a pool filled with PBS. The rate of flow was set by

adjusting the height of the syringe relative to the channel. For MP-FRAP

measurements, the excitation focal volume was kept stationary within the

flowing solution in the channel, and the excitation intensity rapidly modu-

lated between a strong bleaching pulse and a weak monitoring pulse. For

independent flow speed measurements, the excitation volume was scanned

repeatedly along a one-dimensional line parallel to the fluid flow at constant

excitation intensity, thus producing a line-scan image with dimensions of

position versus time (38). The angle of the sporadic streaks in the line-

scan image, representing the movement of the microspheres, was used to

calculate the flow speed.

In vivo tumor blood vessel imaging

4T1 murine mammary adenocarcinoma cells (American Type Culture

Collection, Manassas, VA) were injected (~4 � 106 in 50 mL) into the

inguinal mammary fat pad of 6–8-week-old female BALB/cByJ mice (Jack-

son Laboratory, Bar Harbor, ME). Tumors were removed for implant into

dorsal skinfold chambers when they reached ~2.5 mm in diameter.

Male BALB/cByJ mice (Jackson Laboratory) were anesthetized by intra-

peritoneal injection of a mixture of 90 mg/kg ketamine (IVX Animal Health,

St. Joseph, MO) and 9 mg/kg xylazine (Hospira, Lake Forest, IL), and

outfitted with a titanium dorsal skinfold chamber as previously described

(39). Two days later, a small fragment of 4T1 tumor (~0.5 mm) was placed

in the window of the chamber and allowed to grow for one week before

imaging.

Animals containing tumors growing in the dorsal skinfold chamber were

anesthetized with ketamine/xylazine, as described above. FITC-dextran was

injected intravenously (0.2 mL at 10 mg/mL in PBS), and animals were posi-

tioned under the microscope objective lens. MP-FRAP was performed as

described above, with the focal volume positioned in the center of the vessel

in the xy plane, but largely within the red blood cell-free region along the

z axis to maximize fluorescent signal. Line-scans were also performed as

described, using the shadows of RBCs, which do not take up FITC-dextran,

instead of fluorescent beads.
All animal care and use was in accordance with the policies of the Univer-

sity of Rochester Committee on Animal Resources.

Data analysis

As with the computer-generated data, experimental MP-FRAP recovery

curves were fit to the diffusion-only and diffusion-convection models using

the MATLAB lsqcurvefit function, which is based on the Levenberg-Mar-

quardt algorithm. Line-scan images were analyzed using ImageJ software.

RESULTS

In silico: testing the limits of the MP-FRAP models

We used computer-generated data to explore the effect of

convective flow on the shape and speed of fluorescence

recovery, and to probe the conditions (input recovery param-

eters, noise, focal volume) under which the MATLAB fitting

algorithm could correctly recover the diffusion coefficient,

assuming the diffusion-convection model is physically accu-

rate (which is tested in In Vitro MP-FRAP). Conditions

under which the diffusion-only model produces accurate

diffusion coefficients were assessed by generating fluores-

cence recovery curves using the diffusion-convection model

and fitting them to the diffusion-only model, then comparing

the input diffusion coefficients and fit diffusion coefficients.

Beginning with a combination of a relative noise of 3% and

a bleach-depth parameter of 0.6, we generated curves for a

series of diffusion coefficients ranging from 0.5 to 500 mm2/s

over a range of flow speeds from 0.1 to 10,000 mm/s. Fig. 3

FIGURE 3 Conditions for accurate fitting using the diffusion-only model,

as assessed by fitting computer-generated data. Fluorescence recovery

curves were generated with the diffusion-convection model, keeping the

bleach depth parameter and relative noise constant at 0.6 and 3%, respec-

tively, while exploring a range of speeds (plotted logarithmically) for each

of a set of diffusion coefficients (left to right: D ¼ 0.5, 1, 5, 10, 50, 100,

500 mm2/s). The data were fit to the diffusion-only model, and the diffusion

coefficients produced were normalized to the associated input diffusion

coefficients. Hence, an accurate result produces a ratio of one. As the input

speed increases beyond a certain cutoff value, the diffusion-only model

yields a growing overestimate to the diffusion coefficient. By scaling the

input speed along the horizontal axis (inset), the curves for each value of

the diffusion coefficient overlay onto a single curve.
Biophysical Journal 96(12) 5082–5094
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shows that for this series of diffusion coefficients, the diffu-

sion-only model begins yielding erroneously high diffusion

coefficients as the flow speed increases, and that the error in

determining the diffusion coefficient commences at flow

speeds that vary with the diffusion coefficient of the tracer

in question. By scaling the speed along the horizontal axis

(inset), such that vs ¼ v(ur/8D), the curves for each value of

the diffusion coefficient overlay onto one curve, and a

universal behavior can be observed: the diffusion-only model

produces erroneous diffusion coefficients (Dfit=Dinput[1) as

the scaled speed approaches vs ~0.3. This scaling behavior

allowed us to complete our investigations of the remaining

noise/bleach depth parameter combinations using only the

diffusion coefficients representative of BSA and dextran,

the two tracer molecules used in our in vitro experiments.

With all combinations of noise and bleach-depth evaluated

(3% and 5% relative noise, and b of 0.2, 0.6, 1.0), we

find that the behavior of the Dfit/Dinput curve is unchanged

(data not shown). The behavior of the Dfit/Dinput curve also

remained unchanged when a significantly larger focal volume

was assumed, ur¼ 0.646 mm and uz¼ 5.81 mm, correspond-

ing to a numerical aperture of 0.5 (data not shown).

