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Optimal Feedback Strength for Noise Suppression in Autoregulatory Gene
Networks

Abhyudai Singh* and Joao P. Hespanha
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ABSTRACT Autoregulatory feedback loops, where the protein expressed from a gene inhibits or activates its own expression
are common gene network motifs within cells. In these networks, stochastic fluctuations in protein levels are attributed to two
factors: intrinsic noise (i.e., the randomness associated with mRNA/protein expression and degradation) and extrinsic noise
(i.e., the noise caused by fluctuations in cellular components such as enzyme levels and gene-copy numbers). We present
results that predict the level of both intrinsic and extrinsic noise in protein numbers as a function of quantities that can be exper-
imentally determined and/or manipulated, such as the response time of the protein and the level of feedback strength. In partic-
ular, we show that for a fixed average number of protein molecules, decreasing response times leads to attenuation of both
protein intrinsic and extrinsic noise, with the extrinsic noise being more sensitive to changes in the response time. We further
show that for autoregulatory networks with negative feedback, the protein noise levels can be minimal at an optimal level of feed-
back strength. For such cases, we provide an analytical expression for the highest level of noise suppression and the amount of
feedback that achieves this minimal noise. These theoretical results are shown to be consistent and explain recent experimental
observations. Finally, we illustrate how measuring changes in the protein noise levels as the feedback strength is manipulated
can be used to determine the level of extrinsic noise in these gene networks.
INTRODUCTION

Gene expression and regulation is inherently a noisy process.

The origins of this stochasticity lie in the probabilistic nature

of transcription and translation and low copy numbers of

RNAs and proteins within cells, which can lead to large

statistical fluctuations in molecule numbers. Recent work

(1–6) has provided considerable experimental evidence for

these stochastic fluctuations and may explain the large

amounts of cell-to-cell variation observed in genetically

identical cells exposed to the same environmental conditions

(7,8). Various gene network motifs within cells decrease

these stochastic fluctuations. A common such motif is an au-

toregulatory gene network where the protein expressed from

the gene inhibits its own transcription (9,10). Both theoret-

ical and experimental studies have shown that negative feed-

back in these autoregulatory gene networks reduces

stochastic fluctuations in the protein population (11–19),

whereas positive feedback has the opposite effect (20,21).

Autoregulatory gene networks are characterized by their

transcriptional response g(x), which determines the tran-

scription rate of the gene as a nonlinear function g of the

protein molecular count x within the cell. Monotonic

decreasing and increasing functions g(x) denote negative

and positive feedback, respectively. The noise in the protein

population is quantified by its coefficient of variation defined

as the ratio of the standard deviation to the average number

of protein molecules. Previous work has shown that this

protein noise level is determined by a combination of two

components (22,23). The first is the intrinsic noise, which

Submitted June 11, 2008, and accepted for publication February 19, 2009.

*Correspondence: a2singh@ucsd.edu

Editor: Arthur Sherman.

� 2009 by the Biophysical Society

0006-3495/09/05/4013/11 $2.00
represents the stochastic fluctuations in the protein popula-

tion arising due to random mRNA and protein formation/

degradation events. The second component is the extrinsic

noise, which corresponds to fluctuations in the protein num-

bers arising due to an exogenous noise source driving the

autoregulatory gene network, e.g., fluctuations in gene copy

numbers, enzyme levels, and/or environmental stimuli.

Using a gene expression model where each expression

event produces a burst of random numbers of protein mole-

cules, we decompose the total noise in the protein population

into its extrinsic and intrinsic components. In particular, both

these components of noise are expressed in terms of the

response time defined as follows: assuming x* to be the

steady-state average protein count, the response time Tr is

the time taken for any initial perturbation about x* to decay

by 50% of its initial value. The response time is intrinsically

connected to the stability of the equilibrium x* with more

stable equilibriums having smaller values of Tr. We show

that for a fixed average number of protein molecules,

decreasing response times leads to attenuation of both

protein intrinsic and extrinsic noise, with the extrinsic noise

being more sensitive to changes in the response time.

We next quantify noise in autoregulatory gene networks

that involve a common negative feedback with transcrip-

tional response given by

gðxÞ ¼ g0

1 þ ðaxÞM
; (1)

where M R 1 denotes the Hill coefficient, g0 corresponds to

the maximum transcription rate, and the constant a character-

izes the negative feedback strength. We perform a systematic
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analysis of how the protein noise level changes as the feed-

back strength is increased, keeping all the other kinetic

parameters of the gene network fixed. In this procedure of

varying the feedback strength a, the steady-state average

protein level monotonically decreases with increasing a.

We show that in this case, the total noise in the protein pop-

ulation is minimal at some optimal level of feedback

strength, and decreasing or increasing feedback strength

away from this optima always causes an increase in the noise

level. We quantify both the optimal level of feedback

strength and the limit of noise suppression, which is defined

as the ratio of the minimum possible noise in the protein pop-

ulation to the protein noise level when there is no feedback.

We show that this limit of noise suppression can be used to

estimate the noise in the exogenous signal that is the source

of protein extrinsic noise. These theoretical results are vali-

dated using experimental data from Dublanche et al. (24)

for a synthetic autoregulatory gene network.

Finally, we investigate how the protein noise level

changes as the feedback strength is increased, keeping the

steady-state average protein level x* fixed. Here increasing

feedback strength is also accompanied by a change in one

of the gene network parameters (for example, the maximum

transcription rate g0) such that x* does not change. We show

that depending on which gene network parameter is varied

with the feedback strength, the protein noise level can either

monotonically decrease with increasing feedback strength or

can be minimal at an optimal level of feedback strength.

