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Molecular Renormalization Group Coarse-Graining of Polymer Chains:
Application to Double-Stranded DNA

Alexey Savelyev and Garegin A. Papoian*
Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina

ABSTRACT Coarse-graining of atomistic force fields allows us to investigate complex biological problems, occurring at long
timescales and large length scales. In this work, we have developed an accurate coarse-grained model for double-stranded
DNA chain, derived systematically from atomistic simulations. Our approach is based on matching correlators obtained from
atomistic and coarse-grained simulations, for observables that explicitly enter the coarse-grained Hamiltonian. We show that
this requirement leads to equivalency of the corresponding partition functions, resulting in a one-step renormalization. Compared
to prior works exploiting similar ideas, the main novelty of this work is the introduction of a highly compact set of Hamiltonian basis
functions, based on molecular interaction potentials. We demonstrate that such compactification allows us to reproduce many-
body effects, generated by one-step renormalization, at low computational cost. In addition, compact Hamiltonians greatly
increase the likelihood of finding unique solutions for the coarse-grained force-field parameter values. By successfully applying
our molecular renormalization group coarse-graining technique to double-stranded DNA, we solved, for the first time, a long-
standing problem in coarse-graining polymer systems, namely, how to accurately capture the correlations among various poly-
meric degrees of freedom. Excellent agreement is found among atomistic and coarse-grained distribution functions for various
structural observables, including those not included in the Hamiltonian. We also suggest higher-order generalization of this
method, which may allow capturing more subtle correlations in biopolymer dynamics.
INTRODUCTION

Many exciting biological processes occur over time- and

length-scales that are not amenable to computational

modeling using all-atom (AA) molecular dynamics (MD)

simulations. To study these complex biological systems,

coarse-grained (CG) models are developed from either

experimental data or atomistic simulations. For example, to

address the million-fold compaction of DNA into a highly

organized structure called chromatin (1,2), one needs to

deal with dozens of nucleosomal core particles connected

by linker DNA chains. Each nucleosome core particle is

a nucleoprotein complex, with ~150 DNA basepairs wrap-

ped around a protein histone core of ~1200 residues. In addi-

tion, each histone protein projects out a flexible histone tail,

whose interactive dynamics with the rest of the nucleosome

core particle can have a significant impact on the higher-

order chromatin organization. Therefore, because of the

enormous number of atoms in even the shortest chromatin

fiber segments, a simplified CG representation is required

for computational modeling. Prior efforts in this area were

based on the use of a phenomenological wormlike chain

Hamiltonian and continuum electrostatics approach (3,4) or

computational models derived from experimental structural

data (5). An alternative approach, based on coarse-graining

of high-resolution AA force fields, such as AMBER (6),

has not been yet pursued. In this work, we make a significant

step in that direction, by developing an accurate CG model of
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a double-stranded DNA chain, playing the role of a linker

DNA segment in the chromatin. Our technique is general

and can be effectively used in a straightforward manner to

coarse-grain various molecular systems, including polymer

chains.

DNA electrostatics, particularly at short distances, plays

a key role in chromatin folding (7). Moreover, conforma-

tional preferences of the semiflexible linker DNA are criti-

cally important, since the vast majority of the chromatin

backbone conformational degrees of freedom reside in the

linker DNA. To accurately capture these essential properties

of the DNA molecule, we derive an effective Hamiltonian for

a simplified CG DNA model from AA MD simulations. This

implies, first, that we do not rely only on interactions derived

from continuum electrostatics (as is customary), which are

inapplicable at short distances (8,9). Second, our approach

of accurate matching of the relevant fluctuations between

the AA and CG systems allows us to move beyond phenom-

enological elastic models used in prior works and reproduce

various DNA chain anharmonicities. Finally, we report

a novel polymer chain coarse-graining technique, based on

renormalization group (RG) ideas (10), which systematically

accounts for correlations among various polymer degrees of

freedom, including bonding, bending angle, and dihedral

angle interactions. Fukunaga et al. demonstrated that even

in case of a simple polyethylene chain, these CG degrees

of freedom appeared to be highly correlated at room temper-

ature (11). Although the interaction potentials in their study

have been approximated by the potentials of mean force

(PMF) derived from all-atom MD simulation, they suggested

that a significant improvement of CG polymer models could
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be achieved by accounting for cross-correlations among

various CG variables. This problem, which is well recog-

nized, has been solved in this work using novel molecular

basis functions within the RG-inspired coarse-graining

approach developed in prior works (12,13).

Although numerous optimization techniques exist to

account for cross-correlations in CG models either self-

consistently or explicitly, they have not been applied to

complex polymer systems. For example, a widely used

Inverse Monte Carlo technique, belonging to the first class

of the above algorithms, was first successfully applied in

deriving the effective interaction potentials by iterative

inversion of the radial distribution functions (RDF) in one-

component simple liquids (14,15). This scheme was later

generalized to many-component systems and applied to

simple polymers, such as polyisoprene (16,17). The main

deficiency of this optimization technique is a slow conver-

gence associated with an implicit way of accounting for

correlations among various types of effective interactions.