To evaluate the conditions under which the diffusion-

convection model produces accurate diffusion coefficients,

we generated, and fit, fluorescence recovery curves using

the diffusion-convection model for diffusion coefficients

representing BSA and dextran over a range of flow speeds.

We show representative results in Fig. 4 a for b ¼ 0.6 and

relative noise ¼ 3%, where the ratio of fit diffusion coeffi-

cient to input diffusion coefficient is displayed along with

the ratio of fit speed to input speed. Of greatest importance

to note is that the diffusion-convection model produces accu-

rate values for the diffusion coefficient for values of flow

speed much greater than those for which the diffusion-only

model produces accurate values for the diffusion coefficient.

We also note that at the extremes of the plot, representing

results from fits to fluorescence recoveries dominated by

either diffusion (on the left) or flow (on the right), the fit

accurately determines the dominant parameter (i.e., a ratio

of one with a small standard deviation), while poorly deter-

mining the nondominant parameter (i.e., a ratio not equal to

one and/or a large standard deviation). For a wide range of

scaled speeds, the effects of diffusion and flow on the fluo-

rescence recovery dynamics are reasonably balanced, and

both the diffusion coefficient and the flow speed are accu-

rately determined. Based on this result, we can define three

regimes: 1) diffusion-dominated, in which only the diffusion

coefficient is accurately determined; 2) balanced, in which

both the diffusion coefficient and flow speed are accurately

determined; and 3) flow-dominated, in which only the flow

speed is accurately determined. After completing investiga-

tions of the full collection of bleach-depth/noise combina-

tions, we find that the balanced regime, where both the

diffusion coefficient and flow speed are well determined, is

narrowed as b decreases and/or the relative noise increases
Biophysical Journal 96(12) 5082–5094
(Fig. 4 b) and is broadened as b increases and/or as the rela-

tive noise decreases (Fig. 4 c). No change is seen, however,

when a larger focal volume is assumed (data not shown). We

also find that as we move into either of the two regimes

where one parameter dominates the other, the standard devi-

ation in the measurement of the nondominant parameter

increases precipitously. This increase in the standard devia-

tion of the nondominant parameter is more sensitive to the

scaled speed than are changes in the mean value of Dfit/Dinput

a

b

c

FIGURE 4 Conditions for accurate fitting using the diffusion-convection

model, as assessed by fitting computer-generated data. Fluorescence

recovery curves were generated with the diffusion-convection model,

keeping the bleach-depth parameter and noise level constant while exploring

a range of flow speeds (plotted logarithmically) for each of two diffusion

coefficients representing BSA and 2000 kDa dextran. The data were fit to

the diffusion-convection model, and the diffusion coefficients (red) and

flow speeds (blue) produced by the fits were normalized to associated input

values. Hence, an accurate result produces a ratio of one. In the case that

either diffusion or flow dominates the recovery, the fit poorly determines

the nondominant parameter. For a wide range of balanced recoveries, both

diffusion and flow are well determined. (a) b ¼ 0.6 and N/S ¼ 3%, experi-

mentally representative values. Arrows point to regimes where the standard

deviations in the nondominant parameter are high, even though the average

normalized value is close to one. (b) b ¼ 0.6 and N/S ¼ 5%; the increase in

noise narrows the balanced regime. (c) b ¼ 1.0 and N/S ¼ 3%; the deeper

bleach depth widens the balanced regime.
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or vfit/vinput, and therefore, the standard deviation is a more

conservative indicator of inaccurate results. The arrows in

Fig. 4 a point to regimes where the standard deviation in

the relevant ratio grows significantly, even while the average

of the ratio remains close to one. In Fig. 3, however, we see

that using the diffusion-only model to fit data whose

recovery is dominated by flow does not produce large stan-

dard deviations. This is because the fitting routine must erro-

neously assign all of the recovery kinetics to diffusion, thus

producing a very precise, but very inaccurate, diffusion coef-

ficient. It is only when the diffusion-convection model is used

to determine D (and v) that the standard deviations can grow

large while the ratio of Dfit/Dinput (or vfit/vinput) remains close

to one. This is because as the bulk of the recovery is assigned

to the dominant parameter and the negligible contribution

from the nondominant parameter can fluctuate.

By producing fits to computer-generated data, we have

gained important knowledge of the scaling behavior of

recovery curves influenced by diffusion and convection.

Verifying the diffusion-convection model in subsequent

in vitro tests could require, in principle, hundreds of combi-

nations of flow speeds and tracer molecules. However, by

taking advantage of the scaling behavior depicted in Fig. 3,

we can demonstrate the physical accuracy of the diffusion-

convection model using just two tracer molecules and

a moderate range of flow speeds. We also determined a range

of conditions (recovery parameters, noise, focal volume)

over which we can expect to recover accurate diffusion coef-

ficients when fitting experimental curves with the diffusion-

convection model, as well as developed expectations for the

behavior of our data statistics. For example, we predict that

the error in recovering the diffusion coefficient using both

the diffusion-only and diffusion-convection models will

increase with increasing flow speed, while for some range

of low flow speeds both models will produce accurate diffu-

sion coefficients. We also predict that there will be a range

of flow speeds over which the diffusion-convection model

produces accurate diffusion coefficients and flow speeds,

and a range of flow speeds over which the diffusion-convec-

tion model produces only accurate flow speeds. Further, we

predict that, using the diffusion-convection model, the stan-

dard deviation of the nondominant parameter will increase

before the average ratio of Dfit/Dinput or vfit/vinput begins to

deviate from one, while the diffusion-only model, lacking

a nondominant parameter, will produce very precise, but

very inaccurate, values of D as flow increases.

