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Abstract
Neuroblastoma, a solid tumor arising from developing cells of the sympathetic nervous system, is
the most common extracranial tumor in children. The prognosis for high-risk neuroblastoma remains
poor with conventional treatment, and new approaches are therefore being explored to treat this
disease. One such alternative therapy that holds promise is immune therapy. We review here the
recent advances in 4 types of immune therapy – cytokine, vaccine, antibody, and cellular therapy –
to treat neuroblastoma. We present preclinical research and clinical trials on several promising
candidates such as IL-12, dendritic cell vaccines, anti-GD2 antibodies, and allogeneic hematopoietic
stem cell transplant. An optimal treatment plan for neuroblastoma will most likely involve
multimodal approaches and combinations of immune therapies.
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Introduction
Neuroblastoma is one of the most common solid tumors in children, accounting for 8–10% of
all childhood cancers. Approximately 600 new cases are diagnosed in the United States per
year.1 Most patients with neuroblastoma are young (median age at diagnosis of 18 months)
and commonly present with metastatic disease. More than 60% of patients have high-risk
tumors that are likely to be incurable. Standard treatment uses multi-modal therapeutic
approaches comprising chemotherapy, surgical debulking or excision of the primary tumor,
radiotherapy, differentiating agents such as 13-cis-retinoic acid and autologous bone marrow
transplantation.2 Despite this aggressive approach to therapy, most patients with high-risk
neuroblastoma have disease recurrence with metastatic foci resistant to multiple drugs, thereby
necessitating the use of alternative approaches to treat this disease. One such alternative therapy
is immune therapy, which comprises multiple complex elements. All these elements need to
be studied in combination for patients to derive optimal benefits from immune therapy. The
main immune therapies relevant to neuroblastoma are cytokine, vaccine, antibody, and cellular
therapies. In this review, we present both clinical and research data that hold the promise of
translational applicability.
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Cytokine Therapy
Cytokines play a critical role in regulating the immune system, both by stimulating immune
responses against antigen challenges and by guiding the host reaction over a range of responses
from cytotoxic to immune tolerance. Neuroblastoma can be a potential target for the immune
system. However, it has been well established that patients with neuroblastoma after receiving
intensive therapy do not elicit optimal immune responses to antigen challenges. Therefore,
exogenous cytokines may be used to stimulate patients’ immune response against residual
neuroblastoma.

Interleukin 12 (IL-12) has been tested for its antitumor activity in several studies and clinical
trials. IL-12 is a potent activator of NK cells and T-lymphocytes, which play an essential role
in antitumor immunity.3 It also promotes the development of humoral immunity by stimulating
CD4+ T-cells. Its role in immune recognition in neuroblastoma has also been well studied.
Siapati et al.4 examined the antitumor immune response to neuroblastoma cells transfected to
express IL-12 and found that IL-12 provided a robust antitumor response as a single agent, and
CD4+ and CD8+ T-cells but not NK cells are required for mediating the response. Redlinger
et al.5 further examined the role of IL-12 in neuroblastoma anti-tumor immunity and found
that when neuroblastoma-bearing mice were inoculated with an IL-12–secreting
neuroblastoma cell line or a dendritic cell (DC) vaccine, the IL-12 produced induced a potent
antitumor response in the mice and CD8+ T-cells are required for this effect. However, unlike
the study by Siapati et al., in their study NK cells were required for the early immune response.
On the basis of these observations, Redlinger et al. proposed a mechanism of IL-12–induced
apoptosis of neuroblastoma cells: IL-12 induces a strong NK cell response, leading to tumor
cell lysis; NK cells then present the antigen to DCs, leading to CD8+ T-cell activation, which
is further potentiated by IL-12. This mechanism bypasses the need for CD4+ T-cells, which is
useful because neuroblastoma tumor cells tend not to express MHC class I on their surface,
thereby limiting the activation of CD4+ T-cells.6, 7 IL-12 suppresses the anti-apoptotic
signaling molecule Akt and induces the pro-apoptotic mediators Fas/FasL, TNF receptor, and
TRAIL.8 These studies, taken together, support that IL-12 plays an active role in stimulating
an antitumor response to neuroblastoma.