Furthermore, the choice of RDFs to match between AA

and CG simulations is often ad hoc. Another systematic

coarse-graining technique, multiscale coarse-graining

method based on force matching (18–20), has been recently

applied to the coarse-graining of mixed lipid bilayers,

peptides, and ionic liquids (21). A different approach, param-

eter optimization based on the ideas of RG theory, was

applied by Lyubartsev and Laaksonen to explicitly account

for cross-correlations in CG systems (13). This technique,

which is distinct from Inverse Monte Carlo, was adapted

from the Monte Carlo RG method developed by Swendsen

to compute critical exponents in three-dimensional Ising

models (12). It was applied in coarse-graining of a number

of molecular systems, such as aqueous solution of Naþ and

Cl� (13), liquid water (22), and lipid bilayers (23).

While the Lyubartsev-Laaksonen (LL) technique is theo-

retically sound, it has only been applied to molecular systems

with simple pairwise interactions (13,22,23). For example,

the hydrocarbon tails in lipid systems were modeled without

bending and dihedral angle potentials, or some equivalent

interactions, which, in turn, would preclude a realistic

description of hydrocarbon tail’s conformational preferences

(23). Consequently, a thinner CG membrane resulted,

compared to the AA simulations (23). This unresolved

discrepancy points to the conceptual difficulty of incorpo-

rating polymer degrees of freedom and other many-body

interactions into the LL optimization scheme. As elaborated

below, degeneracy of obtained solutions, and unreasonable

large computer memory load demand to deal with many-

body effects, are serious drawbacks of the LL technique.

Since a number of key polymeric interactions, such as

bending rigidity and torsional angle potentials, represent

three- and four-body interactions, respectively, the LL optimi-

zation scheme represents an impractical tool for building an

accurate CG model for polymers. In summary, existing opti-

mization techniques do not provide a straightforward path to
deriving an accurate CG model for double-stranded DNA,

a polymer characterized by high rigidity, anharmonicities,

and other many-body effects.

In this work, we generalize further Swendsen’s RG

method (12) and demonstrate that not only it can be used

to develop interaction potentials for monoatomic and simple

molecular systems, but also successfully applied in coarse-

graining of various polymer systems. Our approach is based

on matching various order correlators between CG and AA

systems, for dynamical observables that explicitly enter the

CG Hamiltonian. As elaborated below, these observables

are compact molecular basis functions that directly enter

the polymer Hamiltonian, allowing us to account not only

for pairwise interactions, as in the literature (13,22,23), but

treat many-body effects. This, in turn, ensures significant

equivalence of the corresponding partition functions. In

this sense, coarse-graining is based on the RG theory (10),

where the reduction of a system’s number of degrees of

freedom is accompanied by renormalization of the interac-

tions between particles, leaving the partition function and,

thus, the character of fluctuations, unchanged. Hence,

passing from the detailed AA system to a simplified CG

representation corresponds to one-step renormalization. In

coarse-graining, however, integrating out the solvent, mobile

ion and irrelevant DNA degrees of freedom in detailed AA

system results in a form of a Hamiltonian that is not explic-

itly known. A physically plausible Hamiltonian form should

be guessed, followed by parameter optimization. As

customary, the corresponding PMFs may serve as a starting

point for parameter optimization (11,24).

In the following section, we first introduce our molecular

renormalization group coarse-grained (MRG-CG) model

of a double-stranded DNA chain. Next, we elaborate on the

details of our optimization scheme that explicitly takes into

account the correlations among various polymer degrees of

freedom. The application to DNA chain is demonstrated. We

subsequently provide field-theoretical arguments to show

the close relationship between the MRG-CG scheme and the

RG theory and also discuss on the possibility of achieving

even higher accuracy with higher order expansions of partition

functions. The applicability of the MRG-CG technique to

other complex molecular systems and polymers is suggested.

A COARSE-GRAINED MODEL FOR
DOUBLE-STRANDED DNA

Our coarse-grained model of DNA is based on representing

each DNA basepair by two beads of the same type, where

each bead is placed in the geometric center of the corre-

sponding basepair nucleotide. This leads to an ~30-fold

reduction of DNA degrees of freedom while preserving the

major and minor groove structural patterns. We used the

Biochemical Algorithms Library to build the DNA model

(25). Such a homopolymeric two-bead model can easily be

extended by introducing all four types of DNA nucleotides.
Biophysical Journal 96(10) 4044–4052
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Then, it would be possible to study, for example, a sequence-

dependent melting and hybridization (so-called bubble

dynamics (26)). In this work, however, we are focusing on

developing a simpler DNA model with identical monomer

units.