In vitro MP-FRAP

For a direct measure of the conditions necessary to yield

accurate fits to the diffusion coefficient using the two

models, as well as for verification of the physical accuracy

of the new diffusion-convection model, we designed an

experimental system with known diffusion and known

directed flow. FITC-BSA and FITC-dextran were used as
fluorescent tracer molecules. The dramatic difference in

molecular weight, 64 kDa and 2000 kDa for BSA and

dextran, respectively, was necessary to access the widest

range of relevant scaled speeds as suggested by the results

of fitting computer-generated data. To determine accuracy

of fit, the fit diffusion coefficient was compared against the

diffusion coefficient for a diffusion-only system, i.e., per-

formed without experimental flow and fit to the diffusion-

only model, and the fit speed was compared against the speed

obtained from line-scan data taken concurrently with the

MP-FRAP measurements. In the literature, diffusion-coeffi-

cient values for BSA vary from 55 to 62 mm2/s (6,27,40–43),

while values for dextran range from 8.4 to 9.1 mm2/s (42,43),

when adjusted to 20�C via the Stokes-Einstein relation. Our

diffusion-only measurements yielded 52 5 0.7 mm2/s and

9.2 5 0.05 mm2/s for BSA and dextran, respectively, consis-

tent with the literature.

The results of our measurements with flow are summarized

in Figs. 5 and 6. Fig. 5 compares results of the accuracy of the

diffusion coefficient as given by both the diffusion-only

(circles) and diffusion-convection (diamonds) models for

the same collection of data. As predicted from fits to the

computer-generated data, the standard deviation in the results

from experimental data fit by the diffusion-only model does

not increase, even as the error becomes great (i.e.,

Dfit=Dinput[1). To determine a cutoff speed beyond which

the diffusion-only model no longer produces an accurate

diffusion coefficient, we define an inaccurate fit by the diffu-

sion-only model as one in which Dfit/Do is statistically greater

FIGURE 5 Comparison of in vitro experimental data with flow, fit to the

diffusion-only and diffusion-convection models. A series of experimental

fluorescence recovery curves for FITC-BSA and FITC-2000 kDa dextran

were taken over a wide range of known flow speeds (plotted logarithmi-

cally). The curves were then fit to both the diffusion-only (circles) and the

diffusion-convection (diamonds) models, and the diffusion coefficients pro-

duced by each fit were normalized to the value measured in a system without

flow and fit to the diffusion-only model. Hence, an accurate result produces

a ratio of one. As the flow speed grows beyond vs z 0.3, the diffusion-only

model yields an increasing overestimate to the diffusion coefficient. The

improved diffusion-convection model, however, continues to provide accu-

rate diffusion coefficients for scaled speeds up to vs z 3, ~10 times larger

than the cutoff speed for the diffusion-only model.
Biophysical Journal 96(12) 5082–5094
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than 1.2 (determined by a one-sided hypothesis test), and we

see that the diffusion-only model begins yielding inaccurate

fits to the diffusion coefficient at a cutoff value of vs z 0.3.

The diffusion-convection model, meanwhile, continues to

provide accurate values for the diffusion coefficient for signif-

icantly greater flow speeds.

Fig. 6 displays the accuracy of the results for both the

diffusion coefficient and the flow speed as determined by

fitting data with the diffusion-convection model. For the

diffusion-convection model, our fits to computer-generated

data indicated that the standard deviation in fit values of

the nondominant parameter can increase before deviations

from one arise in the ratio of Dfit/Do or vfit/vlinescan. We there-

fore define a poor measurement as having a standard devia-

tion >15% of the mean value. Using this criterion, we can

expect the transition from diffusion-dominated to a balanced

recovery to occur at vs z 0.2 and the transition from

balanced to a flow-dominated recovery to occur at vs z 3.

These experimentally determined cutoff speeds are valid

for b z 0.5 and relative noise z 4%, chosen to match

typical experimental values (37). While our fits to generated

data have shown that differing amounts of noise and bleach-

depth will shift these cutoff values slightly (see Fig. 4), we

can use these cutoff values as estimates of the range of

behaviors expected for in vivo experiments.

We also tested the ability of the diffusion-convection

model to measure diffusion in the presence of flow in the

FIGURE 6 Results of fitting in vitro experimental data with flow to the

diffusion-convection model. A series of experimental fluorescence recovery

curves for FITC-BSA and FITC-2000 kDa dextran were taken over a wide

range of known flow speeds (plotted logarithmically). The diffusion coeffi-

cients (red) taken from the respective fits to the diffusion-convection model

are presented here as ratios with respect to the associated diffusion coeffi-

cient measured in a system without flow and fit to the diffusion-only model.

The flow speeds (blue) taken from the fits are presented as ratios with respect

to flow speeds measured via line-scans. An accurate result produces a ratio

of one. As with the computer-generated data, when either diffusion or flow

dominates the fluorescence recovery, the fit correctly determines the domi-

nant parameter, but poorly determines the nondominant parameter. For

a wide range of balanced recoveries, 0.2 ( vs ( 3, both parameters are

determined accurately. Dotted lines delineate the two experimentally deter-

mined cutoff speeds that define the parameter spaces in which the diffusion-

convection model accurately determines one (or both) parameters.
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axial direction (perpendicular to the imaging plane). With

this geometry, it was not feasible to measure flow speeds

via line-scans for independent verification. However, by

choosing a reservoir height corresponding to a relatively

modest flow, we produced a diffusion coefficient for FITC-

BSA of 51 5 2 mm2/s (vs ¼ 0.9 5 0.2 based on velocity

values taken from the fit), which matched our same-day

measurement of diffusion in a flow-free system, D ¼ 53 5

4 mm2/s (p ¼ 0.42, N ¼ 5). In addition, for a relatively high

rate of flow, we found D ¼ 59 5 2 mm2/s (vs ¼ 4 5 0.5),

which was statistically larger than the flow-free measurement

(p ¼ 0.0042, N ¼ 5). These results compare well with those

derived from measurements taken within the imaging plane.

