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ABSTRACT In many cell types, the inositol trisphosphate receptor is one of the important components controlling intracellular
calcium dynamics, and an understanding of this receptor is necessary for an understanding of calcium oscillations and waves.
Based on single-channel data from the type-I inositol trisphosphate receptor, and using a Markov chain Monte Carlo approach,
we show that the most complex time-dependent model that can be unambiguously determined from steady-state data is one with
three closed states and one open state, and we determine how the rate constants depend on calcium. Because the transitions
between these states are complex functions of calcium concentration, each model state must correspond to a group of physical
states. We fit two different topologies and find that both models predict that the main effect of [Ca2þ] is to modulate the probability
that the receptor is in a state that is able to open, rather than to modulate the transition rate to the open state.
INTRODUCTION

The modulation of free Ca2þ concentration is a regulator of

numerous physiological processes, including saliva secre-

tion, muscle contraction, and cell division (1). The changes

in the Ca2þ concentration involve interaction between

the mechanisms controlling Ca2þ flux across the plasma

membrane and across internal cell compartment membranes

such as the endoplasmic reticulum (ER). In many cell types,

Ca2þ release is via the inositol trisphosphate receptor, IPR,

which is regulated by Ca2þ and inositol 1,4,5-trisphosphate,

IP3, and other ligands (2). The release of Ca2þ from the ER

can further modulate the open probability of the channel,

resulting in complex Ca2þ oscillations and waves. Therefore,

an understanding of the IPR dynamics is central to a detailed

understanding of Ca2þ dynamics.

IPR can be studied using patch-clamp techniques (3) to

record their single-channel activity. Early single-channel

measurements were performed in lipid bilayers (4,5) and

thus, not in their natural environment. However, recently it

has been reported that the receptors are expressed in limited

numbers in the plasma membrane of DT40 cells (6,7), such

that their activity can be measured using the whole-cell mode

of the patch-clamp technique. As the receptor is localized

such that a normal orientation in the cytoplasm is retained,

it might be expected that the IPR is regulated in a relatively

normal manner. The plasma membrane lipid environment is

also likely to be similar to the ER membrane. Thus, it is now

possible to measure single-channel activity of an IPR in an

environment that is, presumably, relatively similar to its

native environment.

The open probability of the IPR at steady state is a bell-

shaped function of the Ca2þ concentration (5) and this has
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been a central feature in many models of the IPR (8–13).

However, kinetic properties of the receptor are also impor-

tant. After a step increase in Ca2þ concentration, the IPR

flux, measured by labeled flux experiments, first increases

and then decreases (14–17). This time-dependent data is

fitted by Sneyd and Dufour (18). A review of different IPR

models can be found in Sneyd and Falcke (19).

During realistic Ca2þ oscillations and waves, the IPR is

rarely at steady state, and so to understand the behavior

and function of the IPR, it is crucial to construct models

that have both the correct steady-state properties as well as

the correct time dependence. However, this has proven diffi-

cult. Although single-channel recordings are excellent at

obtaining steady-state data, it is considerably more difficult

to determine kinetic behavior from single-channel measure-

ments. Conversely, although labeled flux experiments can

give a clear picture of time-dependent behavior, they suffer

from their own disadvantages; questions such as luminal

depletion and possible buildup around the mouth of a channel

can make interpretation of the results problematic.

Our goal here is to develop a minimal Markov model of

an IPR, based solely on steady-state single-channel measure-

ments. In doing so, we develop the simplest possible time-

dependent model of the IPR (consistent with our experimental

data), but avoid the perils of interpretation associated with

labeled flux experiments. The most important question is:

given the available data, how precisely may the kinetic rate

constants be determined, and what is the most complex model

for which all the rate constants may be determined unambig-

uously? We fit two topologies with the same number of open

and closed states and investigate the type of data needed to

distinguish between the two models.

Steady-state single-channel data were obtained from the

type-1 IPR at various Ca2þ concentrations at a single,

presumably saturating [IP3]. Thus, we are able to determine

how the rate constants in the minimal model depend on Ca2þ
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concentrations and investigate how the open probability is

affected by Ca2þ.

Here we use a Bayesian inference and a Markov chain

Monte Carlo (MCMC) method developed by Ball et al. (20)

to fit directly to experimental single-channel data. In theory,

the fit will determine both the rate constants of the underlying

Markov model as well as the sequence of openings and clos-

ings, although, as shall be seen, the actual process can be made

somewhat simpler in practice. For more-extensive fitting

details, see Gin et al. (21).