We used the following effective Hamiltonian to describe

DNA chain interactions:

H ¼ Ubond þ Uang þ U fan þ Uel: (1)

In this expression, the first two terms indicate bond and

bending angle potential energies, respectively. While these

contributions reflect connectivity of each DNA strand and

represent intrastrand interactions, a nonstandard third term

(we call it fan interactions) is responsible for maintenance

of the DNA double-strand formed by two polynucleotides.

As shown in Fig. 1, these interstrand interactions represent

a superposition of basepairing and stacking forces. The last

term in Eq. 1 corresponds to electrostatic energy between

nonbonded pairs. The proposed Hamiltonian is somewhat

similar to one used in a related recent work on DNA

coarse-graining (27); however, this particular set of struc-

tural contributions was selected from systematically probing

a variety of Hamiltonians with our optimization scheme. The

Hamiltonian (Eq. 1) has led to a good agreement between

AA and CG distributions for different molecular degrees of

freedom, even for those not included in a Hamiltonian

explicitly (discussed below and in Fig. 2).

To capture a nonsymmetric shape of DNA structural fluc-

tuations (anharmonicities), we have chosen the following

polynomial forms for individual energetic contributions,

U bond;
fan

¼
X4

a¼ 2

Kaðl� l0Þa; Uang ¼
X4

a¼ 2

Kaðq� q0Þa;

(2)

where l and l0 in the first formula are fluctuating and equilib-

rium interparticle separations for individual bond and fan

interactions, respectively. The values q and q0 play analogous

roles for the angular potential in the second expression. As

customary, equilibrium values l0 and q0, as well as the initial

set of coefficients {Ka
(0)}, can be obtained by fitting these

polynomials to the corresponding PMFs, extracted from AA

MD simulations (24). To obtain these, we analyzed the
dynamics of 16-basepair DNA oligomer solvated in explicit

water with added physiological NaCl salt buffer, a system

studied in our prior works (8,28,29). A brief summary of

the all-atom MD simulation protocol is given in the Appendix.

We derived an effective bead-to-bead electrostatic poten-

tial from a separate series of extensive AA MD simulations,

where two in-parallel oriented 16-basepair DNA oligomers

at the same NaCl concentration were brought into proximity

(9). In this work, we used the following expression, effective

electrostatic energy of two in-parallel CG DNA molecules,

to match the PMF for interacting AA DNA oligomers,

Uel ¼
X

ij

"
A

e�kgij

g4
ij

þ
qeff

i e�kðgij�aÞqeff
j

4p303gijð1 þ akÞ

#
(3)

where the last term represents the long-range interactions

approximated by the Debye-Hückel (DH) potential for beads

of size a ¼ 5 Å. The Debye length k�1 ¼ 9 Å corresponds to

physiological conditions. The bead charge was taken to be

a quarter of the bare DNA nucleotide charge, qeff ¼ �0.25

(30). This assumption allowed us to set the absolute scale

of the inter-DNA free energy curves (PMF), by equating the

free energy for two DNA at the largest separation in our AA

simulations to the interaction energy calculated from the

analytical DH potential. The first term in Eq. 3 accounts

for repulsive short-range interactions underestimated by the

DH potential (9). The only adjustable parameter, A, was

found to be 22.7 � 103 kcal � mol�1 � Å�4 from fitting

to the AA PMF (9).

OPTIMIZING FORCE-FIELD PARAMETERS USING
AN RG-INSPIRED APPROACH

As mentioned in the Introduction, the optimization scheme

used in this work closely follows the Monte Carlo RG

method developed by Swendsen to compute critical expo-

nents in Ising models (12). To proceed with mathematical

formulation of the problem, we first introduce an effective

CG Hamiltonian Hð Ka Þgf , defined by a parameter set,

{Ka}, a ¼ 1.N; and a set of observables of interest,

{Sa({Ka})}, subject to canonical averaging over Hð Ka Þgf .

Then, the difference, DhSai h hSaiCG � hSaiAA, between

the expectation values of an observable, Sa, averaged over

CG and AA systems may be expressed as
FIGURE 1 Fan interactions in the two-bead DNA

model: Beads are placed in geometric centers of the AA

nucleotides. Dashed lines indicate interactions between

a given bead i located on one strand and a number of beads

[(N � 0..5) � i] located on the other strand, N being the

total number of particles. There are 11 such interactions

associated with basepairing and stacking of two polynucle-

otides.

