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ABSTRACT

Motivation: Gene expression profiling technologies can generally
produce mRNA abundance data for all genes in a genome. A
dearth of proteomic data persists because identification range
and sensitivity of proteomic measurements lag behind those of
transcriptomic measurements. Using partial proteomic data, it is
likely that integrative transcriptomic and proteomic analysis may
introduce significant bias. Developing methodologies to accurately
estimate missing proteomic data will allow better integration of
transcriptomic and proteomic datasets and provide deeper insight
into metabolic mechanisms underlying complex biological systems.
Results: In this study, we present a non-linear data-driven model to
predict abundance for undetected proteins using two independent
datasets of cognate transcriptomic and proteomic data collected
from Desulfovibrio vulgaris. We use stochastic gradient boosted
trees (GBT) to uncover possible non-linear relationships between
transcriptomic and proteomic data, and to predict protein abundance
for the proteins not experimentally detected based on relevant
predictors such as mRNA abundance, cellular role, molecular weight,
sequence length, protein length, guanine-cytosine (GC) content
and triple codon counts. Initially, we constructed a GBT model
using all possible variables to assess their relative importance and
characterize the behavior of the predictive model. A strong plateau
effect in the regions of high mRNA values and sparse data occurred
in this model. Hence, we removed genes in those areas based on
thresholds estimated from the partial dependency plots where this
behavior was captured. At this stage, only the strongest predictors
of protein abundance were retained to reduce the complexity of
the GBT model. After removing genes in the plateau region, mRNA
abundance, main cellular functional categories and few triple codon
counts emerged as the top-ranked predictors of protein abundance.
We then created a new tuned GBT model using the five most
significant predictors. The construction of our non-linear model
consists of a set of serial regression trees models with implicit
strength in variable selection. The model provides variable relative
importance measures using as a criterion mean square error. The
results showed that coefficients of determination for our nonlinear
models ranged from 0.393 to 0.582 in both datasets, providing
better results than linear regression used in the past. We evaluated

∗To whom correspondence should be addressed.

the validity of this non-linear model using biological information of
operons, regulons and pathways, and the results demonstrated that
the coefficients of variation of estimated protein abundance values
within operons, regulons or pathways are indeed smaller than those
for random groups of proteins.
Contact: weiwen.zhang@asu.edu; george.runger@asu.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
The last decade has seen significant growth in technologies
pertaining to molecular biological assays to measure gene
expression profiles. These high-throughput technologies, such as
DNA microarray and Serial Analysis of Gene Expression, have
enabled the quantitative measurements of the abundance of various
biological molecules and their variation between different states
at the genome scale (Hermeking 2003; Horak and Snyder, 2002;
Smith et al., 2002). However, evidence suggests that transcriptomic
profiling is necessary but not sufficient to characterize biological
system complexity (Gygi et al., 1999). For example, transcript
levels detected by mRNA profiling do not reflect all regulatory
processes in the cell, as post-transcriptional processes, such as
synthesis, processing and modification of proteins, may affect
active protein concentration but are not considered. Therefore,
in addition to studying gene expression at the transcriptional
level, large-scale proteomic analysis should be considered as
a means to understand the systems and pathways in living
organisms (Nie et al., 2007). Proteome-based expression analysis
is generally performed by 2D-gel electrophoresis, in which proteins
are separated according to their isoelectric point and mass. This
technique requires intensive labor and time, and has proved effective
in quantifying a cytoplasmic sub-set of the cellular proteome over
a limited range of molecular weights and isoelectric points. In
most cases, only a small set of proteins were detected (Alter and
Golub, 2004; Mootha et al., 2003a, b). Recent advances in gel-free
proteomics technologies facilitate large-scale characterization of
the proteome. High-performance liquid chromatographic (HPLC)
fractionation of protein tryptic digests, followed by automated
tandem mass spectrometry (MS/MS) on the peptide fragments,

© The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 1905



[14:32 26/6/2009 Bioinformatics-btp325.tex] Page: 1906 1905–1914

W.Torres-García et al.

allows identification of several hundred or even thousands of
proteins simultaneously from cellular extract (Gygi et al., 1999).
One of the major challenges in integrative analysis of large-scale
transcriptomic and proteomic datasets is how to facilitate generation
of new knowledge not accessible by analysis of either data type
alone. In several recent studies in spite of sparse proteomic data,
integrative analyses of genome-wide mRNA and protein expression
patterns have enabled researchers to unravel global regulatory
mechanisms and complex metabolic networks in living organisms
(Alter and Golub, 2004; Hegde et al., 2003; Mootha et al., 2003a, b).