UNREGULATED GENE EXPRESSION

We consider a simple model of gene expression where a gene

expresses a protein X in bursts that occur at a rate Kx. Each

expression event leads to a burst of Nx molecules of the

protein X. Recent work suggests that the burst of proteins

from each mRNA transcript follows a geometric distribution

(25–27). Thus, instead of assuming Nx to be a constant, we

assume it to be a random variable with mean Nx and variance

V2
x. We also assume that the protein decays at a constant rate

dx. Our model omits the mRNA dynamics. This is a valid

approximation as long as the protein’s half-life is much

longer than the mRNA’s half-life (26,28). Shahrezaei and

Swain (26) does a survey of ~2000 genes in budding yeast

and shows that most genes do indeed satisfy this condition.

Ignoring the mRNA dynamics leads to relatively simple

expressions for the protein noise level, which help develop

a qualitative understanding of how noise level changes in

response to alterations of the gene network parameters.

In a stochastic formulation, gene expression and protein

degradation are treated as probabilistic events with probabil-

ities of occurring in an infinitesimal time interval (t, t þ dt]
given by

Prfxðt þ dtÞ ¼ x þ NxjxðtÞ ¼ xg ¼ Kxdt; (2a)

Prfxðt þ dtÞ ¼ x � 1jxðtÞ ¼ xg ¼ dxxdt; (2b)
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respectively, where x(t) denotes the number of molecules of

protein X at time t.
A convenient way to model the time evolution of the

number of molecules x is through a stochastic hybrid system

(SHS) characterized by trivial continuous dynamics

x_¼ 0; (3)

and two reset maps

xf1ðxÞ ¼ x þ Nx; xf2ðxÞ ¼ x� 1 (4)

with corresponding transition intensities given by

l1ðxÞ ¼ Kx; l2ðxÞ ¼ dxx (5)

(29). To gauge the noise level in the protein population, we

determine the time evolution of the first- and second-order

moments of x, i.e., the expected values E[x] and E[x2].

The moment dynamics can be obtained using the Dynkin’s

formula for the above SHS, according to which, for every

differentiable function j(x), we have that

dE½jðxÞ�
dt

¼ E

"X2

i¼ 1

ðjðfiðxÞÞ � jðxÞÞliðxÞ
#

(6)

(30,31). Taking j(x) ¼ x and j(x) ¼ x2 in Eq. 6, we obtain

the following moment dynamics:

dE½x�
dt

¼ NxKx � dxE½x�; (7a)

dE½x2�
dt

¼ Kx

�
N2

x þ V2
x

�
þ dxE½x� þ 2KxNxE½x�

� 2dxE
�
x2
�
: (7b)

As t / N, the first- and second-order moments converge to

constant steady-state values given by

x� ¼ lim
t/N

E½xðtÞ� ¼ NxKx

dx

; (8a)

E�
�
x2
�
¼ lim

t/N
E
�
x2ðtÞ

�
¼

KxdxNx þ 2K2
xN2

x þ Kxdx

�
N2

x þ V2
x

�
2d2

x

: (8b)

We quantify the noise in x(t) by its coefficient of variation

defined as the ratio of the standard deviation in protein

numbers to the average number of protein molecules. Using

the above steady-state values, we obtain

CV2
int-nr ¼

E�½x2� � x2

x2
¼

dx

�
N2

x þ V2
x þ Nx

�
2KxN2

x

¼ N2
x þ V2

x þ Nx

2x�Nx

: (9)

This quantity quantifies the noise in the protein X solely due

to random gene expression and protein degradation, and is
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referred to as the intrinsic noise in the protein population

when there is no regulation. Table 1 provides a summary

of the notations used for the different forms of noise in the

protein population. Note that the noise in the protein

increases with the variance V2
x in the number of protein mole-

cules produced in each transcription event. A special case of

Eq. 9 is obtained for Nx ¼ 1 and Vx ¼ 0, for which x(t) has

a Poisson distribution and CVint–nr
2 ¼ 1/x*. In the next

section, we examine what happens to this intrinsic noise

when the gene expression rate is not a constant but a function

of the number of protein molecules.

AUTOREGULATORY GENE EXPRESSION

Often the expressed protein binds to the promoter region of

its own gene. In doing so, it either recruits the enzyme RNA

polymerase to the promoter (which leads to an increase in

gene expression) or blocks RNA polymerase from binding

to the promoter (which causes a decrease in gene expres-

sion). Such gene expression is referred to as an autoregula-

tory gene network. Recent work has reported that >40%

of Escherichia coli transcription factors regulate their own

expression through these mechanisms (32).

We model this network by assuming that the rate of gene

expression is no longer a constant and is instead a function

g(x) of the number of protein molecules x. We refer to the

function g(x) as the transcriptional response of the network.

This transcriptional response can be formally derived

assuming that the rate of binding and dissociation between

the protein and its promoter is much faster than the dynamics

of protein production and degradation (9), or it can be deter-

mined directly from experiments. Monotonic decreasing and

increasing functions g(x) denote negative and positive feed-

back, respectively.

When an autoregulation mechanism is present, the probabil-

ities of gene expression and protein degradation events occur-

ring in an infinitesimal time interval (t, t þ dt] are given by

TABLE 1 Summary of notation used in this article

CVtot Total noise in protein numbers.

CVext Extrinsic noise in protein numbers.

CVint Intrinsic noise in protein numbers.

CVz Noise in the exogenous signal driving the gene network.

CVtot–nr Total noise in protein numbers when there is no feedback.

CVext–nr Extrinsic noise in protein numbers when there is no feedback.

CVint–nr Intrinsic noise in protein numbers when there is no feedback.

CVtot–min Minimum possible total noise in protein numbers with optimal

negative feedback.

CVext–min Minimum possible extrinsic noise in protein numbers with

optimal negative feedback.

CVint–min Minimum possible intrinsic noise in protein numbers with

optimal negative feedback.

amin Feedback strength where the total noise in the protein is

minimum.

x* Steady-state mean protein level.