Biophysical Journal 96(10) 4044–4052
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DhSai ¼
X

g

vhSaiCG

vKg

DKg þ O
�
DK2

�
; (4)

which is simply an expansion of hSaiCG around some point

in space of the Hamiltonian {Ka}. The derivative in Eq. 4

is given by (CG subscripts are omitted)

vhSai
vKg

¼ � 1

kBT

��
Sa

vH
vKg

�
� hSai

�
vH
vKg

��
(5)

and represents susceptibility of observable hSai to the change

of parameter Kg (a and g may be different). Hence, Eq. 4

may be viewed as a system’s linear response to an external

potential DK. This analogy is particularly beneficial in the

case of Hamiltonians linear in {Ka}, having the form

H ¼
P

a KaSa. Then, Eq. 4 reduces to

DhSai ¼ �1=ðkBTÞ
X

g

½hSaSgi � hSaihSgi�DKg; (6)

being expressed in terms of cross-correlators of various

observables, as expected for susceptibilities. The following

parameter optimization scheme may be used to decrease

DhSai. First, the hSaSgiCG correlators are obtained from

MD simulations of the CG system using some trial set of

Hamiltonian parameters, {Ka
(0)}, followed by the calculation

of the deviations DhSai of each CG variable from their cor-

responding reference AA values. Subsequently, the system

of linear equations in Eq. 6 is solved to yield the corrections

for the Hamiltonian parameters, DKa
(0), which define a new

parameter set K(1)
a ¼ K(0)

a þ DK(0)
a for the next CG itera-

tion. The procedure is repeated until the convergence of all

CG variables is reached, i.e., hSaiCG z hSaiAA.

In the above discussion, Ka may be understood as fields

conjugate to Sa which, in turn, represent various combinations

of collective order parameters characterizing the CG system.

For example, in Swendsen’s original work (12), Sa values

indicated various cumulative spin products, corresponding

to interactions between nearest-neighbor and distant spins,

as well as many-spin interactions (generated by RG). Analo-

gously, in this work we relate Sa values to various collective

modes associated with different types of effective molecular

interactions in a DNA chain, as explained in the next section.

In contrast, Lyubartsev and Laaksonen (13) expressed ionic

RDFs in terms of Sa values, where the latter were positional

Dirac delta functions. From this perspective, Sa can be viewed

as a set of basis functions over which an effective Hamiltonian

is spanned. A completeness of the given basis set is consistent

with all DhSais nearly vanishing after parameter optimization.

COMPACT BASIS SET ALLOWS THE INCLUSION
OF MANY-BODY INTERACTIONS

Compared to the LL approach, the principal novelty we

introduce is the many-fold reduction of the Hamiltonian

positional basis set, where the new basis set is spanned by

functions of different dimensions (units). Such compactifica-

tion is not just a matter of basis choice but may be viewed as

a projection onto the relevant set of the collective dynamical

modes, which enables us to explicitly account for cross-

correlations between polymer degrees of freedom in a very

efficient way. As follows from the previous section, each

type of the effective DNA interactions is described by

a very small number of physical observables, which are

structure-based collective order parameters. Indeed, it

follows from Eq. 2 that observables {Sa}, entering

H ¼
P

a KaSa, are represented by various combinations of

the structural order parameters, following from the func-

tional form of polynomials defining our CG Hamiltonian.

For example, three collective order parameters for bonds

are Sbond
1 ¼

P
all bondsðl� l0Þ2, Sbond

2 ¼
P

all bondsðl� l0Þ3,

and Sbond
3 ¼

P
all bondsðl� l0Þ4, where l and l0 enter Eq. 2.

Analogously, collective observables for bending angles are

A B C

D E F

FIGURE 2 Semilog plots of distribu-

tions are shown for (A) DNA bending

angle; (B and C) some of the fan

constraints; and (D and E) intrastrand

distances between particles separated by

six and nine nucleotides (1–7 and 1–10

interactions). Solid, dashed, and dotted

lines represent the reference AA, initial

CG, and the corrected-by-optimization

final CG distributions, respectively.

Initial CG distributions are those gener-

ated by PMFs and correspond to accu-

racy of the CG polymer model developed

by Fukunaga et al. (11). The 1–7 and

1–10 interactions do not enter the Hamil-

tonian equation (Eq. 1), indicating that

other structural properties are also well

reproduced. Panel F demonstrates the

reduction of the total free energy differ-

ence dF between AA and CG models

with optimization iterations.

Biophysical Journal 96(10) 4044–4052
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Sangle
1 ¼

P
all anglesðq� q0Þ2, Sangle

2 ¼
P

all anglesðq� q0Þ3,

and Sangle
3 ¼

P
all anglesðq� q0Þ4, etc. Aside from electro-

statics, 39 Ka constants enter the DNA Hamiltonian, since

there are 13 types of structural interactions (bond, angle,

and fan), each characterized by three Sa values (see Eq. 2).

We did not include electrostatics in our optimization scheme

aimed to improve Ubond, Uang, and Ufan potentials, because

the former turned out to be substantially uncoupled from

the structural degrees of freedom. Indeed, we verified that

inter-DNA PMF, a chosen characteristic to calibrate the elec-

trostatics, is reproduced in CG system at different stages of

optimization procedure with no changes in the initial value

of the parameter A in Eq. 3.

Next, we provide an estimate of the scale of the reduction of

the total number of degrees of freedom upon the compactifi-

cation of the CG Hamiltonian basis set compared with the

positional Dirac delta function basis set in the LL formalism.