The prominent role of IL-12 in activating antitumor immune responses led to further
investigations on the possible cytokine combinations that could augment the IL-12 response.
In the study by Siapati et al.,4 the combination of IL-12 and IL-2 was shown to produce the
greatest antitumor effect – tumors were eradicated or inhibited in 91% of mice inoculated with
the neuroblastoma cell line but in only 63% of mice vaccinated with IL-12 alone. As IL-2 alone
had little effect on tumor growth, the authors concluded that IL-2 potentiates the IL-12 response
by stimulating the expansion of the T-cells activated by IL-12. In another study, IL-12 was
combined with IL-18 via a DC/neuroblastoma cell fusion vaccine.9 The vaccine itself
measurably increased interferon-gamma production, but the cotransfection of IL-12 and IL-18
led to a robust interferon-gamma response. The authors also showed that both NK and CD8+
T-cells are activated by the fusion vaccine. IL-18 potentiated the impact of IL-12 and increased
the survival of mice injected with neuroblastoma tumor cells: no mice injected with both IL-18
and IL-12 had liver metastases whereas 50% of mice injected with IL-12 alone showed
metastases. Mice inoculated with the combination vaccine had a significantly increased
survival as well. These studies indicate that IL-12 is by itself is a potent stimulator of antitumor
responses, but its combination with other cytokines can potentially improve its clinical impact.
However, the optimal combination of cytokines remains to be determined.

IL-12 has been used to treat renal cell carcinoma and melanoma in adults. In phase I10–13 and
II14 studies, up to 1.5 µg/kg of rhIL-12 at various dosing schedules was relatively well tolerated
by patients, with fatigue, liver transaminitis, and decreased WBC count being the most common
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side effects. Results from these clinical trials – although modest – support that IL-12 therapy
can be useful to treat human malignancies. They indicate that cytokines such as IL-12 may be
used to treat malignancies, but need to be combined with other immunotherapies such as
antibody treatment or vaccines for optimal results.

Vaccine Therapy
Adoptive, or passive, immunotherapy involves the administration of antibodies, cytokines, or
immune effector cells with the goal of directing an immune response to residual disease. Active
immunity, in contrast, requires the host to develop a targeted immune response. Active
immunity is advantageous as it helps the body develop a long-lasting immune response against
tumor antigens, which may aid future tumor surveillance, as opposed to the more transient
effects of passive immunity. In the first human trial of a tumor vaccine given to patients with
B-cell lymphoma,15 all 4 patients with follicular B-cell lymphoma who received a series of 3
or 4 injections of DCs exposed to autologous tumor antigens had positive cellular and humoral
responses to the keyhole limpet hemocyanin protein. More importantly, all patients also had a
cellular response to their tumor proteins, which was sustained for several months after the
vaccinations, although the intensity declined over time. Clinically, 3 of 4 patients had a
significant response to the vaccine, with 1 achieving complete response (CR). The promising
results of this study have helped promote the potential for vaccine therapy in oncology.
However, creating successful active immunotherapy for a particular tumor can be daunting.
Current vaccine strategies have been successful to cure infectious diseases, but their use in
oncology is hampered by the presence of tumor-derived immune evasion and
immunosuppression. Despite these challenges, significant progress has been made in
developing active immunotherapy options for neuroblastoma.

Developing an effective vaccine for neuroblastoma poses some unique challenges. Patients
with advanced tumors such as neuroblastoma tend to be immunocompromised because of the
intensive therapies given for their malignancy. Also, neuroblastoma cells, like many other
tumors, have a low baseline expression of major histocompatibility complex (MHC) class I
surface antigens and beta-2-microglobulin, which are critical for T-cell–mediated immune
responses. Tumor cells also secrete immunosuppressive hormones such as Fas ligand, IL-10,
TGFβ, VEGF, and gangliosides,16–19 which lead to predominance of Th2 helper T-cells and
promote immune tolerance. Such immunosuppression in tumor cells indicates the need to
optimize the vaccination strategy to promote a robust immune response in order for this
therapeutic modality to be successful.