Tr Protein response time.

Tnr Protein’s half-life.

Tz Response time of the exogenous signal.
Prfxðt þ dtÞ ¼ x þ NxjxðtÞ ¼ xg ¼ gðxÞdt; (10a)

Prfxðt þ dtÞ ¼ x � NxjxðtÞ ¼ xg ¼ dxxdt: (10b)

To write the moment dynamics of x we approximate g(x) by

a linear transcriptional response,

gðxÞzgðx�Þ þ g
0 ðx�Þðx� x�Þ; (11)

where x* is the steady-state average protein count. This

approximation is valid as long as the stochastic fluctuations

in the protein do not leave the region in which g(x) is approx-

imately linear.

As in the section on Unregulated Gene Expression, we

model the time evolution of x through an SHS, but now

the transition intensities are given by l1(x) ¼ g(x*) þ
g0(x*)(x – x*) and l2(x) ¼ dxx. Using the Dynkin’s formula

for this modified SHS, we obtain the following dynamics for

the mean E[x],

dE½x�
dt

¼ Nxgðx�Þ � dxx
� þ

�
Nxg

0 ðx�Þ � dx

�
ðE½x� � x�Þ;

(12)

and the steady-state value x* for the mean population E[x]

must satisfy

Nxgðx�Þ ¼ dxx
�: (13)

Assuming that this steady state is stable, we have a negative

eigenvalue

l ¼ Nxg
0 ðx�Þ � dx < 0 (14)

for the linear system given by Eq. 12. This eigenvalue l can

be expressed in terms of the response time Tr of the protein.

The response time is defined as the time taken for any pertur-

bation around x* to decay by 50% of its initial value, and is

given by

Tr ¼ �
lnð2Þ

l
> 0; l ¼ Nxg

0 ðx�Þ � dx < 0: (15)

The above equation shows that for a fixed mean protein

count x*, average burst size Nx, and protein degradation

rate dx, making the slope g0(x*) more negative decreases

the response time Tr.

We now compute the coefficient of variation of x(t) by

writing the moment dynamics for the second-order moment

E[x2]. Using Eq. 6, with j(x) ¼ x2 we obtain the following

time derivative for E[x2]:

dE½x2�
dt

¼
�
gðx�Þ � x�g

0 ðx�Þ
��

N2
x þ V2

x

�
þ dxE½x�

þ 2
�
gðx�Þ � x�g

0 ðx�Þ
�
NxE½x� � 2dxE

�
x2
�

þ g
0 ðx�Þ

�
N2

x þ V2
x

�
E½x� þ 2g

0 ðx�ÞNxE
�
x2
�
:

(16)

Biophysical Journal 96(10) 4013–4023



4016 Singh and Hespanha
Performing a steady-state analysis of the above equations

and using Eq. 13, we obtain the following steady-state coef-

ficient of variation,

CVint ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx

�
N2

x þ V2
x þ Nx

�
2IN2

x

s
;

I ¼ gðx�Þ � x�g
0 ðx�Þ; ð17Þ

where I can be interpreted as the y intercept of the tangent to

the transcriptional response g(x) at x¼ x* (see Fig. 1). Using

Eqs. 13, 15, and 17, we can also relate the intrinsic noise to

the response time Tr of the protein as

CVint ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr

Tnr

N2
x þ V2

x þ Nx

2x�Nx

s
; (18)

where Tnr ¼ ln(2)/dx is the protein’s half-life. The formula in

Eq. 18 shows that the intrinsic noise level in autoregulatory

gene networks is determined by three factors: the average

number of protein molecules x*; the response time of the

protein Tr; and the gene expression burst-characteristics,

i.e., Nx and V2
x. From Eqs. 15 and 18, we also conclude

that for a fixed x*, Nx, V2
x, and dx, making the slope g0(x*)

more negative causes a decrease in the response time and

leads to attenuation of intrinsic noise in the protein popula-

tion. For example, for a fixed x* a fivefold decrease in

response time (i.e., Tr ¼ Tnr/5) will reduce the intrinsic noise

levels in the protein population by a factor of
ffiffiffi
5
p

z2:2.

An important feature of Eq. 18 is that it relates the noise in the

protein to parameters that can be experimentally determined. In

particular, the average burst size Nx ¼ Lx/dr, where Lx is the

translation rate of the mRNA and dr is the mRNA degradation

rate. As mentioned before, protein half-lives are typically much

longer than mRNA half-lives. In this case, Nx follows

a geometric distribution and V2
x ¼ N2

x þ Nx (26,27). Finally,

the response times can be measured by tracking the time

evolution of fluorescently tagged protein molecules (32).

FIGURE 1 A graphical interpretation of the quantity I ¼ g(x*) – x*g0(x*)

in Eq. 17 for any arbitrary transcriptional response g(x): I is the intercept of

the tangent to the transcriptional response g(x) at x ¼ x* with the y axis.
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EXTRINSIC AND INTRINSIC CONTRIBUTIONS TO
NOISE

We now consider extrinsic noise in the protein population

arising due to an exogenous noise source driving the

autoregulatory gene network. Toward that end, we consider

a transcriptional response g(x, z) that depends on a noisy

exogenous signal z. The transcriptional response g(x, z)

may take different forms. For example, if the gene is encoded

on a low-copy plasmid, then fluctuations in the number of

copies of the plasmid are known to be a major source of

extrinsic noise (24). In this case, the transcriptional response

takes the form zg(x), where z represents the number of

copies of the plasmid. Alternatively, z could represent the

number of molecules of the RNA polymerase, in which

case, the transcriptional response (assuming a feedback

with a Hill coefficient equal to one) would be

gðx; zÞ ¼ k0z

1 þ k1z þ k2x
; (19)

where k0, k1, and k2 are positive constants (14).