In positional basis, each interaction potential was tabulated

with resolution of 0.05 Å (13). Such a high resolution is appar-

ently needed because of the potential instability of simulations

associated with discontinuities of tabulated potentials. Thus,

having a typical range of 10 Å, each type of interaction would

be defined by ~200 observables (instead of three, in our case),

in terms of positional Dirac delta functions. Since our DNA

model is described by>10 interaction potentials (see above),

such representation would require us to deal with ~4000 vari-

ables, necessitating inversion of a matrix of ~107 elements to

solve the set of linear equations in Eq. 6. Representing

bending angle potentials, which are three-body interactions,

is even more problematic in the positional basis, resulting in

serious computational difficulty because of the necessity of

dealing with very large arrays. Note also that had we included

the four-body dihedral potential in the consideration, the cor-

responding matrices would be even larger. On the other hand,

within our approach this computational difficulty is bypassed

by projecting such a large many-dimensional array into a very

compact two-dimensional array defined in a set of basis func-

tions of different dimensions (our Sa values). We elaborate

next on the nontrivial inverse problem that needs to be solved

when the covariance matrix, hSaSgi � hSaihSgi, contains

noise and the basis functions have dissimilar physical units.

SOLVING THE INVERSE PROBLEM

Eigenvalues of the covariance matrix in Eq. 6 indicate how

changes in various dynamical modes affect different effec-

tive potentials. For the DNA problem, it turns out that the

covariance matrix is nearly singular, resulting in the degen-

eracy of solutions that represent various sets of parameters.

Apparently, this problem is caused by the redundancy of inter-

action potential functions as well as the noise which is nor-

mally present in the input data obtained from MD simulations

(22,23). When too many observables are used to describe the

CG system, larger uncertainty in the covariance matrix inver-

sion results, and, thus, the stronger the degeneracy of the
Biophysical Journal 96(10) 4044–4052
resulting set of CG Hamiltonian parameters. This implies,

in particular, a significant advantage of using our compact

set of 39 basis functions. Further reduction in the degeneracy

can be achieved by eliminating those matrix eigenvectors

which superfluously affect Hamiltonian parameters. Singular

value decomposition (SVD) could have been directly used

to address this issue if the elements of the covariance matrix

in Eq. 6 had identical physical units. For example, the

matrix element hS2
bond$S3

anglei � hS2
bondihS3

anglei has

a dimension of [Å3$Rad4], while the diagonal element

hðSbond
2 Þ2i � hSbond

2 i2 is measured in units of [Å6]. Therefore,

to use SVD at each iteration, we reduced the corresponding

covariance matrix to a dimensionless form by appropriately

rescaling vectors DKa and DhSai. Then, in matrix notation,

the rescaled Eq. 6 takes the formX
j

Mijffiffiffiffiffiffiffiffiffi
qiqT

j

q ,
h
Xj

ffiffiffiffi
qj

p i
¼ Biffiffiffiffi

qi

p ; qihMii; (7)

with M, X, and B standing for the covariance matrix, vector

of the corrections DKa, and the vector of deviations DhSai,
respectively. As follows from the second equation, vector

q is composed from the diagonal elements of the original

matrix M. Hence, the latter is reduced to a dimensionless

form (with unit elements on the diagonal) after its element-

by-element division by the tensor elements,
ffiffiffiffiffiffiffiffiffi
qiqT

j

q
. After

filtering out near-zero eigenvalues and performing a subse-

quent matrix inversion, the original units of the elements

DKa were obtained by reverse transformation. The optimized

set of parameter values is given in the Supporting Material.

COMPARISON TO ALL-ATOM RESULTS

As mentioned in A Coarse-Grained Model for Double-

Stranded DNA, the initial Hamiltonian parameters, {Ka
(0)},

were derived from fitting the polynomials in Eq. 2 to the

corresponding AA PMFs approximating the effective poten-

tials. As expected (11), these parameters generated distribu-

tions for all CG variables (l, q) differing substantially from

the corresponding AA results (see Fig. 2). We optimized

the CG Hamiltonian parameters by solving the systems in

Eq. 6 according to the technique outlined in the previous

section. MD simulations of the CG system were carried

out using the large-scale atomic/molecular massively parallel

simulator (LAMMPS) (31). The details of the simulation

protocol are provided in the Appendix.

The current MRG-CG optimization scheme has worked

well, as illustrated in Fig. 2. For clarity, we show here a few

distributions only at initial and final stages of the optimization

procedure and compare them with the reference AA results (the

remaining results and the Hamiltonian parameters are available

upon request). The agreement is excellent not only for Sa

values that entered the CG Hamiltonian, but also for those

whose conjugate fields were not optimized. This is exemplified

by 1–7 and 1–10 intrastrand interactions in Fig. 2, D and E.
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We can estimate the change in the total free energy differ-