Several cytokines have been shown to improve the immune response to tumor antigens.
Redlinger et al.20 demonstrated that transfection of DC cells to overexpress IL-12 improves
the immune response to xenograft neuroblastoma tumors in mice. Peritumoral injection of
IL-12–expressing DCs cells led to DC and T-cell colonization in the tumor microenvironment.
Also, studies have shown that IL-12 production leads to the secretion of interferon-gamma, a
potent T-cell activator,21, 22 and that CD8+ T-cells and NK cells are important for the
response. NK cells, unlike T-cells, have the advantage of producing a cytotoxic effect without
costimuation. In the IL-12–secreting DC cell system, NK cells appeared to be responsible for
the initial response and CD8+ T-cells for a more long-term immunity; interestingly, CD4+ T-
cells were not required for a response in this model.

Given the challenges outlined previously, several groups sought to further optimize vaccine
therapy in neuroblastoma. Different vaccine types have been used, all attempting to improve
the immune response by modulating cytokine production. Huebener et al.23 created a DNA
vaccine to target tyrosine hydroxylase, an enzyme highly expressed in neuroblastoma. Peptides
were designed using three-dimensional computer models of the peptide-MHC class I complex
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to identify those with the highest affinity. The vaccine was delivered orally using attenuated
Salmonella typhimurium as a carrier, which helps stimulate the immune response through the
presence of lipopolysaccharide on the bacterial membranes and CpG motifs within the bacterial
genome known to activate Toll-like receptors.24 Administration of this vaccine, both
prophylactically and therapeutically, decreased tumor growth and prevented metastatic spread
of neuroblastoma to the liver. The immune response was specific to neuroblastoma, and there
was no infiltration of T-cells into the adrenal medulla, another site of tyrosine hydroxlase
expression. The authors attributed the absence of autoimmunity to the lack of inflammatory
signals in the adrenal gland to trigger migration of reactive T-cells to the adrenal medulla. Fest
et al. targeted GD2 in their neuroblastoma vaccine.25 GD2 is a relatively tumor-specific
ganglioside expressed on the surface of neuroblastoma cells, making it an ideal target for
immune therapy. Unfortunately, since GD2 is a glycolipid, it does not evoke a robust immune
response and functions as a T-cell–independent antigen, thus preventing a lasting response.
26 Thus, in order to induce a T-cell response, Fest et al. developed a mimotope DNA vaccine
delivered via attenuated S. typhimurium that mimics the GD2 structure as a peptide. 25 The
peptide created by the DNA vaccine was shown to be bound by the established murine anti-
GD2 antibody 14G2a. Administration of the oral vaccine to mice caused a 1.4- to 1.6-fold
increase in anti-GD2 serum response. Both humoral immunity and NK cell activation were
induced, but no significant CD8+ response was elicited. Croce et al. engineered a genetically
modified neuroblastoma cell line (Neuro2a) to express IL-21.27 IL-21 stimulates the
proliferation, cytoxic function, and interferon-gamma production of human CD8+ effector T-
cells.28, 29 When injected into immunocompetent mice, the IL-21–secreting neuroblastoma
cells were unable to produce tumors whereas NOD-SCID mice produced tumors, indicating
that IL-21–secreting cells are immunogenic. Furthermore, when injected into mice bearing
disseminated neuroblastoma, the vaccine produced a significant increase in mean survival time,
and 14% of the mice were disease free at day 100. In addition to promoting an immune response,
the IL-21–secreting cells decreased tumor vascularity, an effect of IL-21 and resulting
interferon-gamma production that has been demonstrated previously in breast cancer cells.
30 The CD8+ T-cells also played a role in rejection of tumor cells, indicating activation of
cellular immunity. Together, these studies support the feasibility of creating a neuroblastoma
vaccine, but also stress the importance of optimizing the response to the vaccine through
concurrent stimulation of the immune system.