One of the key tasks for integrated transcriptomic and proteomic
analysis is to identify relationships between protein abundance
and their cognate mRNA concentrations. Although, one would
hypothesize that the correlation between mRNA expression levels
and protein abundance will be strong based on the central dogma
of molecular genetics, support from early experimental data is not
immediately apparent. Most recent studies have either failed to find
a correlation between protein and mRNA abundances (Gygi et al.,
1999) or have observed only a weak correlation (Greenbaum et al.,
2002; Ideker et al., 2001; Washburn et al., 2003). In addition to
various biological factors and limitations of current experimental
protocols, it has been suggested that the poor correlation may stem
from the inadequacy of available statistical tools to compensate for
biases in the data collection methodologies.

While microarray analysis produces data on transcript levels
for most genes in a given genome, proteomic datasets are often
incomplete due to the imperfect identification of coding sequences
within a genome and the limited sensitivity of current peptide
detection technologies (Wilkins et al., 2006). Current technologies
allow detection of only one-third to one-half of all coded proteins
(Ideker et al., 2001; Scherl et al., 2006a, b; Zhang et al.,
2006a). In prior comparisons of transcriptomic and proteomic
data, undetected proteins were often assigned a concentration
value of zero, and excluded from the correlation analysis. This
unrealistic simplification could adversely affect interpretation of
relationships between transcriptomic and proteomic data. For
instance, current technologies for proteomic analysis tend to be
biased towards detection of relatively abundant proteins. Correlation
patterns between transcriptomic and proteomic data for these highly
expressed genes are unlikely valid for the entire genome since
correlation patterns may be different for lowly expressed genes.
Hence, improved methods of coping with missing protein abundance
values are necessary for integrative analysis of transcriptomic and
proteomic datasets. To address issues with the missing proteomics
data, one recent tactic was to integrate Gene Ontology (GO)
information into the data imputation; the approach could enhance
the imputation even when the missing fraction is large (Tuikkala
et al., 2006). We also proposed a novel Zero-inflated Poisson (ZIP)
regression model in which we assumed that 100 ×P% (0 < P < 1)
of the genes with a proteomic abundance level of zero could be
unexpressed genes or expressed genes that were undetected due
to technical limitations (Nie et al. 2006a). Thus, the proteomic
abundance (y) was distributed as a mixture of zeros with probability
P and a Poisson regression distribution with probability (1−P).
Although, prediction of the missing proteomic data by both GO
and ZIP models has improved biological interpretation, the models’
assumption that correlation patterns of transcriptomic and proteomic
data are linear at the whole-genome scale is not always true. For
example, it has been suggested that correlations may vary in different

functional categories in both prokaryotic and eukaryotic systems
(Beyer et al., 2004; Nie et al., 2006b).

In this study, using two sets of cognate transcriptomic and
proteomic data collected from Desulfovibrio vulgaris, we describe
a non-linear data-driven model to predict abundance for undetected
proteins for the two datasets. We demonstrate the application of
stochastic gradient boosted trees (GBT) to uncover possible non-
linear relationships between transcriptomic and proteomic data.
The idea is to create regression boosted trees to predict protein
abundance based on several relevant predictors in both datasets:
mRNA abundance, cellular role, molecular weight, sequence length,
protein length, GC content and triple codon counts in both
datasets. To compare the general behavior of these factors across
different experimental conditions within same species, the results
are stratified into several parts: (i) variable (predictor) importance
and partial dependency plots; (ii) construction of the model; and (iii)
validation using biological information.

2 MATERIALS AND METHODS

2.1 Datasets
We analyzed two datasets from D.vulgaris. The experimental conditions
differed between the datasets as they were obtained by independent research
(Heidelberg et al., 2004; Mukhopadhyay et al., 2006; Zhang et al., 2006a, b).
Brief description of both datasets is provided below. We normalized the raw
intensity values from both datasets with a quantile normalization using an R
package (caret) available through the R project (http://www.r-project.org/).
Table 1 and the following sections provide a brief description of Datasets 1
and 2 used throughout this article.

2.1.1 Dataset 1 The dataset consists of the whole-genome mRNA
expression and LC–MS/MS proteome abundance data from D.vulgaris in
two different growth stages –log and stationary– and under two distinct
types of media: lactate- or formate-based. To minimize variations between

Table 1. Description of the datasets used in this study

Dataset 1 Dataset 2

References Zhang et al., 2006a, b Mukhopadhyay et al.,
2006

Conditions Formate–Log (FL),
Formate–Stationary
(FS), Lactate–Log
(LL),
Lactate–Stationary
(LS)

Control Time 0 h
(CT0); Control
Time 120 h
(CT120); and
Stressed NaCl Time
120 h (ST120)

Number of Variables 70 70
Number of genes

analyzed
456 (FL), 477 (FS),

440 (LL) and 462
(LS)

2146 for all
conditions

Number of replicates
(mRNA abundance)

4/gene 3/gene except for
ST120: 2/genes

Number of replicates
(protein abundance)

3/gene 2/gene

Number of genes
removed using a
threshold t

42 (FL), 477a (FS), 59
(LL) and 28 (LS)