METHODS

Electrophysiology

All experiments were performed in chicken DT40-3KO cells engineered to

stably express rat S1-/S2þ IPR-1. Because endogenous IPRs have been

genetically deleted in the DT4-3KO cell type, stable expression of the

expressed mammalian IPR allows its study in unambiguous isolation. All

experiments were performed using the whole-cell configuration of the

patch-clamp technique, which allows the measurement of single channel

activity from IPR present in the plasma membrane as previously described

(6,7).

Kþ was utilized as the charge carrier in all experiments. The bath con-

tained; 140 mM KCl, 10 mM HEPES, 500 mM BAPTA, and free Ca2þ

250 nM at pH 7.1. The pipette contained 100 mM IP3, 140 KCl mM,

10 mM HEPES, 100 mM BAPTA, 0.5 mM ATP, and free Ca2þ as indicated

at pH ¼ 7.1. Pipette [Ca2þ] was calculated using MaxChelator and verified

by fluorimetry. The ATP was in the form of Naþ ATP. Borosilicate glass

pipettes were pulled and fire-polished to resistances of ~20 MU. Following

establishment of stable high resistance seals, the membrane patches were

ruptured to form the whole-cell configuration with resistances >5 GU and

capacitances >8 pF. The holding potential was set to �100 mV during

the recording, except where noted, and currents were recorded under

voltage-clamp conditions using an Axopatch 200B amplifier and pClamp

9. Channel recording were digitized at 20 kHz and filtered at 5 kHz with

a �3 dB, four-pole Bessel filter.

Representative examples of channel activity are shown in Fig. 1 at

different values of [Ca2þ] with an [IP3] of 100 mM.

Fitting methods

We will use Bayesian inference and Markov chain Monte Carlo (22)

methods to fit the rate constants. A detailed description of the method as

given in Gin et al. (21). Here, we give only a very brief description. The

parameter distributions are obtained by sampling appropriately from an

a posteriori distribution. Given parameters q, and data x, the posterior prob-

ability distribution is given by

pðqjxÞf pðqÞpðxjqÞ; (1)

where p($j$) denotes a conditional probability. The left-hand side of Eq. 1 is

the quantity in which we are interested, with the maximum of p(qjx) giving

the set of rate constants that maximizes the probability of obtaining the

observed data. We do not take this maximization approach, but instead

construct the entire distribution from which we can extract any statistical

quantity required, such as the maximum or mean, by using MCMC tech-

niques. Details of the terms on the right-hand side of Eq. 1 are given in

Gin et al. (21).

The data, x, used to fit the model, are the durations of the open times and

closed times. To obtain the set of open times and closed times a threshold

algorithm is applied to the single-channel record. A threshold is set at

50% of the mean open current and everything below the threshold is consid-

ered closed, while everything above the threshold is considered open. The
Biophysical Journal 96(10) 4053–4062
distribution of the closed time and open time durations are then plotted in

a histogram, examples of which are shown later in Fig. 3, A and B. It is

usually more convenient to look at the logarithm of the time given the

wide range of timescales (23). The theoretical distributions of the open

and closed times can then be approximated by sums of decaying exponen-

tials, which are not model-specific, or if given a Markov model, it is a rela-

tively simple matter to calculate the theoretical distributions of the open and

closed times (24,25). By fitting to these experimentally determined open

time and closed time probability distribution functions, the parameters of

the Markov model may be determined.

The limited time resolution of the experimental recording means very

brief opening and closing events will go undetected. There are a number

of ways to correct for missed events (26–28). The approximation of Blatz

and Magleby (26) is one of the simplest and is reasonably accurate, as

long as the rate constants of the Markov model are not too large. This

method assumes that missed events only occur for transitions from open

to closed and closed to open. We use the Blatz and Magleby (26) method

to correct for missed events.

Data fitted

Data were obtained at 10 Ca2þ concentrations, shown in Fig. 1. At Ca2þ

concentrations of 10 nM, 30 mM, and 100 mM, no activity was evident

during the recordings. For each concentration, single-channel data was ob-

tained for five or six cells in each condition, representing between 8 and

29 min of experimental recordings for each case.