Promising preclinical data and encouraging results in adult trials led to phase I trials of tumor
vaccines in children. Geiger et al. performed an initial trial of a DC vaccine in 15 pediatric
patients with different types of solid tumors.31 In this trial, DCs were harvested from patients
by leukapheresis and then cultured in the presence of granulocyte-macrophage colony
stimulating factor (GM-CSF) and IL-4 to expand the population. The cells were then exposed
to autologous tumor lysates before administering the DC vaccine. The patients tolerated the
vaccinations well, the major side effect being only some local reactions. Although, this study
was not designed to establish efficacy, 1 patient had a partial response (PR) and 5 others had
stable disease. Of the 3 neuroblastoma patients, 2 exhibited stable disease after vaccination.
There was also a positive delayed-type hypersensitivity response to autologous tumor lysates
in 3 of 6 patients vaccinated. Given the favorable toxicity profile and encouraging results, the
authors recommended that future vaccine studies be undertaken. A second neuroblastoma-
specific phase I vaccine trial was performed32 wherein DCs were harvested by leukapheresis,
but instead of exposing cells to tumor cell lysates DCs were pulsed with autologous tumor
RNA before administration. Once again, the vaccines were tolerated well, without significant
side effects. Unfortunately, in this trial, no significant anti-tumor responses or clinical
improvements were seen. In a different approach, Bowman et al. vaccinated children with
autologous tumor transfected to express IL-2.33 The vaccine was well-tolerated and 3 of 10
patients showed a response with the vaccine alone, with 3 more patients responding to the
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vaccine followed by oral etoposide. Four of 9 evaluable patients showed tumor-specific
immune responses.

These studies demonstrate that vaccines for children with solid tumors are feasible to create
and are well tolerated. Unfortunately, the anti-tumor responses in the DC vaccine trials were
not significant. However, in both trials, the DCs were not matured before administering to
patients. Recent data have revealed that mature DCs stimulate a more robust immune response.
Furthermore, vaccines in both trials were not directed at a particular target and the immune
system was not stimulated with cytokines, as has been done in preclinical studies. The IL-2–
secreting vaccine suggests that this method may augment the immune response to vaccines.
The use of tumor vaccines has shown promise, and optimizing their development will result
in more effective treatment of neuroblastoma.

Antibody Therapy
Anticancer monoclonal antibodies (mAbs) targeting specific antigens on the tumor surface are
being increasingly used to treat solid and hematologic malignancies because of their long half-
life, low toxicity, and high affinity and specificity. The anti-tumor effect of antibodies can be
either dependent or independent of the immune system. Immune-mediated mechanisms include
antibody-dependent cell-mediated cytotoxicity (ADCC); complement-dependent cytotoxicity;
and the ability of mAbs to alter the cytokine milieu or enhance development of an active anti-
tumor immune response. Nonimmune-mediated effects include blocking a survival signal for
the cancer cell. Antibodies may also be used as targeting agents. When linked to drugs,
radioisotopes, and toxins, they can kill tumors cells by delivering these agents at high
concentrations directly to the tumor.34, 35

Of the potential immune therapies for neuroblastoma, the ones most established in humans are
antibody therapies and antibody-based therapies (e.g., immunocytokine) directed against GD2.
GD2 is uniformly expressed in neuroblastomas.36 Its function is not completely understood,
but it is thought to play an important role in the attachment of tumor cells to extracellular matrix
proteins.37 GD2 expression in normal fetal and adult tissues is primarily restricted to the central
nervous system (CNS), peripheral nerves, and skin melanocytes, although protein expression
has been seen in the stromal component of some normal tissues and white pulp of the spleen.
38–40 Because of the relatively tumor-selective expression combined with its presence on the
cell surface, GD2 is an attractive target for tumor-specific antibody therapy. Several anti-GD2
antibodies have been developed for clinical use over the past 2 decades. These antibodies are
reviewed in the section below.

Murine Anti-GD2 Antibodies
3F8—3F8 is a murine IgG3 monoclonal anti-GD2 antibody developed by Cheung and
colleagues primarily to target neuroblastoma cells. This antibody has undergone extensive
preclinical and clinical testing. In vitro studies suggest that tumor cell killing by 3F8 is mediated
by human complement41 and other human immune effector cells, including lymphocytes42,
neutrophils43, and monocytes.44