In vivo MP-FRAP

We chose to demonstrate the effectiveness of the diffusion-

convection model in vivo by measuring diffusion (and

convection) within living tumor vessels. This model was

selected because blood flow through tumor vessels exhibits

a wide range of flow speeds with which to fully test the

diffusion-convection model in vivo in analogy with our

in vitro experimentation. Moreover, measurement of plasma

viscosity (using a simple conversion via the Stokes-Einstein

equation) has important applications in the study of several

disease states. By choosing vessels parallel to the plane of

imaging, we could continue to employ the line-scan tech-

nique to measure the red blood cell (RBC) speed, which

was used as an independent in vivo measurement of trans-

verse flow to compare with our MP-FRAP flow speed

measurements. Fig. 7 shows representative recovery curves

and associated fits to the diffusion-convection model for

FITC-dextran flowing in three different tumor vessels.

Table 1 shows the results of fitting the curves to both the

diffusion-only and diffusion-convection models, as well as

the average RBC speed in that part of the vessel. We have

also tabulated the value of the predicted flow scaled speed,

vs, as calculated from RBC speeds and in vitro diffusion

coefficient measurements (adjusted to 37�C and h ¼
1.2 cP, the viscosity of plasma (44), via the Stokes-Einstein

relation). Please note that the data presented for vs and vRBC

represent the mean and standard error of five measurements,

while the data presented for Ddiff–only, Ddiff–conv, and vdiff–conv

represent the fit values from each of three single data curves

and the associated error in the fitted parameters. The pres-

ence of pulsatile flow caused flow rates to vary within indi-

vidual vessels, and particularly widely in larger vessels, thus

preventing the calculation of meaningful means and standard

deviations for speed values. (In this case, the mean and stan-

dard deviation would describe the variation in the speed, not

the variation in the ability of the diffusion-convection model

to fit the data accurately.)

In vessel 1, we see that the RBC speed was 14 5 3 mm/s,

producing a predicted scaled speed of 0.08 5 0.02, well

below the estimated cutoff speed for accurate fitting with



MP-FRAP with Convective Flow 5089
FIGURE 7 Experimental fluorescence recovery curves

of FITC-dextran, flowing in vessels of 4T1 tumors growing

in dorsal skinfold chambers. Each curve represents

a different fitting regime for the diffusion-convection

model. (a) Diffusion-dominated recovery; only the diffu-

sion coefficient is accurately determined. (b) Balanced

recovery; both the diffusion coefficient and flow speed

are accurately determined. (c) Flow-dominated recovery;

only the flow speed is accurately determined.
the diffusion-only MP-FRAP model and comfortably within

the diffusion-dominated regime for the diffusion-convection

model. From this, we would predict that both models would

yield an accurate value for the diffusion coefficient, and that

the diffusion-convection model would provide an inaccurate

value for the flow speed. As predicted, the two models

produce identical values for the diffusion coefficient (D ¼
9.28 mm2/s), which is consistent with the literature when

adjusted via the Stokes-Einstein relation using a plasma

viscosity of h¼ 1.2 cP. Meanwhile, as predicted, a significant

difference is evident between the measured flow speed (v ¼
0.02 5 2000 mm/s) and the RBC speed (v ¼ 14 5 3 mm/s).

Vessel 2 has a predicted scaled speed of 0.45 5 0.05,

which is above the cutoff speed for the diffusion-only model

but within the balanced regime for the diffusion-convection

model. This indicates that the diffusion-only model should

overestimate the diffusion coefficient, while the diffusion-

convection model should yield accurate results for both the

diffusion coefficient and the flow speed. As expected, the

diffusion-only model produces an erroneously high diffusion

coefficient (D ¼ 19.6 5 0.4 mm2/s) due to the presence of

significant flow. In addition, as predicted, the diffusion-

convection model produces a diffusion coefficient (D ¼
9.68 5 0.34 mm2/s) that compares well with the value

obtained from vessel 1 and with the extrapolated literature

value. This suggests that this measurement is not impacted

by the increased flow speed. Additionally, the diffusion-

convection model yields a result for the flow speed that is

comparable to the RBC speed. The slight difference between

the plasma speed produced by the diffusion-convection
model and the RBC speed produced by the line-scans is

statistically significant (69.3 5 1.0 versus 80 5 10 mm/s,

p ¼ 0.036). However, on the edge of the red blood cell-

free layer within blood vessels, it is expected that the RBC

speed will be slightly larger than the plasma speed (44).

Vessel 3 has a predicted scaled speed of 6.2, well above the

cutoff speed for the diffusion-only model and in the flow-

dominated regime for the diffusion-convection model. From

this, we expect both models to yield inaccurate results for

the diffusion coefficient, while the diffusion-convection

model should provide an accurate measure of the flow speed.