We model the stochastic fluctuations in z by a birth-death

process. In particular, the probabilities of formation and

degradation of z in the infinitesimal time interval (t, t þ dt]
are given by

Prfzðt þ dtÞ ¼ z þ NzjzðtÞ ¼ zg ¼ Kzdt; (20a)

Prfzðt þ dtÞ ¼ z� 1jzðtÞ ¼ zg ¼ dzzdt; (20b)

where Kz and dz represent the production and degradation rate

of z, respectively, and Nz is a random variable with mean

Nz and variance V2
z. In the sequel we refer to Tz ¼ ln(2)/dz

as the response time of the exogenous signal. Following steps

such as those outlined in Unregulated Gene Expression, we

can conclude from Eqs. 8 and 9 that the steady-state average

level and the coefficient of variation of z are given by

z� ¼ NzKz

dz

(21)

and

CVz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

z þ V2
z þ Nz

2z�Nz

s
; (22)

respectively. The quantity CVz represents the amount of noise

that enters the autoregulatory gene network through the exog-

enous signal z. Assuming that stochastic fluctuations around

the means are sufficiently small, we linearize the transcrip-

tional response with respect to both x and z. This gives us

the transcriptional response

gðx; zÞzgðx�; z�Þ þ dgðx; z�Þ
dx

jx¼x� ðx� x�Þ

þ dgðx�; zÞ
dz

jz¼ z� ðz� z�Þ; (23)
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where x* and z* are steady-state means of x and z, respec-

tively. In the sequel, g(x) refers to g(x, z*), the transcrip-

tional response when there is no noise in the exogenous

signal. Details are presented in Appendix A (see Supporting

Material) where we show that for this linearized transcrip-

tional response, x* is the solution to Eq. 13 and the total

protein noise CVtot is given by

CV2
tot ¼ CV2

int þ CV2
ext; (24)

where CVint is the previously computed intrinsic noise and

CVext ¼
Tr

Tnr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tz

Tz þ Tr

r
SCVz;

S ¼ z�

gðx�; z�Þ
dgðx�; zÞ

dz
jz¼ z� ; Tz ¼

lnð2Þ
dz

(25)

represents the extrinsic noise in the protein population. Note

that signals z with small response times Tz result in smaller

values of CVext because rapid fluctuations in the exogenous

signal are averaged out by the dynamics of the gene network.

Typically, only those exogenous signals that have response

times much larger than the protein’s response time contribute

significantly to the extrinsic component of protein noise.

Equation 25 shows that the extrinsic component of noise

CVext is related to the protein response time Tr, which in

turn is determined by the slope of the transcriptional

response g(x) at x ¼ x* (see Eq. 15). This is in contrast

to the intrinsic noise CVint, which is determined by the y
intercept of the tangent to the transcriptional response g(x)

at x ¼ x* (see Eq. 17).

We recall that for a fixed mean protein count x*, average

burst size Nx, and protein degradation rate dx , making the

slope g0(x*) more negative decreases the response time Tr.

Equation 25 predicts that like intrinsic noise, here decreasing

response time also reduces the extrinsic component of noise

CVext. We now contrast how rapidly intrinsic and extrinsic

noise attenuate as the response time decreases. We first

express CVext as a function of the extrinsic noise level

CVext–nr that would be observed in the absence of feedback,

CVext ¼
Tr

Tnr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tnr þ Tz

Tr þ Tz

r
CVext�nr; (26)

where

CVext�nr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tz

Tz þ Tnr

r
SCVz: (27)

Note from the previous section that a fivefold decrease in the

response time (i.e., Tr¼ Tnr/5) reduced protein intrinsic noise

levels by a factor of 2.2 (assuming that x* is kept fixed).

From Eq. 26, we conclude that this fivefold decrease in the

response time corresponds to a reduction of CVext by a factor

of 3.9 compared to CVext–nr when Tz z Tnr, or a reduction by

a factor of 5 when Tz >> Tnr. This illustrates an important

point: in these autoregulatory gene networks, negative feed-
back is much more effective in reducing the extrinsic compo-

nent of protein noise than its intrinsic component.

AUTOREGULATORY GENE NETWORKS WITH
NEGATIVE FEEDBACK

We next consider autoregulatory gene networks where tran-

scriptional response is given by the Hill equation

gðxÞ ¼ g0

1 þ ðaxÞM
; (28)

where M R 1 denotes the Hill coefficient and g0 is the

maximal transcription rate (9,33). The constant a is the feed-

back strength that depends on the binding affinity of the

protein to the promoter, with lower binding affinities corre-

sponding to smaller values of a. Note that a ¼ 0 corresponds

to no negative feedback in gene expression. This is because

when a ¼ 0, the transcription rate is simply g(x)ja¼0 ¼ g0,

which is independent of the protein count. For this transcrip-

tional response, we conclude from Eq. 13 that the steady-

state average protein count x* is the unique solution to

Nxgðx�Þ ¼ Nxg0

1 þ ðax�ÞM
¼ dxx

�; (29)

and monotonically decreases as we increase the feedback

strength a.

Our goal is to understand how the noise in the protein

numbers change as the negative feedback strength varies. In

particular, we vary the feedback strength in two different

ways. Firstly, we vary a by keeping the gene network kinetics

(i.e., the constants g0, Nx, and dx) fixed. As mentioned above,

here the protein count x* decreases with increasing feedback

strength a. Alternatively, we vary a by keeping x* fixed. In

this later procedure, any increase in a is also accompanied

by a change in g0, Nx, or dx . As we show below, in both these

methods of varying the feedback strength, noise in protein

numbers can be minimal at an optimal level of feedback

strength.

CHANGING FEEDBACK STRENGTH BY KEEPING
THE KINETICS FIXED

We investigate how the different components of the noise

and the total noise in the protein numbers change as the feed-

back strength is varied, keeping the constants g0, Nx, and dx

fixed.