42 (CT0), 26 (CT120)
and 19 (ST120)

aThe condition FS was eliminated from further study based on biological knowledge
provided by the experts. More details on Section 2.
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microarray and proteomic measurements, identical cell samples from each
growth condition were split and used to isolate both the RNA and proteins for
analyses. Complete descriptions of the experimental designs and microarray
and proteomic data collection methods are given elsewhere (Nie et al., 2006b;
Zhang et al., 2006a; b). Briefly, oligonucleotide microarrays containing 3507
open reading frames (ORFs) of the D.vulgaris genome were designed by
NimbleGen Systems, Inc. (Madison, WI) (Nuwaysir et al., 2002; Heidelberg
et al., 2004). For each experimental condition, mRNA abundances were
determined from the average of four measurements for each gene: two
replicates (each containing a pool of three biological replicates) that were
each hybridized to duplicate microarrays (Zhang et al., 2006b). Proteomic
analysis was performed on a Finnigan model LTQ ion trap mass spectrometer
(ThermoQuest Corp., San Jose, CA). The relative protein abundance was
estimated based on the number of peptide hits (Qian et al., 2005). The
number of peptide hits for a given protein was the median of three LC-
MS/MS measurements. The protein abundances ranged from one to several
hundred (Zhang et al., 2006b).

2.1.2 Dataset 2 The dataset consists of the whole-genome mRNA
expression and LC–MS/MS proteome abundance data from D.vulgaris
grown under two stress conditions (250 mM NaCl or KCl) (Heidelberg et al.,
2004; Mukhopadhyay et al., 2006). Briefly, spot signals, spot quality and
background fluorescence intensities of the microarray were quantified with
ImaGene, version 5.5 (Biodiscovery Inc., LosAngeles, CA) (Raw microarray
data of this dataset can also be found in NCBI, GEO accession number
GSE4447). Replicate cultures from a control (time zero and 120 min) and
a stressed sample (120 min) were used to obtain total protein. A total of
1356 proteins were identified in all samples, and for 47 of these proteins
there were reproducible changes between the control and the stressed sample
(http://vimss.lbl.gov/SaltStress/) (Mukhopadhyay et al., 2006).

2.1.3 Quality of datasets The quality of both datasets was assessed by
calculating Pearson correlation coefficients among multiple replicates for
microarray and protein measurements. Dataset 1 shows that correlation
coefficients of the microarray experiments are from 0.97 to 0.99 among
replicate samples (Nie et al., 2006a, b), and correlation coefficients of LC–
MS/MS measurements normalized by amino acid composition are 0.86–0.92
among replicates, indicating good reproducibility. Similarly for Dataset
2, normalized microarray measurements showed correlation coefficients
between 0.86 and 0.96 among replicates and a tight range of 0.96–0.98 for
correlations between protein abundance samples for all conditions. In terms
of correlation of mRNA and protein abundance using Pearson correlation,
low values were found in both datasets. For Dataset 1, correlation between
mRNA expression and normalized protein abundance was modest: 0.54 to
0.63 (P-value, 0.001) by Pearson correlation coefficient for all conditions.
Dataset 2 reflected correlation values from 0.33 to 0.48. These correlation
levels are similar to those previously reported for yeast (Ideker et al.,
2001). The relatively poor correlation between mRNAand protein abundance
suggests the fallacy of assumption of linearity in relationship between
variables.

2.2 Genome information
2.2.1 Cellular functional category The cellular functional categories of all
genes in the D.vulgaris genome were downloaded from the Comprehensive
Microbial Resource (CMR) of TIGR (http://cmr.tigr.org) (Heidelberg et al.,
2004). On the basis of the original annotation, the genes and proteins
are classified into 20 cellular functional categories. These categories were
included in the model as possible predictors of protein abundance.

2.2.2 Other predictor factors Gene annotated attributes such as sequence
length, protein length, molecular weight, GC content and triple codon counts
of all genes in the D.vulgaris genome were downloaded from the TIGR
resource and included in our study. Continuous numerical values were
gathered for the molecular weight of each gene. The GC content reflected

the proportion of nucleotides G or C in the D.vulgaris genome. The triple
codon information included counts for all 64 triple codon combinations in
the genetic code.

2.2.3 Operon and pathway information The complete genome of
D.vulgaris and its ORF calls and annotation were downloaded from NCBI
Genbank, the TIGR resource. Genes transcribed in the same direction
having intergenic regions <15 bp were defined as one operon. Although,
a new method has been proposed to define operons by combining intergenic
distances with comparative genomic measures (Alm et al., 2005; Price et al.,
2005), we opted for the distance-only approach, a relatively low threshold, to
cover more of the possible operons. With this relatively low threshold, a total
of 609 operons, ranging from 2 to 13 genes each, were identified in D.vulgaris
(gene list of all operons is available upon request). The list of D.vulgaris
regulons was kindly provided by Prof. Judy Wall and Dr Chris Hemme of the
Department of Biochemistry at the University of Missouri at Columbia (the
regulons were identified based on their homology to the known Escherichia
coli regulons) (Hemme and Wall, 2004). Gene lists of 92 metabolic pathways
defined for microbial genomes of interest were downloaded from the KEGG
database (http://www.genome.jp/kegg/kegg2.html).