On examining the data, we find two records at 1 mM [Ca2þ], which clearly

show different levels of activity within the single recording. One such set of

data is shown in Fig. 2. Fig. 2 B shows a nine-second section of a much

FIGURE 1 Whole-cell patch-clamp recordings of single-channel activity

for various [Ca2þ] obtained at a saturating [IP3] of 100 mM.
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longer recording, which shows the transition from high to low open proba-

bility. To model such data, it would be necessary to use, essentially, two

different Markov models, each with a different set of rate constants, and

then include switching between the models. Furthermore, characterization

of the statistics of the switching process would require a large number of

observations of a switch. No such data are available, as a switch was

observed only a very small number of times. It follows that, although our

simple model can reproduce the averaged statistics of the two sections, it

cannot reproduce such an abrupt switch between the two activity levels.

However, this behavior is obvious in only two cells. Additionally, to account

for two levels of activity, two open states are required (29), but on plotting

the open time histograms, only one open state is evident. Therefore, we will

only fit the higher open probability section of the record. This will be dis-

cussed at greater length in the last section.

RESULTS

The most complex identifiable model

To determine the number of states we should include in our

Markov model, we plot the experimental steady-state closed-

time and open-time distributions in logarithmically binned

A

B

C

FIGURE 2 Single-channel activity at 1000 nM [Ca2þ] 100 mM [IP3].

Panels A and C show expanded portions from panel B. Panel A shows

much higher activity than panel C.
histograms (23), in Fig. 3, A–C. Only one distinct time

constant can be seen in the open-time distribution (Fig.

3 B). For the closed-time distributions (Fig. 3, A and B),

two distinct peaks are seen, corresponding to two distinct

time constants, one of very short duration, at ~0.1 ms, and

another of very long duration, at ~500 ms. This suggests

that we should first consider models with one open state

and two closed states.

However, we also tried fitting a model with three closed

states and found that the data contain enough information

to allow for the unambiguous determination of the rate

constants associated with three closed states. The distribution

fits are shown in Fig. 3. Fig. 3 B shows an enlargement of

part of the closed-time distribution in Fig. 3 A, with a third

peak fitted at ~1 ms. We can calculate, from the fitted rate

constants, the time constants for the three closed times:

0.123 ms, 1.06 ms, and 619.31 ms. The proportions of the

number of events at each time constant can also be calculated

and are 0.93, 0.033, and 0.038, respectively.

Two different configurations with one open state and three

closed states are shown in Fig. 4. The kinetic rate constants

are given by q with qij the rate constant from state i to j. All

topologies are equivalent, giving the same steady-state

behavior (30). We will discuss how to distinguish between

equivalent models in the last section.

An example of a convergence plot and marginal histogram

for rate constants q24 (by fitting the experimental data) from

the first model is shown in Fig. 5. The convergence plot

shows the rate constant has converged (after the burn-in

period) and the marginal histogram shows a distinct peak

corresponding to a mean of 7.57 pA with standard deviation

0.096 pA. All other rate constants converged similarly to

a distinct mean and narrow variance.

The fits in Fig. 3 show that the model predicts more short

events than are obtained from the experimental data, which is

constrained by the limited time resolution. This is compen-

sated for by decreased peaks (as the total area must remain

the same). However, the position of the peaks agrees very
A B

C

FIGURE 3 Experimental distributions for one experi-

ment at 50 nM [Ca2þ] and 100 mM [IP3]. (A) Closed

time distribution. (B) Enlargement of the closed time

distribution between 0.5 ms and 8000 ms. (C) Open time

distribution. Fitted theoretical distributions superimposed.
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well with those of the measured histograms. Events shorter

than the sampling resolution can be obtained as we sample

the transitions between openings and closings (and vice

versa) by selecting from the uniform distribution on the

interval [0,0.05] (for details, refer to (21)). Our fits can be

used to give a prediction of the number of short events that

cannot be observed experimentally.

We have shown in previous work (21) that adding addi-

tional states or transitions between the states leads to ambi-

guity in the rate constants. Instead we find only convergence

of the products and ratios of the rate constants. We concluded

that nonconvergence of the rate constants is a strong indicator

that the model is too complex. Thus, one can always add

multiple states to a model, but not all rate constants can be

identified, making the additional states essentially pointless.

To identify the rate constants in a more complex model, addi-

tional data is required. In the experiments of Mak et al. (31),

the [Ca2þ] and [IP3] were changed rapidly, allowing the

recording of the responses to these changes, in particular the

activation and deactivation latency times. We showed previ-

ously that this could be used to determine a more complex

model. For our experimental fits, however, we have only

steady-state data available, constraining the number of identi-

fiable states in our model and thus, we can fit only four-state

models. We will show in a later section that this type of

non-steady-state data could also be used to distinguish

between different topologies with the same number of open

and closed states.