In the phase I and II testing of 3F8 modest tumor responses were observed in patients with
neuroblastoma.45, 46 Toxicities observed included hypertension (dose-limiting), severe pain,
fever, and urticaria. All patients tested developed human anti-mouse antibodies (HAMA) to
3F8. The limited antitumor activity seen in these initial clinical studies prompted further
evaluation of 3F8 in a setting of minimal residual disease.47 Thirty-four patients (23 in CR, 8
in very good PR, and 1 in PR by conventional methods as per the International Neuroblastoma
Staging System48) were treated with 3F8 for up to 4 courses based on disease status and HAMA
titers. Of the 13 patients who remained disease-free 40–130 months after the first 3F8 treatment,
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11 had disease confirmed by either conventional methods (n = 3) or non-conventional methods
(n = 8) at the start of antibody therapy. Non-conventional methods included
immunoscintigraphy using 3F8 radiolabeled with iodine-131 (131I-3F8), bone marrow
immunocytology, and molecular detection of the residual neuroblastoma marker GAGE by
reverse transcriptase polymerase chain reaction (RT-PCR) in the bone marrow. In the entire
cohort of 34 patients, evidence of response by immunocytology was noted in 6 of 9, by GAGE
RT-PCR in 7 of 12, and by 131I-3F8 immunoscintigraphy in 6 of 6 patients. These findings
suggest that antibody therapy is beneficial in the setting of minimal disease burden.

Combining 3F8 and GM-CSF is a strategy that might enhance phagocyte-mediated antibody-
dependent cellular cytotoxicity. When this combination was evaluated in 45 patients with high-
risk neuroblastoma, the side effects were found to be manageable and the treatment appeared
to benefit patients with bone marrow disease but not those with progressive disease and soft-
tissue masses.49 The investigators of this trial studied polymorphic alleles in the FCGR2A
gene that encodes the Fcγ receptors (mediates ADCC and complement-dependent cytotoxicity)
in patients who received 3F8 plus GM-CSF (n = 136).50 Patients with the FCGR2A-R/R
genotype had a better outcome than those with FCGR2-R/H, FCGR2-H/H, or FCGR3A
genotype. A similar analysis in a smaller cohort of patients who received 3F8 alone suggested
that the effects of FCGR2A on outcome were probably due to the addition of GM-CSF. A better
understanding of the molecular basis for the activity of monoclonal antibodies in the presence
or absence of cytokines will not only facilitate patient selection for these therapies but also
shed light on ways to improve cytotoxicity.

131I-3F8 has been used for imaging of neuroblastoma. 3F8 does not cross the blood-brain
barrier when administered systemically. Applications of this antibody for CNS disease are
limited to direct administration of the antibody into the cerebrospinal fluid. In a study
evaluating the safety of intrathecal administration of 131I-3F8, 15 patients with CNS and
leptomeningeal malignancies were treated.51 The dose-limiting toxicity was increased
intracranial pressure and chemical meningitis. Other transient side effects included headache,
fever, and vomiting. Three of 13 evaluable patients had an objective radiographic or cytologic
response, or both.

14G2a—14G2a is a murine monoclonal anti-GD2 antibody unrelated to 3F8. This antibody
is an IgG2a-class switch variant of 14.18, an anti-GD2 antibody of an IgG3 isotype. In phase
I trials of 14G2a mAb52, 53 evaluating two different dosing schedules, toxicities observed
included pain, diarrhea, hyponatremia, paresthesias, hypotension, and allergic reactions (fever,
rash, dyspnea, and hypoxia). Similar to 3F8, limited tumor responses were observed and
HAMA titers were detected in the majority of patients.

On the basis of preclinical studies demonstrating an increase in ADCC of tumor cells in
response to antibody treatment when IL-2 or GM-CSF is administered to enhance effector cell
function,54 a phase I study of 14G2a with either IL-2 alone or with both IL-2 and GM-CSF
was undertaken by the Children’s Oncology Group (COG).55 Accrual to the regimen
containing both IL-2 and GM-CSF was discontinued when adult patients receiving this
combination of cytokines developed neurologic toxicity coinciding with hyperleukocytosis. In
combination with IL-2, dose-limiting toxicities included grade 4 thrombocytopenia,
hyperbilirubinemia, diarrhea, neutropenia, bronchospasm, tachycardia, hypotension,
angioedema, and generalized pain. One patient with neuroblastoma had a PR, and 1 patient
with osteosarcoma had a CR. Nine of 21 patients developed a HAMA response.