2.3 Construction of non-linear relationship model
To satisfy the need for a method amenable to mixed data types and capable of
unraveling non-linear relationships between the data previously discussed,
we applied stochastic GBT as described by Friedman (2002). These models
have been used in a wide range of applications such as ecological modeling
and prediction, chemical concentration on rocks and demographic survey
data (De’ath, 2007; Elith et al., 2008; Friedman 2001). Our objective was
to find an approximated function that could map a set of input variables
x = {x1,…,xn} to the response output y in such a way that the expected value
of empirical loss was minimized as shown in (1). Boosting fits a weighted
additive expansion composed of weak classifiers (e.g. regression trees) that
approximates the response y as in (2) (Hastie et al., 2001). Gradient boosting
sequentially applies regression trees to fit residuals while minimizing squared
error loss, creating new models which are encouraged to become experts in
cases misclassified by previous trees.

ŷ=argmin
y

Ey,XL
(
y,ŷ

)
(1)

ŷ=
M∑

m=0

βmT
(

X;�̂
)

(2)

These individual trees partition the space of joint predictor variable values
into disjoint regions Rj with constant predictor values γ j assigned to each
region. A single tree can be formally expressed as a piecewise constant
function as described in (3). The parameter space delta is estimated by
minimizing empirical risk as in (4). To find disjoint regions and constants
that minimize a particular empirical risk is a large combinatorial problem.
There are several optimization methods to achieve this. The method used in
this study uses a gradient approach implemented from R.

T
(
X,�

)=
J∑

j=1

γj I
(
X∈Rj

)
where �={

Rj,γj
}J

1
(3)

�̂=argmin
�

J∑
j=1

∑
xi∈Rj

L
(
yi,γi

)
(4)

The method described previously was implemented using the gbm R package
available from the R project (http://www.r-project.org/). The required inputs
include: loss function, number of trees, the depth of each tree, shrinkage rate
and number of folds for cross validation (Ridgeway, 2007). Squared error
loss was used as the loss function in the construction of the models for all
conditions based on preliminary results where squared error and absolute loss
performance were compared. The number of trees in each model was chosen
to be 500, as this is considered sufficient iteration to achieve optimality
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Table 2. Measurements of relative importance of variables for the 10 top-ranked variables (after removing genes with high mRNA)

Dataset 1 Dataset 2

FL LL LS CT0 CT120 ST120

Variables VRI (%) Variables VRI (%) Variables VRI (%) Variables VRI (%) Variables VRI (%) Variables VRI (%)

mRNAmean 24.002 mRNAmean 28.877 mRNAmean 50.473 mRNAmean 38.398 mRNAmean 21.613 mRNAmean 25.149
Cellular_role_I 11.609 Cellular_role_I 16.694 GCT 14.916 GGT 17.351 AAG 13.941 AAG 15.046
AAG 9.105 AAG 7.785 Cellular_role_I 10.247 AAG 6.532 Cellular_role_I 11.590 GGT 10.861
ACC 8.879 GGC 5.277 GTT 5.912 Cellular_role_I 6.426 GGT 7.291 ACC 6.780
GCT 6.378 GTT 4.888 AAG 5.278 GTT 5.421 GTT 6.294 Cellular_role_I 6.637
GGT 4.379 GCT 4.536 GGT 2.595 GGG 3.596 GGG 3.977 GCT 3.720
GGC 3.208 ACC 3.561 ACC 1.103 GAA 2.641 CGT 3.408 AAC 2.545
GTT 3.140 ATC 2.992 TGC 1.031 ACC 1.980 GCT 3.289 GGG 2.053
ATG 2.194 ATG 2.444 GAA 0.986 TAC 1.869 GAA 2.442 ACG 2.047
GCG 2.069 GCC 2.041 GTG 0.904 GCT 1.744 ACC 2.264 CCC 1.983

Results show two datasets where VRI specifies variable relative importance. Relative influence is computed as the average of empirical improvements in squared error of splitting
the decisions trees with corresponding variable. This measure is divided by the sum of the empirical improvement of all variables in the model. The percentage of this measure is
VRI. More details are discussed in Section 3.

(Friedman, 2001). To capture some degree of variable interaction a depth
value of three was chosen to balance out the model complexity. For shrinkage
rate, we chose the recommended default of 0.005 (Ridgeway, 2007) since
we did not focus on the regularized aspect of the models. The models were
specified to be built using five cross validated folds.