As predicted, the diffusion-only model produces a diffusion

coefficient that is erroneously high (D ¼ 250 5 24 mm2/s),

due to the presence of dominant flow. The diffusion-convec-

tion model also produces an erroneously high diffusion

coefficient (D ¼ 34.9 5 9.5 mm2/s). This suggests that the

flow in this vessel is rapid enough to produce detectable devi-

ations in diffusion coefficient measurements, even for the

diffusion-convection model. Finally, the plasma speed deter-

mined by the diffusion-convection model is comparable to the

RBC speed, although the small difference between

the measured flow speed and the RBC speed is statistically

significant (987 5 36 versus 1140 5 80 mm/s, p ¼ 0.013).

This small difference is again anticipated in tumor vessels,

and allows us to conclude that the fit speed value is accurate.

DISCUSSION

MP-FRAP is a well-established microscopy technique used to

measure the diffusion of macromolecules within biological
TABLE 1 Results of fitting experimental in vivo data of diffusion and convection in tumor vessels using both the diffusion-only and

diffusion-convection models

vs* Dd
y (mm2/s) Dd–c

y (mm2/s) vd–c
y (mm/s) vRBC* (mm/s)

Vessel 1 0.08 5 0.02 9.3 5 0.5 9.3 5 0.5 0.02 5 2000 14 5 3

Vessel 2 0.45 5 0.05 19.6 5 0.4 9.7 5 0.3 70 5 1 80 5 10

Vessel 3 6.2 5 0.4 250 5 25 35 5 10 990 5 40 1140 5 80

*Reported error is 5 error of the mean, n ¼ 5.
yReported error is 5 standard error in fitted parameter, n ¼ 1.
Biophysical Journal 96(12) 5082–5094
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systems. However, the presence of unanticipated convective

flow can produce erroneous diffusion coefficients when

recovery curves are fit with the previously derived diffu-

sion-only model. Here we have derived a new diffusion-

convection model for fitting MP-FRAP recovery curves,

which improves upon the diffusion-only model by enabling

accurate determination of the diffusion coefficient in the pres-

ence of significant convective flows. We have evaluated this

new model by fitting computer-generated recovery curves

with convective flow and by conducting in vitro experiments

with known flows and known diffusion coefficients as a means

of evaluating the physical accuracy of the model and quanti-

fying the advantages of the diffusion-convection model

compared with the diffusion-only model. We have also

demonstrated the new MP-FRAP model in measurements of

the diffusion coefficient and flow speed in vivo within tumor

blood vessels.

Diffusion-only MP-FRAP model

As shown in Figs. 3 and 5, the diffusion-only model yields

accurate values for the diffusion coefficient at negligible

flows in both computer-generated data and in vitro experi-

ments. As flows become appreciable and increase the rate

of recovery, the diffusion-only model compensates by erro-

neously raising the diffusion coefficient in the resulting fit.

At extremely high flow speeds, this error is obvious to the

experimentalist as the shape of the recovery curve changes

dramatically and the diffusion-only model fit becomes

visibly poor (Fig. 8 a). However, when flow only moderately

influences the recovery, the shape change is subtle and the

diffusion-only model may still yield a good looking fit while

offering an inaccurate diffusion coefficient (Fig. 8 b). Herein

lies the danger when the diffusion-only model is applied to

an unfamiliar system with modest convective flow. This

effect can be quantified with our experimentally derived

cutoff scaled speed of vs z 0.3. For scaled speeds greater

than this value, at typical relative noise values, fitting with

FIGURE 8 Computer-generated fluorescence recovery curves, generated

with the diffusion-convection model and fit to the diffusion-only model.

(a) The recovery is flow-dominated and there is an obvious alteration in

the shape of the recovery curve, which is visibly poorly fit by the diffu-

sion-only model. (b) The recovery is balanced under the influences of diffu-

sion and flow. Although the fit looks good by eye, the diffusion-only model

produces a diffusion coefficient 25% larger than the input value.
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the diffusion-only model will yield erroneous values of the

diffusion coefficient.

Diffusion-convection MP-FRAP model

The diffusion-convection model offers a significant improve-

ment over the diffusion-only model by yielding accurate

diffusion coefficients in the presence of flows significant

enough to generate errors in the diffusion coefficient when

fit by the diffusion-only model. As an added benefit, the

diffusion-convection model is also capable of accurately

determining the flow speed over some range of parameters.

However, fits to computer-generated and in vitro data

show that when either diffusion or flow dominates the fluo-

rescence recovery, the diffusion-convection model poorly

determines the nondominant parameter, thus setting up three

regimes: 1), diffusion-dominated, in which only the diffusion

coefficient is accurately determined; 2), balanced, in which

both the diffusion coefficient and flow speed are accurately

determined; and 3), flow-dominated, in which only the

flow speed is accurately determined. By defining a scaled

speed parameter, vs ¼ v(ur/8D), each of the two transitions

between the regimes can be seen to occur over the same

range of scaled speeds for all magnitudes of diffusion coef-

ficients. These transitions will shift slightly when fluores-

cence recoveries with differing amounts of relative noise

and/or bleach depths are analyzed, such that the balanced

regime is broadest with low noise and/or high bleach depth

and is narrowest with high noise and/or low bleach depth.

As a direct experimental measure of the abilities of the

diffusion-convection model, we conducted MP-FRAP in

a simple system with known flow speeds, using a fluorescent

dye conjugated to a macromolecule (BSA or dextran) with

a known diffusion coefficient. In agreement with the fits to

computer-generated data, a comparison of fits of the in vitro

data to the diffusion-only and diffusion-convection models

showed that the diffusion-convection model yields accurate

diffusion coefficients for flow speeds up to ~10 times the

value of the maximum speed at which the diffusion-only

model was able to yield an accurate diffusion coefficient.