ence, dF ¼
P

a KaDSa, between AA and CG systems in the

course of optimization procedure. Since our method is aimed

at matching only the first moments in distributions of Sa

values, we express dF in terms of the average deviations

DhSai of each CG variable from their corresponding refer-

ence AA value. Hence, the free energy difference is approx-

imated by the leading term in the cumulant expansion,

dF ¼ �kBT ln
	
e�DH=kBT



¼ hDHi þ 1

2

�	
DH2



� hDHi2

�
þ /; (8)

where DHhdF ¼
P

a KaDSa, and the angular brackets indi-

cate the canonical averaging over the ensemble of CG system

states. To go beyond this linear approximation, higher order

correlators of Sa values must be computed to estimate other

terms in Eq. 8. We discuss this possibility below. As illus-

trated in the last panel of Fig. 2, only five iterations are needed

to reduce the (average) total free energy difference between

AA and CG systems to a small value within the statistical error

of the simulation (hdFi ~0.5 kBT). The discrepancies between

the thermally averaged individual CG and AA terms, jKaSaj,
were ~0.01 kBT, indicating excellent agreement between CG

and AA Hamiltonians.

GENERALIZING SWENDSEN’S RG SCHEME

We suggest that the RG-CG scheme possesses significant

advantages when compared with other commonly used opti-

mization methods. Interestingly, prior works using this

method for spin and ionic systems did not clearly elaborate

on the specifics of its close relationship to the RG theory.

Here, we point out these connections, and demonstrate

how to generalize the method to achieve an arbitrarily high

accuracy. We start by noticing that representing Hamiltonian

as a linear decomposition over observables Sa allows us to

interpret the partition function, Zð K Þf
P

exp½�1=gf
ðkBTÞ

PN
a¼1 KaSa�, as a generating function which can be

differentiated to obtain all correlation functions (10),

hS1/Snif
dn ln Z

dK1/dKn

: (9)

Again, Ka here may be viewed as the fields conjugate to the

observables Sa. We propose that these relations be used to

define the degree of equivalency of CG and the partially inte-

grated AA partition functions. Particularly, if two partition

functions generate two identical sets of various auto- and

cross-correlators of order n and less (hence, identical nth

derivatives of the free energies), we can think of n as a degree

of similarity between two generating functions. From this

perspective, Swendsen’s optimization method, which

matches only first moments in distributions over observables

Sa, corresponds to order n ¼ 1 of equivalency between CG

and AA systems. Within this framework, it is straightforward
to achieve higher accuracy in CG system description by

demanding the coincidence of higher moments in Sa. This,

in turn, would require computing (cross) correlators of order

n þ 1, to be used in equations equivalent to Eq. 6.

For example, we can use the condition DhSaSgi z 0 to

match various second-order correlators. In that case, the

system of N linear equations, from the set of expressions

in Eq. 6, would be supplemented by N(N � 1)/2 equations

for DhSaSgi expressed in terms of various correlators of

the third order. Since our system is characterized by a rela-

tively small number of observables, N ( 102, it is computa-

tionally feasible to solve such an extended system of (still

linear) equations. In an ongoing work, we are applying this

higher order technique to coarse-grain highly inhomoge-

neous molecular systems, where accounting for the second

moments of the collective order parameter distribution

functions is essential.

DISCUSSION AND CONCLUSIONS

Our generalization of Swendsen’s method compares favor-

ably with many other commonly used alternative schemes

aimed at matching certain ad hoc structural characteristics

(see (24) and references therein), but not partition functions.

It is well known from the RG theory that a renormalization

step might lead to the introduction of extra many-body terms

to the functional form of the original Hamiltonian. In a

complex system, consisting of water, ions, and DNA, there

is no simple procedure to determine the rigorous functional

form of the CG Hamiltonian. Furthermore, many-body

nonbonded terms would result in great computational

inefficiency. Therefore, as a practical matter, one has to use

physical intuition to construct a plausible form of the CG

Hamiltonian. In our experience, a poor guess leads to prob-

lems with the optimization convergence. For example, to

capture anharmonicities in DNA motion, we included polyno-

mials up to quartic terms (see Eq. 2), which allowed us to

reproduce complex correlations along the DNA chain. We

also experimented with various ways to connect neighboring

beads, finding that the fan potential described previously leads

to satisfactory results. To facilitate parameter optimization

procedure, it is convenient that parameters enter the Hamilto-

nian linearly, as discussed above. This, however, is not a strict

requirement. Compactness of the Hamiltonian is also very

important, mainly to increase the likelihood of obtaining

a unique set of CG force-field parameters. Noncompact func-

tional forms are expected to produce highly degenerate solu-

tions sets, where, without any further guidance for how to

choose the final parameter set, the technique becomes largely

impractical.