Suppression of intrinsic noise in the protein

We first investigate the intrinsic component of noise given

by Eq. 18 for this specific transcriptional response.

Substituting Eq. 28 in Eq. 18, and using Eq. 29, we conclude

that the intrinsic noise CVint in the protein is given by
Biophysical Journal 96(10) 4013–4023
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CVint ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr

�
1 þ ðax�ÞM

�
Tnr

s
CVint�nr; (30)

where

CVint�nr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx

�
N2

x þ V2
x þ Nx

�
2g0N2

x

s
(31)

is the intrinsic noise in the protein when there is no feedback

(i.e., a¼ 0). Using Eqs. 15 and 28, we have that the response

time Tr is given by

Tr

Tnr

¼ 1 þ ðax�ÞM

1 þ ð1 þ MÞðax�ÞM
; Tnr ¼

lnð2Þ
dx

; (32)

and it monotonically decreases as we increase the feedback

strength a (keeping g0, Nx, and dx fixed) with the asymptote

lim
a/N

Tr ¼
Tnr

M þ 1
: (33)

Substituting Eq. 32 in Eq. 30, we get

CVint ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 þ ðax�ÞM

�2

1 þ ð1 þ MÞðax�ÞM

vuut CVint�nr: (34)

Straightforward calculus shows that the above intrinsic noise

is smallest when the feedback strength is equal to

aint�min ¼
dx

Nxg0

2M

M þ 1

�
M � 1

M þ 1

� 1
M

(35)

and the corresponding minimum intrinsic noise CVint–min is

given by

CVint�min ¼
ffiffiffiffiffiffiffi
4M
p

M þ 1
CVint�nr%CVint�nr: (36)

When M ¼ 1, then aint–min ¼ 0 and CVint–min ¼ CVint–nr, i.e.,

the intrinsic noise level is minimum when there is no feed-

back. In this particular case, increasing a causes CVint to

monotonically increase (see Fig. 2). This happens because

as we increase a from zero, both Tr and x* decrease in Eq.

18. However, as x* decreases at a faster rate than Tr, their

ratio Tr/x* increases, and hence, the intrinsic noise increases

as we increase the feedback strength a. When M > 1, the

intrinsic noise first decreases when we increase a from

zero and achieves a minimum at some optimal value a ¼
aint–min > 0. Increasing a beyond aint–min causes an increase

in the intrinsic noise level (see Fig. 2). Note from Fig. 2 that,

for large levels of feedback strength, the intrinsic component

of protein noise always increases with increasing feedback

strength, irrespective of the value of the Hill coefficient.

From Eq. 36, the quantity

CVint�min

CVint�nr

¼
ffiffiffiffiffiffiffi
4M
p

M þ 1
(37)

represents the highest suppression of intrinsic noise in the

protein from CVint–nr that can be achieved with the transcrip-

tional response given by Eq. 28. This limit of noise suppres-

sion is completely determined by the Hill coefficient M, with

larger values of M causing more reduction in the protein

intrinsic noise. This is consistent with results in the literature,

which show that a large Hill coefficient is more effective in

reducing stochastic fluctuations in the protein (12,17,33).

For example, when M ¼ 2, there can be, at most, a

1�
ffiffiffiffiffiffiffi
4M
p

=ðM þ 1Þ ¼ 5:7% reduction in intrinsic noise from

CVint–nr, whereas for M ¼ 4, we can have a 20% reduction.

In summary, depending on the Hill coefficient, the protein

intrinsic noise levels can either monotonically increase or

exhibit a U-shaped curve as the feedback strength is

increased. Moreover, large Hill coefficients are much more

effective in reducing noise.

Suppression of extrinsic noise in the protein

We now investigate the extrinsic component of protein noise

CVext. As the response time Tr is a monotonically decreasing

function of the feedback strength (see Eq. 32), we conclude

from Eq. 25 that the extrinsic noise in protein numbers

decreases with increasing feedback strength. Using Eqs. 26

and 33, the minimum level of extrinsic noise is given by

CVext�min

CVext�nr

¼ Trmin

Tnr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tnr þ Tz

Trmin þ Tz

r
;

Trmin

Tnr

¼ 1

1 þ M
; (38)

and is achieved in the limit a / N.

Equation 38 represents the limit of extrinsic noise suppres-

sion. If the response time of the exogenous signal is much

slower than the protein half-life (i.e., Tz >> Tnr), then this

limit reduces to

CVext�min

CVext�nr

¼ 1

M þ 1
: (39)

FIGURE 2 Intrinsic noise CVint in the protein as a function of the feed-

back strength a and Hill coefficient M. CVint is normalized by CVint–nr, the

intrinsic noise in the protein when there is no feedback. Other parameters

taken as g0 ¼ 1, Nx ¼ 1, Vx ¼ 0, and dx ¼ 0.01.

Biophysical Journal 96(10) 4013–4023
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As we increase M, these limits decrease at a much faster rate

than the limit of intrinsic noise suppression (compare with

right-hand side of Eq. 37). For example, when Tz z Tnr and

M ¼ 2, we have a maximum reduction in extrinsic noise of

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=½ðM þ 1ÞðM þ 2Þ�

p
z42%, whereas for M ¼ 4 we

have a reduction of 74%. These reductions are much larger

than the maximum reductions of 5.7% and 20% in the protein

intrinsic noise level for the same values of M (see previous

section). This reinforces the earlier point that negative feed-

back is much more efficient in reducing the extrinsic compo-

nent of the noise than its intrinsic component.