In addition, as expected, when flow speeds were appreciable

yet small, the diffusion-convection model accurately deter-

mined the diffusion coefficient, but poorly determined the

flow speed. Specifically, for typical experimental noise

(~4%) and bleach depth (~0.5), the cutoff speed for transition

from diffusion-dominated to balanced recoveries was vs z
0.2, while the cutoff speed for transition from balanced to

flow-dominated recoveries was vs z 3. For both transitions,

the standard deviation of the measured value of the nondom-

inant parameter was a more sensitive indicator of problems

with the fit than was the average value of the nondominant

parameter. We also applied the diffusion-convection model

to recovery curves taken in the presence of axial flows

(perpendicular to the imaging plane), and showed that the

model correctly recovers the diffusion coefficient. By
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extension, with a priori knowledge of the flow direction, the

diffusion-convection model could be used to determine the

diffusion coefficient (and flow speed) for multidimensional

flows without increasing the number of fitting parameters.

It is also important to note that the choice of tracer molecule

significantly affects the ability to accurately measure the

diffusion coefficient in the presence of convective flow. Given

that the cutoff scaled speed values are constant with relation to

the value of the diffusion coefficient, and that vs ¼ v(ur/8D),

we see that the larger the diffusion coefficient is for a given

tracer, the smaller the scaled speed will be for any particular

absolute speed. To keep the scaled speed below the cutoff

between the balanced and flow-dominated regimes (where

diffusion can no longer be accurately measured), systems

with large flow speeds are best probed with small molecules

(typically having a large diffusion coefficient), whereas

systems with small flow speeds are as accurately probed

with small or large molecules (typically having a large or

small value of the diffusion coefficient, respectively).

In vivo application

As an analogous demonstration of the diffusion-convection

model in vivo to compare with our in vitro results, we chose

to measure diffusion and convection within tumor blood

vessels. The RBC speed provided a separate indicator of

flow speeds with which to evaluate our model. Our first

example was a vessel with an extremely slow RBC speed,

and hence a low scaled speed of 0.08 (calculated using our

in vitro values of the diffusion coefficient extrapolated to

plasma at 37�C). From this scaled speed value, we predicted

that accurate values for the diffusion coefficient would be

produced by both the diffusion-only and the diffusion-con-

vection models, but that an inaccurate value for the flow

speed would be given by the diffusion-convection model,

due to the dominance of diffusion over flow. Our second

example was a vessel with a scaled speed of 0.45, in between

the two transition cutoff speeds, suggesting that the diffu-

sion-only model would be unable to produce an accurate

value for the diffusion coefficient, while the diffusion-

convection model would accurately determine both the diffu-

sion coefficient and flow speed. Our third example was

a vessel with a scaled speed of 6.24, above the highest tran-

sition cutoff speed, and predicting inaccurate values for the

diffusion coefficient from both models, but an accurate

flow speed from the diffusion-convection model. In each

case, the in vivo data analyzed as predicted. These examples

demonstrate in vivo that the diffusion-convection model

extends the range of flow speeds over which accurate diffu-

sion coefficients can be determined by an order of magnitude

and that the diffusion-convection model can also determine

the flow speed accurately over a wide range of flows.

In addition to the diffusion-convection model described

here, an anomalous subdiffusion model has been derived

and used as an alternative to the diffusion-only model to fit
FRAP and in vivo MP-FRAP curves (37,45,46). An anoma-

lous subdiffusion model can be produced by replacing any

Dt terms in the recovery equation (Eq. 3) with Gta, where

G is a constant transport coefficient with units mm2/sa and

0< a< 1 (37). Choosing between models is straightforward,

as anomalous subdiffusion and convective flow differentially

affect the speed of recovery and the shape of the recovery

curve. Graphically, anomalous subdiffusion stretches out

MP-FRAP curves, while convective flow adds a kink. By

again using computer-generated MP-FRAP curves, we deter-

mined that the two models are incompatible. Recovery curves

generated using the diffusion-convection model could be fit

by the anomalous subdiffusion model with a low c-squared

value, but in the presence of significant convective flow, the

added kink causes the anomalous subdiffusion model to

produce parameter values grossly out of line with the litera-

ture. For example, for a curve generated with vs ¼ 1 (within

the balanced regime), the resulting fit to the anomalous

subdiffusion model yielded G ¼ 1.35 � 106 mm2/sa and

a ¼ 2.11 (Fig. 9 a), compared with G ¼ 0.7 mm2/sa and

a¼ 0.55 found in the literature (37). Meanwhile, in the pres-

ence of significant anomalous subdiffusion, the stretching-out

of the curve is visibly very poorly fit by the diffusion-convec-

tion model (Fig. 9 b). Of course, in ranges with mildly anom-

alous subdiffusion (a > 0.85, i.e., close to 1) or small scaled

flow speeds (vs< 0.1, i.e., close to 0), low c-squared fits with

reasonable parameter values are produced. In these cases,

some a priori knowledge of the system would be necessary

to distinguish mildly anomalous subdiffusion from a slow

transverse flow speed.