Cross validation is a technique for model assessment which includes
randomization. Input data is partitioned into K equal parts where K–
1 sets are used to train the model and the other unseen set is used
to calculate prediction errors (Hastie et al., 2001). This is repeated K
times, yielding K prediction errors values, one computed at every fold. An
average and standard deviation (SD) can be extracted to select the most
representative model for future prediction. Once the best model has been
selected based on cross validation, it is evaluated based on its coefficient of
determination (R2) which represents the variation explained by the model.
The coefficient of determination (R2) is a statistical measure representing
the percentage of variance explained by the model. R2 values ranges
from 0 to 1. The closer the R2 to 1 the better the model is explaining
the variance of the data. Furthermore, as an alternative means to assess
the goodness of the model, we studied the predictions of small sets of
genes grouped based on pathway, operon and regulon information. In order
to describe the variation within a dataset, such as ‘molar abundance’ of
proteins within one operon, we computed the coefficient of variation (CV)
for each set of proteins. The CV is defined as the ratio of the SD and
the mean of the ‘molar abundance’ for a set of proteins (Johnson, 2005;
Nie et al., 2006a) and is independent of the sample size. These CVs
are computed for all pathway, operon and regulon groups and compared
with a distribution of permuted CVs where permutation of genes is
performed.

3 RESULTS AND DISCUSSION

3.1 Variable importance and partial variable
dependence

The objective was to predict protein abundance based on the most
relevant predictors. We used GBT model to uncover possible non-
linear relationships between transcriptomic and proteomic data
and to incorporate categorical predictors. In a previous study
using multiple regressions, Nie et al. (2006b) found that mRNA
abundance alone can explain only 20–28% of the total variation of

protein abundance, suggesting mRNA–protein correlation can not be
determined solely on the basis of mRNA abundance. Other possible
predictors of protein abundance include cellular role of genes, GC
content and codon usage of genes, length of genes and proteins and
molecular weight of proteins (Nie et al., 2006b, 2006c, 2007).

GBT provided the implicit feature importance measures (for only
the 10 top-ranked variables) shown in Table 2 for both Datasets 1
and 2. The relative importance measure is computed by measuring
the contribution of an input variable based on its improvement
on squared error loss at each tree for all trees and computing
its average. This is done for all input variables. The relative
influence value for a specific variable is presented as percentages
of its relative contribution among all variables. Relative importance
of variables measures for all 70 variables can be found in the
Supplementary Tables 1–2. Cellular role and mRNAexpression level
were the best predictors of protein abundance across conditions and
datasets. Some triple codon sequences appear to be more relevant
in modeling protein abundance than sequence length, protein length
and molecular weight. These triple codon counts differ in ranking
across datasets but retain similar ranking within dataset conditions.

Our findings support the known correlation of mRNA and protein
abundances. Besides the variable importance measures acquired
from the boosted trees, partial dependency plots were studied to
gain further insight into the association of mRNA abundance with
protein measurements. The partial dependency plots provide a
prediction model for a given predictor variable averaged across
all other predictors. Figure 1 shows prediction values for given
values of mRNA for different experimental conditions for Dataset 1
(Fig. 1a) and Dataset 2 (Fig. 1c). Though both datasets show
increasing functions, slightly different relationships are observed
across datasets, with similar behavior across conditions within a
dataset. Both datasets exhibit a ‘plateau effect’ for high values of
mRNA. The plateau occurs in regimens where protein abundance
data is sparse with high variance where the tree models do not
generate splits among the predictors. For example, in the region
of high-mRNA values, there are a small number of genes/peptides
whose protein values range from (0, 40) for Dataset 1 and (0, 500)
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Fig. 1. Partial dependency plots. (a and c) Partial dependency prediction values for given values of mRNA for Datasets 1 and 2, respectively. (b and d)
Partial dependency plots for mRNA values after eliminating genes with mRNA values higher than the corresponding cut-off threshold (for Datasets 1 and 2,
respectively. (b′) A zoom view to partial dependency plot for plot (b).
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for Dataset 2. This could reflect problems with the accuracy and
sensitivity of current proteomic technologies.

After removing those genes/peptides with high-mRNA values,
the model provided a more realistic fit. The cut-off threshold was
obtained as the value where the plateau starts in partial dependency
plots. A different threshold is obtained for each dataset. The
minimal threshold value for all conditions is 5150 for Dataset 1
and 37975 for Dataset 2 (both in terms of absolute fluorescence
intensity in the single color DNA array). Figure 1 shows partial
dependency plots after eliminating genes with mRNA values higher
than the corresponding cut-off threshold for Dataset 1 (Fig. 1b)
and Dataset 2 (Fig. 1d). This provides a more realistic prediction
model of protein based on mRNA. The partial dependency plots
observed in Figure 1b and d, show an increasing predictive function
for protein abundance as mRNA values increase. However, the
curves exhibit variable slope, suggesting non-linear modifiers to
the typical linear relationship. GBT were rebuilt using the five
most important features across conditions and after removing
genes/peptides having high-mRNA values. These modified models
were used to predict protein abundance for genes/peptides with
undetected protein values.