Suppression of total noise in the protein

Finally, we investigate how the total noise in the protein

population varies with the feedback strength. As derived

in Extrinsic and Intrinsic Contributions to Noise, the total

protein noise level is given by

CV2
tot ¼ CV2

int þ CV2
ext: (40)

By which, using Eq. 25, Eqs. 32 and 34 can be written as

CV2
tot ¼ CV2

int�nr

Tr

�
1 þ ðax�ÞM

�
Tnr

þ S2CV2
z

�
Tr

Tnr

�2
Tz

Tz þ Tr

;

(41a)

Tr

Tnr

¼ 1 þ ðax�ÞM

1 þ ð1 þ MÞðax�ÞM
: (41b)

Now, for all M R 1 and CVz > 0, we have that

lim
a/0

dCV2
tot

daM
¼ �

�
g0Nx

dx

�M
"

CV2
int�nrðM � 1Þ

þ S2CV2
z M

�
2T2

z þ TnrTz

�
ðTz þ TnrÞ2

#
< 0;

(42)

which means that in the presence of extrinsic noise, the total

protein noise level will always decrease as we increase the

feedback strength from a ¼ 0, irrespective of the value of

the Hill coefficient, but eventually will start to increase for

sufficiently large values of a past an optimal feedback

strength amin. In summary, in the presence of extrinsic noise,

the total noise in the protein is always minimized at some

optimal feedback strength and decreasing or increasing feed-

back strength away from this optima will always causes an

increase in the noise level. This point is shown in Fig. 3,

which plots CVtot/CVtot–nr as a function of a when the Hill

coefficient is one, where

CV2
tot�nr ¼ CV2

int�nr þ S2CV2
z

Tz

Tz þ Tnr

(43)

represents the protein noise level when there is no feedback.

We can see that in the absence of extrinsic noise (CVz ¼ 0),

CVtot/CVtot–nr monotonically increases as the feedback

strength is increased. However, in the presence of extrinsic

noise, it follows a U-shaped profile and is minimized at

some a ¼ amin > 0.

As shown in Fig. 4, when the Hill coefficient is larger than

one (M > 1), then even in the absence of any extrinsic noise

(CVz ¼ 0), the protein noise level will show a U-shaped

profile as the feedback strength is altered. In particular, for

CVz ¼ 0, we conclude from Eq. 37 that the minimum value

of CVtot/CVtot–nr, i.e., the limit of noise suppression, is given

by

CVtot�min

CVtot�nr

¼
ffiffiffiffiffiffiffi
4M
p

M þ 1
(44)

and is attained when the feedback strength is equal to

amin ¼
dx

Nxg0

2M

M þ 1

�
M � 1

M þ 1

� 1
M

: (45)

As shown in Fig. 3 (for M ¼ 1) and Fig. 4 (for M ¼ 2),

when we now increase CVz away from zero, this limit of

FIGURE 3 Total noise CVtot as a function of the feedback strength

a when the Hill coefficient is one (M ¼ 1) for different values of noise

CVz in the exogenous signal. CVtot is normalized by CVtot–nr, the total noise

in the protein when there is no feedback. Other parameters are taken as

g0 ¼ 1, Nx ¼ 4, V2
x ¼ N2

x þ Nx, S ¼ 1, and dx ¼ 0.04. The response time

Tz is assumed be much larger than Tnr.

FIGURE 4 Total noise CVtot as a function of the feedback strength a when

the Hill coefficient is two (M ¼ 2) for different values of noise CVz in the

exogenous signal. CVtot is normalized by CVtot–nr, the total noise in the

protein when there is no feedback. Other parameters are taken as g0 ¼ 1,

Nx ¼ 4, V2
x ¼ N2

x þ Nx, S ¼ 1, and dx ¼ 0.04. The response time Tz is

assumed be much larger than Tnr.

Biophysical Journal 96(10) 4013–4023
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noise suppression decreases and is much lower than what is

predicted by Eq. 44. On the other hand, the optimal feedback

strength amin, at which the protein noise is minimum,

increases and is much higher than Eq. 45. As we further

increase the noise CVz in the exogenous signal, CVtot–min/

CVtot–nr approaches Eq. 38, which corresponds to the

scenario where extrinsic noise dominates the total noise in

protein numbers.

In Appendix B (see Supporting Material), we provide

formulas that predict both the minimum level of noise

CVtot–min and the optimal feedback strength when both

intrinsic and extrinsic noise are present but neither dominates

the total noise in the protein population. As we will illustrate

later, an important application of these formulas is that one

can estimate the noise in the exogenous signal from the

experimentally obtained value of CVtot–min without directly

measuring the exogenous signal.

Experimental verification

We now validate our theoretical results with recent experi-

mental measurements of protein noise levels that were

obtained as the feedback strength was changed via experi-

mental manipulation. In Dublanche et al. (24), a synthetic

autoregulatory gene network is constructed where the protein

inhibits its own transcription. The feedback strength is altered

by adding a compound aTc that binds to the protein and the

resulting complex has a significantly smaller binding affinity

to the promoter. As the feedback strength is directly related to

the binding affinity of the protein to its promoter, increasing

the concentration of aTc corresponds to decreasing the feed-

back strength a. The gene is encoded on a low-copy plasmid

with high variability in plasmid population contributing to

large levels of extrinsic noise in the protein population. Based

on our theoretical analysis, the protein noise level should

show a U-shaped profile as the feedback strength is changed.

In particular, at low values of a (i.e., high levels of aTc),

increasing a (i.e., deceasing aTc) should lead to a decrease

in protein noise levels. However, at high values of a (i.e.,

low levels of aTc), increasing a (i.e., deceasing aTc) should

increase the protein noise levels. Such a U-shaped profile is

indeed what is experimentally observed and the protein noise

level is minimized at an optimal level of feedback strength

(see bottom-left plot of Fig. 4 in (24)).