We conclude that a four-state model (Fig. 4), with three

closed states, one open state, and four transitions, is the

most complex identifiable model that can be determined

from the steady-state data.

Dependence on calcium

We first fitted the four-state model shown in Fig. 4 A (Model 1).

Fig. 6, A–F, shows the mean fitted rate constants for the WT

IPR at each Ca2þ concentration. There is a strong biphasic

Ca2þ dependency for q23 and q32 (Fig. 6, C and D), but q12

and q21 appear to be independent of Ca2þ. The dependency

on Ca2þ of the transitions between the closed and open states,

q24 and q42, also seem to be constant. To fit the steady-state

data, it is sufficient to assume that the four rate constants q12,

q21, q24, and q42 are constants and fit biphasic [Ca2þ] depen-

dencies only to q23 and q32 (shown by the curves).
Letting c¼ [Ca2þ], the [Ca2þ]-dependent fits are given by

q23ðcÞ ¼ a23 �
�

V23

k2
23 þ c2

þ b23

� 
V�23c5

k5
�23 þ c5

þ b�23

!
;

(2)

q32ðcÞ ¼
�

V32

k3
32 þ c3

þ b32

��
V�32c7

k7
�32 þ c7

þ b�32

�
: (3)

Parameter values for these functions are given in Table 1.

The mean fitted values for q23 at 200 nM and 500 nM are

0.0028 ms�1 and 0.0030 ms1, respectively—two orders-of-

magnitude less than the value at 50 nM. There is a similar

order-of-magnitude difference in the values of q32 over the

concentration range. These two rate constants have a much

more significant change in their values than the other rate

constants.

To find the model steady-state open probability, mass

action kinetics is used to give the system of differential equa-

tions governing the state dynamics. The steady-state solution

is found by setting the system of differential equations equal

to zero. The analytic expression for the steady-state open

probability is

O4 ¼
q12q32q24

q12q32q24 þ q42q23q12 þ q42q32q12 þ q42q32q21

:

(4)

We use Eq. 4 to find the steady-state open probability curve

(Fig. 7). The rate constants q23 and q32 are functions of

[Ca2þ], given by Eqs. 2 and 3; these biphasic functions

produce the biphasic steady-state open probability curve.

We set q12 ¼ 0.74 ms�1, q21 ¼ 0.11 ms�1, q24 ¼ 7.84 ms�1,

and q42 ¼ 3.60 ms�1 (the mean values). The bars are the

mean open probabilities calculated by using the individual

A B

FIGURE 4 Two four-state Markov

models. Closed states are C1, C2, C3;

open state is O4. Kinetic rate constants

given by qij; the transition from state

i to j.

FIGURE 5 Rate constant convergence. Convergence

plot and marginal histogram.

Biophysical Journal 96(10) 4053–4062



A Kinetic Model of the IPR 4057
fitted rate constants for each cell at each concentration. Stan-

dard deviations are also shown; these are calculated using

a pooled standard deviation formula (see Supporting Mate-

rial).

The results from this model show clearly that the biphasic

nature of the open probability is caused directly by changes

in q23 and q32. Thus, the increasing open probability is due

solely to the receptor being in a state that can open (C2),

rather than an increased rate constant from C2 to O4.

We then fitted the model in Fig. 4 B with the open state

separating the closed states (Model 2). For these fits, we

found that the main route between closing and opening of

the receptor is the transition between C3 and O4, with C3 cor-

responding to the shortest closed times. The fitted rate

constants at each [Ca2þ] concentration are shown in Fig. 8.

The rate constants q43 and q34 are clearly Ca2þ-independent,

and we set these rates at their mean values of 3.52 and 8.43,

respectively. The rate constants q24 and q42 show clear

evidence of a biphasic dependency. However, it appears

that q12 and q21 also might have a nonconstant dependency.

Therefore we fit q12, q21, q24, and q42 with biphasic functions

(shown in Fig. 8). The fits are given by

q12ðcÞ ¼
�

V12

k4
12 þ c4

þ b12

��
V�12c9

k9
�12 þ c9

þ b�12

�
; (5)

q21ðcÞ ¼ a21 �
�

V21

k3
21 þ c3

��
V�21c8

k8
�21 þ c8

þ b�21

�
; (6)

q24ðcÞ ¼
�

V24

k2
24 þ c2

þ b24

��
V�24c3

k3
�24 þ c3

þ b�24

�
; (7)

q42ðcÞ ¼ a42 �
�

V42

k2
42 þ c2

þ b42

��
V�42c4

k4
�42 þ c4

�
: (8)

Parameter values for these functions are given in Table 2.