3.2 Construction of the non-linear correlation model
Initially, our GBT model was built using all variables to assess
variable importance and to predict model behavior. Based on the
plateau in regions of high-mRNA values, we removed genes in those
areas based on thresholds estimated from the partial dependency
plots where this behavior was captured. At this stage, our aim was
to reduce model complexity by selecting the most relevant predictors
of protein abundance. As discussed previously, mRNA abundance,
main cellular functional categories and few triple codon counts were
top-ranked after removing genes in the plateau region (Table 2). A
new, tuned-GBT model was then built using the five most significant
predictors. Protein abundance predictions using these newly tuned
boosted trees for all conditions in both datasets are given in the
Supplementary Tables 1–2.

These predictions are depicted in Figure 2a and c, for Datasets 1
and 2, respectively. The behavior of both datasets predictions’ when
plotted only against mRNA is similar, showing a large number of
genes/peptides with low-fitted protein values and less variability.
For higher values of mRNA, the magnitude and variability of
the predicted protein concentration increases. Similar behavior is
noted in Figure 2b and d, were protein abundance measures where
predicted for the genes/peptides with undetected values of protein
abundance for both datasets.

3.3 Validation of prediction by external biological
knowledge

External biological knowledge was invoked to validate the
prediction of protein abundance values for the undetected proteins.
The information used included gene organization information
such as operon, and gene function information such as regulon
and pathway. We tested the mode prediction by assuming that
relationships between genes in operons, regulons and pathways are
tighter than those between random gene sets. The information used
for validation purposes is described in Section 2.2. The validation
was conducted by calculating the CV within conditions for every
operon, regulon and pathway of D.vulgaris for both Datasets 1

and 2. These groups of genes are thought to have less dispersion
than a random set of genes by virtue of their intrinsic biological
relationship. Table 3 provides an example of these results for the
operon groups for both datasets. The complete data for operons,
regulons and pathways is provided in the Supplementary Tables 1–2.
To compare CV values we also performed a permutation test in the
following way. A CV was computed from the protein prediction
values for a set of randomly selected genes. This step was repeated
a thousand times through resampling of genes without replacement.

For example, operon 19 contains twelve genes (DVU0861-DVU
0872). Its CV value was compared with a CV value generated
through permutations where 12 genes were selected at random from
the whole-genome dataset (without repeating any genes) and its
condition-specific prediction values were used to calculate a single
CV value. Repeating this calculation, a thousand times provided
a CV-distribution to calculate mean, SD and percentile scores for
groups with random genes per condition. As a result, the CV value
for this operon was 0.335 for condition LL in Dataset 1 and the
mean of the CV values through permutations was equal to 0.769
as shown in Table 3. Similarly, pathway path_dvu00052 (galactose
metabolism) contains ten genes and its CV value was smaller than
the mean of CV values through permutations (0.431 < 0.996) for
condition ST120 in Dataset 2. This was done in the same way for
all conditions in both datasets. As shown in Table 4, for Dataset
1, 75–79% of the operon groups had smaller CV values than those
computed through permutation, and 79-88% of the pathway groups
had smaller CV values than those computed through permutation.
However, a shift to smaller proportions for regulon groups was
observed with values between 50% and 67%. Similar results are
presented Table 4 for Dataset 2. This shows that a large proportion of
the biological-related groups are indeed less dispersed than unrelated
groups of genes, providing some measure of validation for the
predictions of our models. Furthermore, CV values from almost all
operons groups were smaller than those by ZIP Regression Model
(data not shown) (Nie et al., 2006a), suggesting the GBT model
described the dataset better.

To gather more detailed information on how the CV compares
with the distribution of the permuted CV, we also calculated the
percentile score. Operon19 for LL condition in Dataset 1 showed a
percentile score of 0.02 which provides information of the position
of its CV across the CV values computed through permutations.
The percentile score presented is a measure of the position of
the biological group CV within the thousand CV values from
permutations in percentage. Because operon19 had a percentile
score of 0.02 this implies that 98% of the thousand CV values
from permutations were greater than operon19 CV value. Likewise,
pathway path_dvu00052 showed a small percentile score of 1% for
ST120 condition in Dataset 2. Based on the thought that genes from
pathway, operon and regulon groups should be less dispersed than
permuted sets of genes, the percentile scores are expected to be very
low. The calculated CV for most groups was less than the mean
CV value for permuted sets of genes (Supplementary Tables 1–2).
For the percentile scores about half of these groups fall within a
percentile <0.20 as shown in Table 4. A similar trend was found
when compared with the mean of permuted dispersion.