Although administration of 14G2a has proved feasible and antitumor effects are encouraging,
one drawback of 14G2a and other murine mAbs for human use is the development of HAMA
titers, which limit further antibody therapy and potentially contribute to the observed
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hypersensitivity reactions. These concerns and new advances in genetic engineering have
prompted the development of a human–mouse chimeric anti-GD2 antibody.

Human–Mouse Chimeric Anti-GD2 Antibodies
Ch14.18—Ch14.18 is an antibody in which the human Fc constant regions of an IgG1
immunoglobulin are fused with the Fab portion of the murine 14G2a antibody.56 It retains the
anti-GD2 specificity and the ability to target GD2-positive tumors and is 50–100 times more
efficient at mediating tumor ADCC in vitro than is murine 14G2a.57

Phase I testing of ch14.18 was first performed in 13 adult patients with metastatic melanoma.
58 The dose chosen as the maximum daily dose was 50 mg, because abdominal or pelvic pain
during antibody infusion precluded the use of higher doses. No other neurologic side effects
or other severe toxicity occurred. Eight of the 13 patients developed antibodies to ch14.18, but
the observed titers were only approximately 10% of those detected in the trials of murine
14G2a. Although no antitumor responses occurred, antibody was detected on tumor cells
through fluorescence-activated cell sorting analysis in some of the patients treated with 45 mg
or more of ch14.18.

In a pediatric phase I trial, 9 children (ages 2–10 years) with neuroblastoma received up to 50
mg/m2 of ch14.18 for 5 days.59 Pain was the most common side effect during treatment and
was most pronounced at 50 mg/m2, which was considered the MTD. Other side effects included
fever, urticaria, pruritus, and rash. One patient developed transient pupillotonia at the highest
dose. Optic nerve atrophy was observed in 2 patients, both of whom had received prior
radiotherapy, which was implicated in the adverse event. This toxic effect gradually resolved
in the 6 months after therapy with ch14.18. HAMA was not detected in any of the participants.
Two of the participants had a CR, 2 a PR, and 1 a minor response.

An alternative dosing schedule of ch14.18 was tested in the phase I setting in 11 patients (10
with neuroblastoma and 1 with osteosarcoma).60 The most common toxicities were pain,
tachycardia, hypertension, fever and urticaria. An MTD was not established in this study, and
the dosage was not further escalated because the supply of antibody had been exhausted.
However, at the highest dose levels tested (100 and 200 mg/m2; total doses over 2–4 days),
pain was graded as severe in 5 of 7 patients. Serum sickness was observed in 2 of 4 patients
who received 200 mg/m2 ch14.18. Anti-ch14.18 immune response was detectable in 7 of 10
patients. Of 10 patients evaluable for response, 1 had a PR, 3 mixed responses, and 1 stable
disease.

In the Cooperative German Neuroblastoma Trials NB90 and NB97 for patients with newly
diagnosed high-risk neuroblastoma, ch14.18 was administered in the maintenance phase of
treatment.61 Of the 334 evaluable patients in these trials, 166 received mAb ch14.18, 99
received a 12-month course of low-dose maintenance chemotherapy, and 65 had no further
treatment after initial therapy. The mAb was administered over a period of 1 year at a schedule
of 20 mg/m2/day for 5 days every 2 months (6 courses total). There was no statistically
significant difference in event-free survival among patients treated with mAb ch14.18,
maintenance chemotherapy, or no therapy after initial treatment. However, overall survival
was better in the ch14.18 group (3-year overall survival, 68.5 ± 3.9%) than in groups receiving
maintenance chemotherapy (3 year overall survival, 56.6 ± 5%) or no further therapy (3-year
overall survival, 46.8 ± 6.2%).

As with other antibodies, ch14.18 has been evaluated in combination with GM-CSF and IL-2
in many clinical trials. In a phase I study of 24 adult patients with melanoma62, the MTD of
ch14.18 was 7.5 mg/m2/day daily for 5 consecutive days in combination with IL-2 continuous
infusion 1.5 million units/m2/day for 4 days/week for 3 weeks. Dose-limiting toxicities were
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severe allergic reaction in one patient and weakness, pericardial effusion, and decreased
performance status in another. In a COG study, phase I evaluation of ch14.18 administered in
combination with GM-CSF was performed in 19 neuroblastoma patients after autologous stem
cell transplantation.63 The MTD of ch14.18 in this combination was 40 mg/m2/day daily for
4 days with GM-CSF (250 µg/m2/day) started 3 days before and continued 3 days after. Ten
of the 19 patients experienced disease progression, with a median follow-up of 40 months
(range, 25–50 months).