We then calculated, using the mean fitted rate constants at

each concentration, the steady-state open probability (the

A B

C D

E F

FIGURE 6 Fitted rate constants and [Ca2þ] dependen-

cies for Model 1. Standard deviations are shown.

FIGURE 7 Steady-state open probability curve found from the fitted

biphasic [Ca2þ]-dependency curves. Bars give the mean fitted open

probability calculated from the individual concentrations fits at each Ca2þ

concentration.

TABLE 1 Ca2þ-dependent rate constant parameter values for

Model 1

V23 1.08 � 106 nM2 ms�1 k23 2000 nM b23 2.2 ms�1

V�23 0.3545 k�23 72 nM b�23 0.042

a23 1/1.023 ms�1

V32 7 � 106 nM3 ms�1 k32 520 nM b32 0.005 ms�1

V�32 1.06 k�32 150 nM b�32 0.03

Biophysical Journal 96(10) 4053–4062
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corresponding analytic expression can be found for this

model). The mean values are plotted along with the standard

deviations in Fig. 9. Using the four biphasic curves, we

calculated the open probability curve, giving the solid curve

in Fig. 9. This gives a similar biphasic response as Model 1.

A minimal set of biphasic Ca2þ-dependent functions that

are needed to obtain the correct steady-state open probability

behavior was investigated. We first fixed q12 and q21 at their

mean values of 0.0095 and 0.13, respectively, and used the

biphasic functions for q24 and q42 (dashed curve in Fig. 9).

We did the same with q24 and q42 fixed at their mean values

of 0.46 and 0.11, respectively, with biphasic functions for

q12 and q21 (dashed-dotted curve). Clearly, using biphasic

functions for all four rate constants gives a closer fit to the

squares. Fig. 9 suggests that if a minimal set of Ca2þ-depen-

dencies is required, the rate constants q12 and q21 should be

biphasic. Qualitatively, the shape of the open probability

curve is much closer to the curve using the full set of

Ca2þ-dependencies.

The most obvious difference between Models 1 and 2 is

that in Model 2, Ca2þ affects the closed-open transition

directly via C2-O4. However, closer inspection shows that

the C3-O4 transition is not affected. This transition corre-

sponds to the main route between closed and open states

with the mean closed time for C3 being the shortest of the

three closed times. This feature is also found in Model 1 in

which the main route was also not affected by Ca2þ. For

both models, the longest closed time is affected by Ca2þ

(transitions involving C3 for Model 1 and C1 for Model 2).

Therefore we can say that the main effect of [Ca2þ] is to

affect the route to the closed state, which is the main gateway

A B

C D

FE

FIGURE 8 Fitted rate constants and [Ca2þ] dependen-

cies for Model 2. Standard deviations are shown.

TABLE 2 Ca2þ-dependent rate constant parameter values for

Model 2

V12 9.2 � 108 nM4 ms�1 k12 600 nM b12 0.0058 ms�1

V�12 1.2 k�12 150 nM b�12 0.35

V21 7.3 � 108 nM3 ms�1 k21 1600 nM

V�21 0.58 k�21 140 nM b�21 1.1

a21 0.3 ms�1

V24 4 � 106 nM2 ms�1 k24 2300 nM b24 2.2 ms�1

V�24 0.215 k�24 180 nM b�24 0.027

V42 8 � 105 nM2 ms�1 k42 1820 nM b42 0.65 ms�1

V�42 0.34 k�42 90 nM

a42 1/3 ms�1

Rate constants q43 and q34 are set at their mean values of 3.52 and 8.43,

respectively.

0.6
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P
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[Ca2+] (nM)

FIGURE 9 Steady-state open probability curve found from the fitted

biphasic [Ca2þ]-dependency curves for Model 2. Bars give the mean fitted

open probability calculated from the individual concentrations fits at each

Ca2þ concentration. (Solid curve) Biphasic functions for q12, q21, q24, and

q42 used. (Dashed curve) Biphasic functions for q24 and q42, with q12 and

q21 fixed at their mean values. (Dashed-dotted curve) Biphasic functions

for q12 and q21, with q24 and q42 fixed at their mean values.
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to opening. In the case of Model 2, the receptor starts in state

C1, and must arrive in C3 to obtain the rapid transitions

between closed and open states.