In addition, using the predicted values for each of the
operon, pathway and regulon groups, we calculated the protein–
mRNA correlation of these groups and compared it with the
overall correlation at whole-genome level. The results showed
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Fig. 2. Prediction plot for undetected proteins. (a and c) Protein prediction values for genes with protein values detected and used in model for Datasets 1
and 2, respectively. (b and d) Protein prediction values for genes with undetected protein values for Datasets 1 and 2, respectively.

relatively strong protein–mRNA correlation for most of gene/protein
pairs within operons and pathways groups for both datasets
(Supplementary Figs 1 and 2).Among them, pathway groups showed
stronger correlation in general. About 10 of these pathways groups
revealed perfect correlation. However, only a small percentage
of regulon groups portrayed a solid correlation. The observation

that regulon groups had greater percentile values than pathway
and operon groups and smaller correlation values may reflect
the fact that the relationship between genes/proteins in regulons
is more complicated than those in operons and pathways, and
that the regulon group information is less defined and validated
experimentally.
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Table 3. Model validation: correlated expression of proteins in some operons groupsa

Operons Dataset 1 Dataset 2

FL LL LS CT0 CT120 ST120

CV PCVmean CV PCVmean CV PCVmean CV PCVmean CV PCVmean CV PCVmean

1: DVU3025–DVU3033 0.515 0.634 0.417 0.735 0.441 0.771 0.582 1.107 0.579 0.973 0.751 1.122
2: DVU2399–DVU2405 0.436 0.584 0.529 0.652 0.776b 0.68 0.932 1.011 0.256 0.877 1.915b 1.013
3: DVU2072–DVU2078 0.368 0.61 0.508 0.691 0.755b 0.73 1.490b 1.011 1.438b 0.915 0.618 1.013
4: DVU1286–DVU1291 0.338 0.584 0.394 0.652 0.540 0.68 0.376 0.967 0.381 0.877 0.373 0.952
5: DVU0429–DVU0434 0.470 0.584 0.417 0.652 0.601 0.68 0.504 0.967 0.501 0.877 0.481 0.952
6: DVU0145–DVU0150 0.482 0.584 0.401 0.652 0.343 0.68 0.472 0.967 0.417 0.877 0.518 0.952
7: DVU1080–DVU1085 0.329 0.584 0.313 0.652 0.497 0.68 0.307 0.967 0.423 0.877 0.382 0.952
8: DVU2791–DVU2798 0.290 0.615 0.290 0.702 0.448 0.731 0.507 1.082 0.346 0.945 0.267 1.058
9: DVU1627–DVU1634 0.588 0.615 0.441 0.702 0.732b 0.731 0.675 1.082 0.837 0.945 0.778 1.058
10: DVU1421–DVU1428 0.602 0.61 0.575 0.691 0.756b 0.73 0.702 1.011 0.659 0.915 1.737b 1.058
11: DVU2978–DVU2985 0.296 0.615 0.311 0.702 0.417 0.731 0.685 1.082 0.599 0.945 1.567b 1.058
12: DVU1191–DVU1211 0.649 0.684 0.750 0.828 0.670 0.884 2.305b 1.369 1.503b 1.091 1.508b 1.383
13: DVU2558–DVU2563 0.383 0.584 0.530 0.652 0.395 0.68 0.682 0.967 0.600 0.877 0.594 0.952
14: DVU1242–DVU1249 0.277 0.615 0.338 0.702 0.527 0.731 0.351 1.082 0.381 0.945 0.837 1.058
15: DVU1552–DVU1560 0.689b 0.634 0.828b 0.735 0.711 0.771 1.002 1.107 0.905 0.973 0.943 1.122
16: DVU0460–DVU0471 0.230 0.661 0.215 0.769 0.210 0.782 0.494 1.17 0.254 1.017 1.138 1.227
17: DVU0646–DVU0651 0.223 0.584 0.316 0.652 0.426 0.68 0.133 0.905 1.480b 0.877 1.589b 0.952
18: DVU1908–DVU1914 0.490 0.61 0.507 0.691 0.263 0.73 0.501 1.011 0.406 0.915 0.534 1.013
19: DVU0861–DVU0872 0.198 0.661 0.335 0.769 0.333 0.782 1.199b 1.17 0.771 1.017 0.552 1.227
20: DVU1448–DVU1453 1.081b 0.584 0.633 0.652 0.694b 0.68 0.601 0.967 0.638 0.877 0.561 0.952
21: DVU1038–DVU1044 0.670b 0.61 0.787b 0.691 0.712 0.73 0.661 1.011 0.776 0.915 0.998 1.013
22: DVU1585–DVU1590 0.394 0.584 0.338 0.652 0.464 0.68 0.433 0.967 0.314 0.877 0.467 0.952
23: DVU1045–DVU1052 0.675b 0.615 0.751b 0.702 0.667 0.731 1.278b 1.082 0.800 0.945 0.854 1.058
24: DVU1278–DVU1284 0.149 0.61 0.366 0.691 0.423 0.73 0.757 1.011 0.570 0.915 0.878 1.013
25: DVU0807–DVU0813 0.712b 0.61 0.739b 0.691 0.614 0.73 1.052b 1.011 1.061b 0.915 1.042b 1.013
26: DVU1344–DVU1350 0.739b 0.61 0.810b 0.691 0.717 0.73 0.773 1.011 0.712 0.915 0.831 1.013
27: DVU1301–DVU1330 0.529 0.695 0.733 0.855 0.733 0.948 0.753 1.499 0.628 1.123 0.925 1.526
28: DVU2529–DVU2537 1.057b 0.634 0.824b 0.702 1.856b 0.771 2.061b 1.107 1.375b 0.973 2.207b 1.122

CV is computed by dividing SD by the mean of the prediction values for protein abundance for a specific set of genes (group). The protein prediction values were normalized by
molecular weight before CV calculation. PCVmean is the mean of CV values computed through permutation test for selected operons. More details are provided in Section 2.
aCV values of selected operons based on predicted protein abundance from various experimental conditions are listed.
bCV values that are greater than the PCVmean.