In Dublanche et al. (24), the results from detailed stochastic

simulations of the autoregulatory gene network are also

reported. The authors observe in simulation that both in the

absence of any extrinsic noise or when the extrinsic noise

from only the enzyme RNA polymerase is included, instead

of seeing a U-shaped profile, the protein noise level monoton-

ically increased as the feedback strength is increased (i.e., aTc

concentration is decreased). Our theoretical results fully

explain this phenomenon: Since in this synthetic gene

network the Hill coefficient is one (M ¼ 1), our analysis in

Changing Feedback Strength by Keeping the Kinetics Fixed
Biophysical Journal 96(10) 4013–4023
shows that the intrinsic noise level will always increase

when the feedback strength is increased. As the extrinsic noise

associated with fluctuations in RNA polymerase numbers is

very small (we calculate CVRNA polymerase z 0.02 using

Eq. 22 and the reaction rates provided in Table I of (24)), in

both the above cases the protein noise is dominated by the

intrinsic noise, which always increases with the feedback

strength, and hence, no U-shaped profile should be observed.

As mentioned earlier, our results also allow us to predict

the level of noise in the exogenous signal that drives the

synthetic autoregulated gene network. Hypothesizing that

the source of extrinsic noise is the plasmid population, and

using the experimentally obtained minimal protein noise

level of ~0.4, we estimate in Appendix C (see Supporting

Material) that

CVplasmidz0:64: (46)

Independent measurements of plasmid noise (using Eq. 22

and the reaction rates provided in Table I of (24)) show

that CVplasmid is equal to 0.51, which is just slightly smaller

than given by Eq. 46. This indicates that variability in

plasmid numbers is indeed the major source of extrinsic

noise in the protein population. The fact that the estimate

in Eq. 46 is larger than the actual plasmid noise suggests

that variability in other cellular components or fluctuations

in number of aTc molecules also make (minor) contributions

to the extrinsic noise.

In summary, the experimental results of Dublanche et al.

(24) provide an experimental verification of our theoretical

predictions. They also indicate that measuring changes in

the protein noise level as a function of the feedback strength

could be useful in determining the level of noise in the exog-

enous signal.

CHANGING FEEDBACK STRENGTH BY KEEPING
THE PROTEIN LEVEL FIXED

We finally investigate how the protein noise levels change as

the feedback strength is varied, keeping the steady-state

average protein level x* fixed. As can be seen from Eq. 29,

x* can be held at a fixed level if increasing feedback strength

a is also accompanied by: 1), an increase in the maximum

transcription rate g0; 2), a decrease in the protein degradation

rate dx; and 3), an increase in the average protein burst size Nx.

Recall that the average burst size Nx ¼ Lx/dr, where Lx is the

translation rate of the mRNA and dr is the mRNA degradation

rate. Thus, increasing both mRNA translational rate and/or

decreasing mRNA degradation rate will result in an increase

in Nx. In Appendix D (see Supporting Material), we derive

formulas for the total noise in the protein level for each of

these three different ways of changing the feedback strength

but keeping the average protein level fixed.

We show that if the feedback strength is varied along

with either the maximum transcription rate g0 or the protein

degradation rate dx, then noise in protein numbers always
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decreases with increasing feedback strength. On the other

hand, if feedback strength is varied by changing the mRNA

translation or degradation rate (i.e., the average protein burst

size), then there exists an optimal levels of feedback strength

where protein noise level is minimum. The above points are

illustrated in Fig. 5, where, for a given fixed x*, we observe

a U-shaped noise profile when feedback strength is varied

along with the average protein burst size. However, this

U-shaped profile vanishes if feedback strength is varied

along with the maximum transcription rate g0 or protein

degradation rate dx.

DISCUSSION

Autoregulatory gene networks where the protein inhibits/

activates its own transcription are common motifs occurring

within living cell. These networks are characterized by their

transcriptional response g(x), which provides information on

how the transcription rate of the gene varies as a function of

the number of protein molecules x present in the cell.

Noise and the shape of the transcriptional
response

We developed a full understanding of how the protein noise

levels are related to the functional form of the transcriptional

response. Using a linear approximation for g(x), we showed

that the extrinsic noise levels are determined by the slope

g0(x*) of the transcriptional response at x*, with more nega-

tive values of the slope (i.e., more stable equilibriums x*)

leading to smaller levels of extrinsic noise. On the other

hand, the intrinsic noise levels are determined by I ¼ g(x*) –

x*g0(x*), which is the y intercept of the tangent to the tran-

scriptional response at x¼ x* (as shown in Fig. 1), and larger

FIGURE 5 Total noise CVtot as a function of the feedback strength a when

the Hill coefficient is one (M¼ 1). The feedback strength is increased in three

different ways: 1), keeping the gene network kinetics fixed; 2), keeping the

average protein level fixed by varying the average protein burst size; and

3), keeping the average protein level fixed by varying the maximum transcrip-

tion rate or protein degradation rate. The response time Tz is chosen such that it

is much larger than the protein’s response time when there is no feedback.
values of I lead to smaller levels of intrinsic noise. Conse-

quently, given two gene networks with same protein degrada-

tion rate, gene expression characteristics (i.e., Nx and V2
x) but

different hypothetical transcriptional responses g1(x)¼ 1 and

g2(x) ¼ 1 � x/2, the response g2(x) will give lower levels of

extrinsic noise. However, since both transcriptional responses

have the same intercept I equal to one, they both yield the

same level of intrinsic noise in the protein population.

Analytical formulas that relate the noise levels to the

response time of the protein show key differences between

extrinsic and intrinsic noise. For a fixed mean protein level,

burst size, and protein degradation rate, as one decreases the

protein response time Tr through feedback (by decreasing the

slope g0(x*)), the levels of extrinsic noise decrease much

more than those of intrinsic noise. This leads to an important

conclusion that negative feedback is much more effective in

reducing the extrinsic component of protein noise than its

intrinsic component, which is consistent with other theoret-

ical and experimental studies (23,34–36). At a qualitative

level, this arises because intrinsic noise is equivalent to white

noise driving gene expression (16,37). On the other hand, the

exogenous noisy signal z that comes from Eq. 20 is colored

noise in the sense that it has noise shifted to lower frequen-

cies, and hence, can be more easily attenuated with feedback

than white noise.