Distinguishing between equivalent steady-state
models

Both models fitted the steady-state single-channel data

equally well, with little difference in their likelihoods. This

raises the question as to what type of data could be used,

in addition, to determine which model is more likely.

We investigated whether we could use non-steady-state

data to distinguish between equivalent steady-state models.

To do this, we simulated activation latency data from

our two models using the mean fitted rate constants. We

first started with the [Ca2þ] at 50 nM, and then stepped-up

the concentration to 200 nM. We assumed the receptor

was at steady state at 50 nM, and therefore calculated the

steady-state occupancies for each of the four states at this

concentration. For Model 1, the steady-state occupancy

is� ½C1SS
;C2SS

;C3SS
;O4SS

¼½0:0005; 0:003; 0:991; 0:0055��
and for Model 2, ½C1SS

;C2SS
;C3SS

;O4SS
� ¼ ½0:942; 0:041;

0:005; 0:012�. We then used the Gillespie algorithm to simu-

late ~1000 times to first opening after an increase to 200 nM

[Ca2þ]. The distribution of the times to first opening is plotted

in Fig. S1 in the Supporting Material, with the theoretical

probability distribution functions, calculated from the fitted

rate constants, superimposed. For Model 1, the time to first

opening is much shorter than for the Model 2, with the mean

time ~12 ms whereas for the second model, the mean time is

~55 ms. This is due to the different route to the open state.

At steady state, for both models, the receptor is mainly in

the long closed state (C3 for Model 1 and C1 for Model 2).

Once the [Ca2þ] is stepped up to 200 nM, the receptor

opens. For Model 1, the time to first opening is via the route

C3 / C2 / O4, corresponding to long closed time / short

closed time. For Model 2, the time to first opening is the

route C1 / C2 / O4, corresponding to long closed

time / medium closed time. Therefore, this type of non-

steady-state data could be used in addition to steady-state

data, to determine a more precise model of the IPR.

Effects of phosphorylation and dependence
on agonist

Experimentally, the effects of phosphorylation have been

investigated by Wagner et al. (32,33). Two mutants were

constructed to study phosphorylation of the receptor by

cAMP (PKA) and cGMP (PKG). A nonphosphorylatable

mutant, called the AA mutant, was constructed by mutating

two serine residues to alanine residues. Substituting two

glutamate residues for serine residues in phosphorylation

sites of the IPR gave the EE mutant, which mimics an

IPR that is permanently phosphorylated. The same tech-

nique used to obtain data from the wild-type receptor was

used for the mutant data. By comparing the gating charac-
teristics of the two mutants, Wagner et al. (7) showed that

PKA phosphorylation results in an increase in the open

probability of the IPR. The experiments were done using

adenophostin A as the agonist. Adenophostin A is a high

affinity IPR agonist and activates the channel by binding

to the IP3-binding site. The agonist dependency for the

EE and AA mutants was investigated at 200 nM [Ca2þ]

and 5 mM [ATP] with the agonist concentration between

20 and 10,000 nM. Thus, we can also determine how the

rate constants in the minimal model depend on the agonist

concentrations.

We fitted Model 1 and found the rate constants have

nonlinear agonist dependencies. The experimental open

probabilities show that phosphorylation merely shifts the

dependency for the EE mutant to a lower concentration range

(7). To test this hypothesis, we fitted the agonist dependen-

cies of the EE rate constants by simply shifting the agonist

dependency of the AA dependencies and showed this was

sufficient to reproduce the experimental results.

We found that the processes that open the IPR are inde-

pendent of adenophostin and thus, presumably, of IP3. The

effect of adenophostin is to increase the probability that the

IPR is in a state that is capable of opening. In other words,

adenophostin primes the IPR. This is accomplished in two

ways; as the adenophostin concentration increases, the tran-

sition rates from C2 to C1 and C2 to C3 decrease, and the

transition rate from C3 to C2 increases. Both these effects

increase the probability the IPR is in state C2, thus increasing

the open probability. Full fitting results and fitted agonist-

dependent rate constants are given in the Supporting

Material.

DISCUSSION

Using experimental IPR single-channel data we fitted, with

Bayesian inference and Markov chain Monte Carlo tech-

niques, a four-state model of the IPR. This model is much

simpler than current models of the IPR. We found the tran-

sitions to be dependent on [Ca2þ], and as discussed in Gin

et al. (21), implicitly assume that each of our so-called states

does not correspond to a physically identifiable single state

of the IPR, and that the transitions between states do not

correspond to simple binding events. Instead, each of our

model states must be an aggregate of multiple physical

states.