Table 4. Percentages of groups with small CV value and percentile score

Groups Dataset 1 Dataset 2

Percentage of
groups with
CV<PCVa

mean
(%)

Percentage of
groups with
percentile
score < 0.2
(%)

Percentage of
groups with
CV<PCVa

mean
(%)

Percentage of
groups with
percentile
score < 0.2
(%)

Operon 75–79 36–50 75–82 32–54
Pathway 79–88 45–48 74–76 37–43
Regulon 50–67 8–33 58–83 25–33

CV is computed by dividing SD by the mean of the prediction values for protein
abundance for a specific set of genes (group). The protein prediction values were
normalized by molecular weight before CV calculation. More details are provided in
Section 2.
aPCVmean is the mean of CV values computed through permutation test.

4 CONCLUSION
High-throughput experimentation measuring mRNA and protein
expression provides rich sources of information for better
understanding of the metabolic mechanisms underlying complex
biological systems. The goal of this investigation, as well as our
previous study (Nie et al., 2006a) is to address the problem of
incomplete proteomic datasets by using statistical approaches. In
the two datasets we used in this analysis, the number of undetected
proteins is 3050, 3061 and 3057 for FL, LL and LS conditions,
respectively, for Dataset 1; and 2463, 2465 and 2463 for CT0,
CT120 and ST120 for Dataset 2 (Mukhopadhyay et al., 2006;
Zhang et al., 2006a, b). With only partial proteomic data, the
power of integrative transcriptomic and proteomic analysis could
be limited and the analyses could be biased. There exists, therefore,
an urgent need to develop methodologies to accurately estimate
missing proteomic data to provide deeper insight into metabolic
mechanisms underlying complex biological systems. Estimating
missing proteomic data is not a trivial task (Nie et al., 2006a, 2007).
One of the major difficulties is that the correlation patterns
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between transcriptomic and proteomic data do not follow a
linear relationship at the whole-genome scale. Recently, varying
correlations between different functional groups of genes/proteins
(Beck and Knecht, 2003; Beyer et al., 2004; Nie et al., 2006b), and
varying strength of the correlation between different sampling times
and growth conditions have been reported (Conrads et al., 2005).
However, to our knowledge, no statistical method of capturing
non-linearity of correlation has been published.

In this work, we employed stochastic gradient boosting trees
as a non-linear model to understand a possible pair-wise constant
relationship among transcriptomic data, proteomic data and other
factors. The boosting tree procedure is one of the favorable
predictive data mining tools for many reasons. From the regression
trees characteristics, they inherit the positive features of robustness.

Boosted trees models are invariant under all monotone
transformations of the individuals input variables, which eliminates
the sensitivity to long-tailed distributions and outliers (Friedman,
2001). Moreover, implicit feature selection is intrinsic through the
trees’ construction and inherited by the boosting machinery. In
contrast to a single tree, boosted tree models enhance stability by
reducing the depth of the trees and averaging over many of them.
Gradient boosting trees models may not produce exact description
but they provide insights into the nature of the input-output
relationship.

The GBT model constructed is a data-driven model where the
input are the abundance measurements of all mRNA (∼3500) and
qualified detected proteins (<∼800) and output are the predicted
abundance levels for almost all proteins (∼3500) in the genome.
This approach provides two major advantages over previous
correlation methods. First, it allows undetected proteins (those with
an assigned protein abundance value of 0) to be assigned a predicted
abundance based on the mRNAlevels.As output, the model provides
predicted abundance levels for a large number of proteins which
are undetected experimentally; and second, the model attempts
to address the possible non-linearity property of the correlations
between transcriptomic and proteomic data. Based on the coefficient
of determination (R2) which is used to assess the cross validated
models, R2 ranged from 0.393 to 0.582 in both datasets in this
non-linear model, which provided slightly better results compared
with results when multiple linear regression model is applied (R2

ranges from 0.27 to 0.33). Finally, we evaluated the validity of
this model using bioinformatics approaches. For example, in a
comparison of the predicted protein abundance patterns of genes
belonging to the same operons (representing groups of proteins that
are expected to have similar molar abundance values), the results
demonstrated that the CV of estimated protein abundance values
within operons are indeed smaller than that for random groups of
proteins.
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