Changing feedback strength with fixed kinetics

We investigated how protein noise levels change as we

vary the feedback strength keeping the kinetics of the gene

network fixed. This was done for a biologically meaningful

class of autoregulatory gene networks with negative feed-

back and characterized by the transcriptional response

gðxÞ ¼ g0

1 þ ðaxÞM
: (47)

Our main result shows that in this procedure of varying the

feedback strength, the total noise level in the protein popula-

tion is minimized at an optimal level of feedback strength.

This is in contrast to the Fano factor, defined as the ratio

of the variance to the average number of protein molecules.

As illustrated in Appendix E (see Supporting Material), in

this case the Fano factor always decreases with increasing

feedback strength, irrespective of whether noise in protein

numbers is intrinsic or extrinsic.

Recall from Autoregulatory Gene Networks with Nega-

tive Feedback that increasing the feedback strength causes

a decrease in the average number of protein molecules,

which results in an increase in the intrinsic noise level. On

the other hand, increasing the feedback strength causes the

protein response time to decrease, which attenuates both

the intrinsic and extrinsic noise. The net result of these two

opposing effects is a U-shaped profile, where increasing

feedback strength first causes the noise level to decrease

and then increase. This U-shaped profile was shown to be
Biophysical Journal 96(10) 4013–4023
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in good agreement with experimental data for a synthetic au-

toregulatory gene network. We also identified a scenario

where noise is minimum when there is no feedback and

any amount of negative feedback will always increase the

noise: the case where intrinsic noise dominates the total noise

in the protein population and the Hill coefficient is close to

one. This explained the observation that when the source

of the extrinsic noise was removed, the U-shaped profile

vanished, and instead, the noise level monotonically

increased with the feedback strength. However, for synthetic

gene networks characterized by a large Hill coefficient, our

theory predicts that, even in the absence of extrinsic noise,

a U-shaped profile should be observed. This remains to be

experimentally verified.

Limit of noise suppression

We characterized the smallest level of noise when feedback

strength is varied keeping the gene network kinetics fixed.

This was done through the limit of noise suppression, which

is defined to be the ratio of the minimum possible noise with

feedback to the protein noise level when there is no feedback

(i.e., a ¼ 0), and corresponds to the depth of the U-shape

profile in Figs. 3 and 4. This limit is given byffiffiffiffiffiffiffi
4M
p

M þ 1
; (48)

when the intrinsic noise dominates the total noise in the

protein (see Eq. 37). However, as the amount of extrinsic

noise increases, this limit decreases and asymptotically

approaches a value offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tnr þ Tz

½Tnr þ TzðM þ 1Þ�ðM þ 1Þ

s
; (49)

which corresponds to the situation where extrinsic noise

completely dominates the total noise in the protein (see

Eq. 38).

The above results can be used to quantify the level of

extrinsic noise in the protein population. This is useful for

synthetic and natural autoregulatory gene networks where

the feedback strength can be manipulated. As illustrated,

noise in the exogenous signal can then be estimated from

the minimum possible protein noise. Matching these esti-

mates with independent measurements of noise in the exog-

enous signal can be used to confirm that a particular noise

source is the major contributor of extrinsic noise to the

protein population.

Relaxing the assumptions of the model

Our analysis made two important assumptions about the

autoregulatory gene network model. Firstly, we omitted the

mRNA dynamics. This is a valid approximation for any

gene network, with or without transcriptional feedback, as
Biophysical Journal 96(10) 4013–4023
long as the protein’s half-life time is much longer than the

mRNA’s half-life (26,28,38). Secondly, we assumed that

the minimum level of transcription rate for the transcriptional

response g(x) (also called the basal level of transcription rate

and achieved when x / N) is zero. The PhD thesis (38)

relaxes both these assumptions and shows that our above

results hold even when the mRNA dynamics is slower than

the protein dynamics and the basal rate of transcription is

nonzero. The only difference is that the limit of noise suppres-

sion is now slightly larger than predicted by Eqs. 48 and 49.

Changing feedback strength with fixed mean
protein level

We also investigated how the protein noise levels change as

the feedback strength is varied, keeping the steady-state

mean protein level fixed. We showed that in this comparison

the shape of protein noise profile depends on which particular

gene network parameter is varied with the feedback strength.

In particular, if the feedback strength is varied along with the

maximum transcription rate or the protein degradation rate,

then there is no optimality, and protein noise level always

decreases with increasing feedback strength.

If the feedback strength is varied with the mean protein burst

size Nx (i.e., mRNA translation or degradation rate), then we

get a U-shaped protein noise profile. Such a noise profile arises

because for a fixed x*, a large feedback strength a corresponds

to having a high mean burst size Nx z aMx*Mdx/g0 (see

Eq. 29), and hence, high levels of intrinsic noise in the protein

population (see Eq. 18). Thus, in this case, small levels of

a yield high noise levels because there is no negative feedback

in the system, while large levels of a also yield high noise

levels because of very bursty gene expression. This results

in a U-shaped profile in which total noise in protein numbers

is minimum at an optimal level of feedback strength.

In summary, we have developed results relating the noise

levels to the feedback strength in autoregulatory gene

networks. We have shown that depending on how the feed-

back strength is increased in these networks, the protein

noise levels can monotonically increase, decrease, or be

minimal at an optimal level of feedback strength. These

results were not only consistent but also helped explain

experimental observation from a synthetic autoregulatory

gene network. Finally, we illustrated how measuring

changes in protein noise level as the feedback strength is

altered can be a useful tool to determine the level of extrinsic

noise in autoregulatory gene networks.
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