The conglomeration of multiple physical states can be

formalized by using techniques such as quasi-steady-state

approximations or the equilibrium approximation; the theory

and many examples can be found in Fall et al. (34) and

Keener and Sneyd (35). The reduction of a complex Markov

model by assuming fast equilibrium between various states

of the model results in a simpler model in which the transi-

tions are complex functions of the original rate constants.

That explains the complex [Ca2þ] dependencies we observe

in our models.
Biophysical Journal 96(10) 4053–4062



4060 Gin et al.
An abrupt transition between the levels of activity within

one single-channel recording is shown in Fig. 2. In Fig. 2 A,

the open probability is estimated (from our fits) to be 0.55

and the open probability in Fig. 2 C is 0.004. Clearly, this

indicates the channel can exhibit a range of behavior (29).

Our Markov model cannot reproduce data for which

different open probabilities are found within one single

experiment. To model such behavior, more complex models

are required, and to determine the parameters, more data

exhibiting different activity levels is required. A simple

model has been proposed as a starting point by Ionescu

et al. (29), who identified three modes within their data:

high, intermediate, and low open probabilities. Each mode

is described by a two-state model (closed-open) and the three

models are interconnected via the closed states.

Additionally, to account for different modes of gating

behavior, more than one open state is required (29,30). There-

fore, to determine whether there is more than one mode

present, a quick test would be to plot the distributions (as

we have done). We found only one open state is required to

fit the data and therefore only one mode is present in most

of the data.

One of the aims of this article was to fit the most complex

model that could be determined by the available data. While

we have observed more than one level of activity in a single

recording, in which there was an abrupt transition between

the two open probabilities, we do not have enough such

data to be able to fit a model that can describe different

modes. Therefore, we selected one mode to fit.

Ionescu et al. (29) developed an algorithm to identify

different modes. Their algorithm determines the mode of the

receptor by using the durations of channel bursts and burst-

terminating gaps, rather than conventional analysis algorithms

using either the open probability or open and closed times.

Two of our experiments also show the different modes. A

more ambitious modeling exercise would be to fit a Markov

model within each mode and then the transitions between the

modes. While fitting different modes is feasible in theory, in

practice it will be more difficult. Firstly we do not have enough

data exhibiting multiple modes. In addition, we find only

a single open state and therefore can fit only a single mode.

Thus, separating the data into modes will result in indetermi-

nacy of the parameters. In any case, the first step is to establish

the Bayesian inference and MCMC fitting procedure on exper-

imental IPR single-channel data, which we have done here.

Ionescu et al. (29) found the open probability within each

mode was similar over a wide range of [Ca2þ] and [IP3] and

therefore, the biphasic [Ca2þ] dependency was a result of the

[Ca2þ] regulation of the propensity of each mode with the

channel kinetics unaffected by [Ca2þ]. The majority of our

data shows only one mode (only one open time can be iden-

tified) throughout the recording and therefore we cannot

make any inference as to which mode the channel is in at

each [Ca2þ] and our biphasic dependency is generated by

the Ca2þ regulation of the rate constants.
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Identification of the rate constants that display strong Ca2þ

dependencies is important for establishing how the open

probability of the IPR is modulated by Ca2þ. For Model 1,

the only rate constants found to be Ca2þ-dependent are q23

and q32. Biphasic functions were fitted, and when used to

calculate the open probability, gave a biphasic open proba-

bility. We found the main contributing factor to an increased

open probability was the decrease in the number of long

closed-time events (events in state C3), rather than any great

increase in the rate q24. The mean open time given by 1/q42

also does not change significantly over the [Ca2þ] range, and

therefore is not an important factor in affecting the open

probability.

For Model 2, we found two pairs of rate constants with

Ca2þ dependencies. As for Model 1, the transitions into and

out of the long closed state (C1 in Model 2, C3 in Model 1)

are [Ca2þ]-dependent. We also found the rate constants

between C2 and O4, q24, and q42, are [Ca2þ]-dependent. It

seems that Ca2þ is directly affecting the transition to opening,

whereas for the Model 1, this was not the case. However,

closer inspection shows that Ca2þ affects the pathway to the

main route between closing and opening. In Model 1, this is

the C2-C3, and in Model 2, C1-C2-O4. Once the receptor is

in the closed state with the shortest mean time (C2 for the first

model and C3 for the second model) and the state from which

the receptor can open, there is no Ca2þ-dependency. Thus,

though seemingly different conclusions about the Ca2þ-

dependency is obtained for the different models, we find

essentially the same mechanism is in effect.