The combination of topological constraints aimed to

preserve the desired structure of the system may result in

either quick convergence of the optimization scheme or no

convergence at all. Thus, while the functional forms of the

individual Hamiltonian contributions are dictated by their
Biophysical Journal 96(10) 4044–4052
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physical plausibility (and by common sense), it is the perfor-

mance of the optimization technique that enables us to

discriminate among the quality of various sets of the structural

constraints imposed on the system. For example, we intro-

duced the intrastrand and interstrand DNA interactions,

represented by bond and bending angle potentials, and the

fan interactions, respectively (see A Coarse-Grained Model

for Double-Stranded DNA). As stated above, our optimiza-

tion procedure led to a good agreement not only for the Sa

values associated with these structural constraints, but also

for those not imposed on a system and, hence, not considered

explicitly in the effective Hamiltonian (see Fig. 2). At the

same time, when we tried other combinations of structural

constraints, for example, by introducing the interactions

among distant beads of DNA chain belonging to the same

strand, the results turned out to be unsatisfactory: the method

showed poor convergence even for those constraints included

into optimization, while other structural characteristics were

not reproduced. In the worst case scenario, the structure of

the double-stranded DNA was not stable at all. To summarize

this issue, we emphasize that the application of the present

technique to various systems will be greatly facilitated by

careful selection of a physically sound CG Hamiltonian and

the appropriate combination of the topological constraints,

which, in turn, would allow maintaining the desired system

structure and reproducing important motions.

Next, we discuss and summarize the advantages of the

Hamiltonian linearity and compactness, which are the novel

and principal features of our method. First, the Hamiltonian

linearity enables us to avoid dealing with derivatives appear-

ing explicitly in Eq. 5. Instead, we need to compute the

various pair-correlators for the physical observables entering

a much simpler Eq. 6, as demonstrated in Optimizing Force-

Field Parameters Using an RG-Inspired Approach. These

correlators can readily be obtained from the analysis of MD

trajectory. In addition, the linearity of the Hamiltonian is

very beneficial when the problem is viewed in light of field-

theoretical arguments: as the parameters, Ka, correspond to

the fields conjugate to physical observables, Sa, Eq. 6 appears

naturally in the context of the fluctuation-dissipation theorem

in the linear regime, when the system is slightly perturbed by

the external fields, DKa. Interestingly, it can be formally

shown that representing the Hamiltonian in terms of the

collective order parameters,
P

a KaSa, where only first

moments of the distributions of these collective observables

are reproduced, corresponds to addressing the problem on

the level of mean-field approximation (see, for example,

(10)). This means, in particular, that in this formalism, the

resulting fields Ka appear as mean fields acting on the corre-

sponding CG degrees of freedom, assuring the coincidence

of the expectation values for the collective structure order

parameters in AA and CG systems. Hence, the further gener-

alization of the method proposed in Generalizing Swendsen’s

RG Scheme—by considering higher moments in distributions

of Sa values—is an attempt to go beyond the mean-field
Biophysical Journal 96(10) 4044–4052
approach. Again, this statement is formally justified by the

correction to the mean-field approximation, known as the

mean-field expansion (10).

Importantly, the possibility of incorporating these correc-

tions into the MRG-CG optimization scheme relies heavily

on the compactness of the Hamiltonian, which is another prin-

cipal feature of our approach. Indeed, we have shown that

because of the Hamiltonian compactness, our method is readily

applicable to systems possessing important many-body effects

which cannot be captured within the mean-field approximation.

The double-stranded DNA chain studied in this work is an

example of a system characterized by many-body interactions

associated with the polymeric nature of the molecule. For

instance, bending angle potentials appearing in our Hamilto-

nian are three-body interactions in a positional representation.

To treat such interaction forms in this optimization scheme, we

needed to develop a nontrivial inversion technique for tensors

defined in space of basis functions of different dimensionality.

On the other hand, the necessity of utilizing the extended

approach of Generalizing Swendsen’s RG Scheme arises

when we are concerned with the correlations, more subtle

than those among various types of CG degrees of freedom.

For example, one would pose the problem of reproducing the

correlations between the sets of structural constraints belonging

to spatially different regions of the macromolecule. Interest-

ingly, a very similar problem was encountered in our ongoing

work on incorporating the mobile ions into the CG model of

DNA chain developed here. In particular, we have found that

to accurately capture the coupling between the dynamics of

the DNA chain and the surrounding ionic atmosphere, the latter

being strongly inhomogeneous along the macromolecule, it is

necessary to ensure matching of the second order correlators

(to be published elsewhere).

Finally, it is worth noting that reproducing higher order

correlations acts as an efficient suppressor of the degeneracy

in the resulting set of Hamiltonian parameters. Indeed, by

capturing more subtle system correlations, it is possible to

discriminate between those parameter sets which generate

the same mean-field picture and, thus, belong to the same

uncertainty class. Given the discussion of Solving the

Inverse Problem, we can define a hierarchy of approaches

to reduce the degeneracy of the Hamiltonian parameters.

First, the Hamiltonian compactness is characterized by the

total numbers of both the CG degrees of freedom and the cor-

responding conjugate parameters. One expects that the

smaller number of parameters would result in a lower rate

of degeneracy. Next, we use the SVD technique to truncate

those eigenvectors of the covariance matrix (see Eq. 6),

which have little effect on the system Hamiltonian, resulting

in a further significant reduction of the parameter manifold.