Future applications

In future experiments in which both the diffusion coefficient

and flow speed are not known a priori, the diffusion-convec-

tion model can be used for fitting MP-FRAP curves, and the

typical cutoff speeds determined here can act as a retrospective

FIGURE 9 Mismatch between diffusion-convection and anomalous

subdiffusion models. (a) Curve was computer-generated with the diffusion-

convection model (D ¼ 52 mm2/s and vs ¼ 1) and fit with the anomalous

subdiffusion model. Although the fit looks good, the anomalous parameters

are grossly misaligned with the literature (G ¼ 1.35 � 106 mm2/sa and a ¼
2.11). (b) Curve was computer-generated with the anomalous subdiffusion

model (G ¼ 0.7 mm2/sa and a ¼ 0.35) and fit with the diffusion-convection

model. The fit is visibly poor (D ¼ 172.08 mm2/s and v ¼ 0.13 mm/s).
Biophysical Journal 96(12) 5082–5094



5092 Sullivan et al.
sanity check. If the output diffusion coefficient and flow speed

are within the cutoff speeds, one can assume the values are

correct. This is because at no point does the absolute error

in the nondominant parameter grow large enough to map

the incorrect output parameters into the balanced regime.

For example, the computer-generated MP-FRAP curves that

produced the data on the extreme right-hand side of Fig. 4

were performed at a scaled speed of 300 and produced

a normalized diffusion coefficient of 10 and a normalized

flow speed of 1. The output scaled speed is hence (incorrectly)

determined to be 30. This scaled speed value is erroneously

low, but still above the cutoff speed, and hence would be

easily rejected by the experimentalist as indicating incorrect

values of the fit parameters, even if the fit appears reasonable.

CONCLUSION

In this article, we derived an improved model of multiphoton

fluorescence recovery after photobleaching that explicitly

accounts for the presence of convective flow, as well as

diffusion. Using computer-generated data to guide our

in vitro experiments, we demonstrated that this new model

extends the ability of MP-FRAP to determine diffusion coef-

ficients accurately in the presence of flow to flow speeds an

order-of-magnitude higher than is possible with the diffu-

sion-only model of MP-FRAP, which does not account for

flow. We also determined experimentally useful cutoff

speeds that, for typical experimental parameters, predict

the range of scaled speeds over which the diffusion-convec-

tion model allows MP-FRAP to produce accurate diffusion

coefficients, as well as accurate flow speeds.

APPENDIX

The time-dependent concentration of unbleached fluorophore immediately

after the termination of a bleach pulse is given by Brown et al. (37).

When converted to Cartesian coordinates, this is given by

cðx; y; z; tÞ ¼
XN
n¼ 0

AnðtÞe�mnðtÞx2

e�mnðtÞy2

e�nnðtÞz2

; (4)

where

AnðtÞ ¼ co

ð�bÞn

n!

1�
1 þ 8bnDt=u2

r

��
1 þ 8bnDt=u2

z

�1=2
;

(5)

mnðtÞ ¼
2bn

u2
r

1�
1 þ 8bnDt=u2

r

�; (6)

nnðtÞ ¼
2bn

u2
z

1�
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z
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An attenuated laser beam is used to monitor the changing concentration

profile. The fluorescence recovery is given by (37)

FðtÞ ¼ dmE

m

Z �
Im

moðx; y; zÞ
	
cðx; y; z; tÞdxdydz; (8)
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where dm is the multiphoton fluorescence action cross section, hIm
mo(x, y, z)i

is the time-average of the bleach intensity raised to the mth power, and m is

the number of photons required to produce fluorescence from a single fluo-

rophore.

We first consider flow along the x axis. To solve for F(t) in this case, we

choose a frame of reference in which we have a source moving along the

x direction (the concentration distribution moving under flow) and a

stationary observer (the focal volume monitoring the intensity). In the frame

of reference of the observer, x0 ¼ x þ vt, y0 ¼ y, and z0 ¼ z. The time-depen-

dent fluorophore concentration is now

cðx0; y0; z0; tÞ ¼
XN
n¼ 0

AnðtÞe�mnðtÞðx0 �vtÞ2 e�mnðtÞy
02

e�nnðtÞz
02
: (9)

The expression for the monitoring intensity distribution does not change

from the case of both source and observer stationary (37):�
Im
mo

�
x
0
; y
0
; z
0�	 ¼ �Io

	
e�ð2m=u2

r Þx
02

e�ð2m=u2
r Þy
02

e�ð2m=u2
z Þz
02
:

(10)

Substituting Eqs. 9 and 10 into Eq. 8 yields

FðtÞ ¼ dmE

m
hIoi

XN
n¼ 0

AnðtÞ
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dx0
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Z þN

�N
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z Þz
02

dz0:

(11)

Before integrating, we first rewrite the exponential in x0 by expanding

the exponent, completing the square in x0, then making the variable

substitution:

g
0 ¼ x

0 � mnðtÞvt

mnðtÞ þ 2m=u2
r

: (12)

The expression for the fluorescence recovery now looks like

FðtÞ ¼ dmE

m

�
Io
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where

AnðtÞ ¼ AnðtÞexp

�
� 2mmnðtÞv2t2

2m þ mnðtÞu2
r

�
: (14)

The integrals in Eq. 13 are now all first-order Gaussians. When the integrals

are performed and AnðtÞ, mn(t), and nn(t) have been substituted in, the simpli-

fied expression, letting m ¼ b ¼ 2 for a two-photon process, is

FðtÞ ¼ Fo
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z

�1=2
:

(15)
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We may also express the equation in terms of system-specific variables,

tD ¼ ur
2/8D and tv ¼ ur/v:

FðtÞ ¼ Fo

XN
n¼ 0

ð�bÞn

n!

�
exp

"
� 4nðt=tvÞ2

1 þ n þ 2nt=tD

#

ð1 þ n þ 2nt=tDÞð1 þ n þ 2nt=RtDÞ1=2
:

(16)

This equation can be generalized to flow with a component along all three

axes (v2 ¼ vx
2 þ vy

2 þ vz
2) as

FðtÞ ¼ Fo

XN
n¼ 0

ð�bÞn

n!