All topologies with one open state should be equivalent

for steady-state data (30) and we found this to be the case

when comparing the likelihoods of the two models we fitted

and found we were unable to distinguish which model is

‘‘better.’’ One reason for favoring Model 2 over Model 1

is its similarity to the allosteric model of Mak et al. (36).

Their model consisted of two open states, A* and C*, and

four closed states, A0, C0, B, and D. [Ca2þ] and [IP3] do

not regulate the transitions between rapid closings and open-

ings, A0-A* and C0-C* (our C3-O4 transition in Model 2).

The brief closing and opening events are ligand-independent,

just as we found. However, [Ca2þ] affects the transition

between A*-B and C*-D, thus modulating the propensity

of the receptor to be in a state capable of opening. In Model 2,

this corresponds to the C2-O4 transition. Model 1 has only

one pathway to the open state and therefore this transition

cannot be both ligand-independent and ligand-dependent.

Therefore, Model 2 is essentially a simplification of the

Mak et al. (36) model.

We also investigated the type of data that could be used to

determine the correct model. Simulated data for times to first

opening from a step in [Ca2þ] of 50 nM to 200 nM at

constant [IP3] of 100 mM was generated from the two models

and the fitted rate constants. Experimental non-steady-state

data has been published by Mak et al. (31), who use an

[IP3] of 10 mM. This gave a maximum open probability at
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2 mM [Ca2þ]. To compare our results with their experimental

results, note that our experiments use 100 mM [IP3], giving

a shift in the maximum open probability, with the maximum

obtained at ~200 nM. Mak et al. (31) found an activation time

of 40 ms after a jump from <10 nM to 2 mM [Ca2þ] at

a constant [IP3] of 10 mM. Model 2 gives a much closer

activation time of 55 ms to their experimental result than

Model 1, suggesting that Model 2 more accurately describes

the data. We then simulated recovery latency times from

both models where the [Ca2þ] was dropped from 30 mM to

200 nM [Ca2þ]. This gave for Model 1 a time of 22 ms

and for Model 2, 54 ms. This experiment was done by

Mak et al. (31), with a drop from 300 mM [Ca2þ] to 2 mM

[Ca2þ], giving a latency time of ~2400 ms. This is much

longer than our simulated time. Mak et al. (31) described

this by linking the active conformation of the channel

directly to an inactive confirmation and thus, Ca2þ inhibition

could be described by a two-state kinetic scheme linking the-

open conformation with an inactive conformation. Com-

paring to Model 2, their inactive state corresponds to state

C2. However, with only steady-state data, we could not

obtain the very long recovery latency time of Mak et al.

(31). We cannot resolve this discrepancy without new exper-

imental data.

Once the model rate constants have been determined as

functions of [Ca2þ], we can use the model to predict the

response to step increases in [Ca2þ] (Fig. S2). When

[Ca2þ] is held fixed at a low steady-state concentration

([Ca2þ] ¼ 10 nM), the IPR is mostly in state C3 (note

that, because of the symmetry of the model, C3 is equivalent

to C1). When [Ca2þ] is increased and held fixed at a new

value, the open probability of the IPR increases monotoni-

cally to its new value. This is not due to any intrinsic

property of the model, but results entirely from the param-

eters determined by the fit. Neither is this result due to

the chosen topology; responses to step [Ca2þ] increases

were also computed for the second model and the same

result was obtained. This result appears to be in direct

disagreement with data from labeled flux experiments

(14,16), which show that, in response to a steep increase

of [Ca2þ], the IPR flux first increases, then decreases. One

possible reason is the IP3 concentration used. Our simula-

tions are done at a saturating concentration of IP3 and

thus, data at different concentrations need to be obtained

to test whether all give a monotonic increase. However,

the most obvious possible explanation for this discrepancy

is the difference in experimental method, which might cause

significant differences in IPR environment and behavior.

However, our model prediction agrees qualitatively with

the experimental observation of Mak et al. (31), where no

increase in channel activity occurred after jumps in [Ca2þ]

and [IP3]. Our single-channel data was obtained using the

same method as Mak et al. (31), and thus, the agreement

gives support to our kinetic model obtained using only

steady-state data.
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