Finally, reproducing higher-order correlations on top of the

mean-field picture serves as potentially powerful tool for

calibrating the Hamiltonian parameters.

In summary, by developing a two-bead double-stranded

DNA model, we demonstrated for the first time that the
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present technique can be successfully applied to coarse-grain

complex polymer systems with correlated degrees of freedom,

where correlations between bonds and angles along the poly-

mer chain are accurately taken into account. The problem of

accounting for polymer chain correlations in coarse-graining

has been posed by Fukunaga et al. (11). As opposed to prior

related works in this area based on using a large basis set of

Dirac delta functions, where the uniqueness of the obtained

solutions and the method’s convergence were not established

(13,23), we demonstrated convergence of our optimization

procedure based on compact molecular basis sets and esti-

mated the accuracy of our CG Hamiltonian for DNA to be

~0.01 kBT per elementary interaction (see Fig. 2 F). By

utilizing field theoretical arguments and showing the close

relationship between the presented optimization technique

and the RG theory, we suggest that the MRG-CG approach

may allow achieving high accuracy in CG system description.

In general, we expect this technique would allow coarse-

graining of many biological molecules and other polymers,

where strong correlations exist among internal degrees of

freedom. In a recent work, which will be reported elsewhere,

we have also applied this approach to develop an accurate

coarse-grained model for electrolyte solutions, such as

aqueous NaCl and KCl. It will be interesting to compare our

method with other systematic coarse-graining efforts, for

example force matching (18–20), in terms of accuracy,

uniqueness of the solutions, and computational efficiency.

APPENDIX

MD simulation of AA system

The starting point for AA simulation was a canonical B-form of a 16-base-

pair DNA oligomer [d(CGAGGTTTAAACCTCG)]2 (32). We built an ideal

DNA chain model and carried out an MD simulation in explicit, TIP3P water

(33) using the AMBER 8.0 suite of programs (34) and the refined AMBER

parmbsc0 force field for nucleic acids (35). The initial structure was first

neutralized by 15 Naþ ions. An extra ~0.12 M of NaCl buffer (14 additional

Naþ ions and 14 Cl� ions), corresponding to physiological concentrations,

was then added to the system. The initial positions of the ions were deter-

mined from the computed electrostatic potential using LEaP (34). The

system was further solvated in >6500 TIP3P water molecules in a cubic

box, having dimensions 60 � 60 � 60 Å. As a result, two DNA segments

from neighboring periodic images were at least 35 Å apart. The overall

number of atoms in the system was ~20,000 in the periodic box. We used

a multistage equilibration process, reported by Shields et al. (36), to equili-

brate the starting structure. The subsequent production run was carried out at

constant temperature (300 K) and pressure (1 bar) using the Langevin

temperature equilibration scheme (see the AMBER 8 manual), the weak-

coupling pressure equilibration scheme (37), and periodic boundary condi-

tions. The translational center-of-mass motion was removed every 2 ps.

We used the SHAKE algorithm (38) to constrain all bonds involving hydro-

gens, which allows all MD simulations to use an increased time step of 2 fs

without any instability. The particle-mesh Ewald method (39) was used to

treat long-range interactions with a 9 Å nonbonded cutoff. The production

run was carried out for 60 ns to ensure the equilibration of ions. It was shown

in prior works (40,41) that 50 ns MD was enough to equilibrate the Naþ

atmosphere around DNA in a smaller system comprised of ~16,000 atoms.

Given the slightly larger size of our systems (~20,000 atoms), we used extra

10 ns of MD to ensure equilibration.
MD simulation of CG system

We used the large-scale atomic/molecular massively parallel simulator

(LAMMPS) (31) to carry out MD simulations of our CG double-stranded

DNA. The macromolecule was comprised of 200 beads (100 basepairs)

whose initial coordinates were the geometric centers of the corresponding

all-atomistic basepair nucleotides. The Biochemical Algorithms Library

(25) was used to build such a model. Initially the system was minimized ac-

cording to the standard steepest-descent algorithm. Then it was heated up to

300 K during the 5 ns and subsequently equilibrated for another 10 ns in a large

periodic box having dimensions ~600� 600� 600 Å. We used the canonical

NVT integration scheme (Nosé-Hoover temperature thermostat) to update

particle positions and velocities at each timestep (42). To determine the

biggest timestep we can afford to simulate the CG system with no instabilities,

we used the criteria of the total energy conservation, the latter being the energy

of the CG system complemented by the contribution from the Nosé-Hoover

Hamiltonian (26). It appeared that it was safe to use the time steps of up to

10 fs, so we used this upper limit in our MD simulations. The production

run for each optimization iteration was 20 ns to ensure the convergence of

the covariance matrix in Eq. 6. We verified the convergence at each iteration

by comparing the data generated by two halves of the MD trajectory.

SUPPORTING MATERIAL

A table is available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(09)00672-09.
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