�
exp

"
�

4nt2
�

1=t2
vx
þ 1=t2

vy

�
1þ nþ 2nt=tD

#
exp

�
�

4nt2=t2
vz

1þ nþ 2nt=RtD

�

ð1 þ n þ 2nt=tDÞð1 þ n þ 2nt=RtDÞ1=2
;

(17)

where tvx
¼ ur=vx, tvy

¼ ur=vy, and tvz
¼ uz=vz. Finally, we can express

this equation in cylindrical coordinates, to mimic the symmetry of the

two-photon focal volume,

FðtÞ ¼ Fo

XN
n¼ 0

ð�bÞn

n!

�
exp

"
�

4nt2=t2
vr

1 þ n þ 2nt=tD

#
exp

�
�

4nt2=t2
vz

1 þ n þ 2nt=RtD

�

ð1 þ n þ 2nt=tDÞð1 þ n þ 2nt=RtDÞ1=2
;

(18)

where tvr
¼ ur=vr and tvz

¼ ur=vz. Note that vr is not a radial velocity (this

would imply a divergence), but rather the resultant velocity obtained by add-

ing the velocity components within the image plane (vx and vy) vectorially.

Because the radial and axial dimensions of the two-photon focal volume are

not equal, the velocity components parallel and perpendicular to the image

plane cannot be combined into a coordinate-free resultant velocity. The deci-

sion to use Eq. 16, 17, or 18 depends on the experimentalist’s knowledge of

the direction of the flow. Use of the one-dimensional form, Eq. 16, is justi-

fied in this work because the in vitro experiments were designed to allow

flow predominantly in one direction and the flow within blood vessels,

measured in vivo, is directed parallel to the vessel wall.

Special thanks to Ryan Burke for overseeing all cell and tissue culture, and

to Khawarl Liverpool for his careful dorsal skinfold chamber surgeries.

This work was funded by a Department of Defense Era of Hope Scholar

Award (No. W81XWH-05-1-0396) and a Pew Scholar in the Biomedical

Sciences Award to E.B.B. III.

REFERENCES

1. Peters, R., J. Peters, K. Tews, and W. Bahr. 1974. Microfluorimetric
study of translational diffusion of proteins in erythrocyte membranes.
Biochim. Biophys. Acta. 367:282–294.

2. Axelrod, D., D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb.
1976. Mobility measurement by analysis of fluorescence photobleach-
ing recovery kinetics. Biophys. J. 16:1055–1069.
3. Edidin, M., M. Zagyansky, and T. Lardner. 1976. Measurement of

membrane protein lateral diffusion in single cells. Science. 191:466–468.

4. Schlessinger, J., D. E. Koppel, D. Axelrod, K. Jacobson, W. W. Webb,

et al. 1976. Lateral transport on cell membranes: mobility of convalin A

receptors on myoblasts. Proc. Natl. Acad. Sci. USA. 73:2409–2413.

5. Tsay, T.-T., and K. A. Jacobson. 1991. Spatial Fourier analysis of video

photobleaching measurements. Biophys. J. 60:360–368.

6. Berk, D. A., F. Yuan, M. Leunig, and R. K. Jain. 1993. Fluorescence

photobleaching with spatial Fourier analysis: measurement of diffusion

in light-scattering media. Biophys. J. 65:2428–2436.

7. Denk, W., J. H. Strickler, and W. W. Webb. 1990. Two-photon laser

scanning fluorescence microscopy. Science. 248:73–76.

8. Brown, E. B., R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, et al.

2001. In vivo measurement of gene expression, angiogenesis, and

physiological function in tumors using multi-photon laser scanning

microscopy. Nat. Med. 7:864–868.

9. Brown, E. B., Y. Boucher, S. Nasser, and R. K. Jain. 2004. Measure-

ment of macromolecular diffusion coefficients in human tumors.

Miscrovasc. Res. 67:231–236.

10. Dunn, K. W., R. M. Sandoval, K. J. Kelly, P. C. Dagher, G. A. Tanner,

et al. 2002. Functional studies of the kidney of living animals using

multicolor two-photon microscopy. Am. J. Physiol. Cell Physiol.
283:C905–C916.

11. Molitoris, B. A., and R. M. Sandoval. 2005. Intravital multiphoton

microscopy of dynamic renal processes. Am. J. Physiol. Renal Physiol.
288:F1084–F1089.

12. Sipos, A., I. Toma, J. Kang, L. Rosivall, and J. Peti-Peterdi. 2007.

Advances in renal (patho)physiology using multiphoton microscopy.

Kidney Int. 72:1188–1191.

13. Rosivall, L., S. Mirzahosseini, I. Toma, A. Sipos, and J. Peti-Peterdi.

2006. Fluid flow in the juxtaglomerular interstitium visualized in vivo.

Am. J. Physiol. Renal Physiol. 291:1241–1247.

14. Kuricheti, K. K., V. Buschmann, and K. D. Weston. 2004. Application

of fluorescence correlation spectroscopy for velocity imaging in micro-

fluidic devices. Appl. Spectrosc. 58:1180–1186.

15. Squires, T., and S. Quake. 2005. Microfluidics: fluid physics at the

nanoliter scale. Rev. Mod. Phys. 77:977–1026.

16. Kim, D. R., and X. Zheng. 2008. Numerical characterization and opti-

mization of the microfluidics for nanowire biosensors. Nano Lett.
8:3233–3237.
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