Phase I studies revealed manageable toxicities of ch14.18 combined with cytokines IL-2 and
GM-CSF, prompting the ongoing clinical trial in the COG for patients with newly diagnosed
high-risk neuroblastoma. Patients in this study have been randomized to receive standard
maintenance therapy with cis-retinoic acid versus cis-retinoic acid plus ch14.18 in combination
with IL-2 alternating with GM-CSF.

Immunocytokines
Immunocytokines have been developed with the goals of enhancing the efficacy of antibody
therapy and minimizing the systemic toxicities associated with the addition of cytokine therapy.
Immunocytokines are fusion antibodies in which the Fc end of the monoclonal antibody is
linked to a cytokine. The antibody binds to the target of interest on the tumor cell and delivers
high concentrations of the cytokine directly to the tumor microenvironment to attract the
immune effector cells required to kill tumor cells. Initially, ch14.18 was linked to IL-2
(ch14.18–IL-2) and this fusion protein retained the binding specificity of ch14.18 and the IL-2
component stimulated proliferation of IL-2–responsive cells.64, 65 In GD2-positive murine
neuroblastoma models, ch14.18–IL-2 eradicated metastatic neuroblastoma more efficiently
than antibody administered with exogenously delivered IL-2.66

A humanized hu14.18 (98% human derived) was developed to reduce immunogenicity. This
protein was genetically linked to IL-2 (hu14.18–IL-2, EMD 273063). The first phase I study
of this fusion protein was performed in 33 adults with melanoma.67 Common toxicities
included fever and chills (100%), pruritus (61%), hyperglycemia (55%), hypophosphatemia
(39%), and transient neuropathic pain (39%). Dose-limiting toxicities included hypoxia and
hypotension, which were believed to be IL-2 related. The MTD was 7.5 mg/m2/day. There
were no objective responses, but there was prolonged disease stabilization in 4 patients with
high-risk disease.

Phase I testing of hu14.18–IL-2 in children was conducted through the COG.68 Twenty-seven
patients with neuroblastoma and 1 patient with melanoma were treated. The MTD was 12 mg/
m2/dose. The investigators suggested that the higher MTD in pediatric patients may be related
to more intensive prior immunosuppressive therapy received. Toxicities were similar to those
reported in the phase I study on adults. No objective responses were observed.

Phase II testing of hu14.18–IL-2 has been performed in patients with neuroblastoma.69 Thirty-
nine patients received 12 mg/m2/day hu14.18–IL-2 for 3 consecutive days every 28 days and
were evaluated on the basis of disease measureable by standard radiologic criteria (n = 12) or
by meta-iodo benzylguanine scanning or bone marrow histology (n = 23). No responses were
observed by standard radiologic criteria; however, in the other group, 5 patients had a CR,
suggesting a benefit of this therapy in the setting of minimal residual disease. Most toxicities
were expected and reversible (pain, rash, allergic reaction, fever, and hepatic transaminitis).
Of note, 2 patients required dopamine for hypotension and 1 required ventilatory support for
capillary leak syndrome and hypoxia.

Anti-GD2 antibodies have shown promising anti-tumor activity in children with
neuroblastoma. However, despite advances in antibody technologies to humanize these
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antibodies and adding cytokines to boost the response of immune effector cells, the therapeutic
potential of these antibodies remains to be optimized. Strategies to improve the efficacy of
these antibodies have included GD2-targeted liposomes70 and anti-GD2 antibodies in
combination with novel chemokines71 and cytokines,72 as well as further modifications in the
structure of the antibody.

A major breakthrough in antibody engineering has been the derivation of single-chain
molecules called scFv fragments and dimeric single-chain antibodies called minibodies, or
small immunoproteins (SIPs). ScFv fragments consist of the variable heavy chain and the
variable light chain joined by a flexible linker. These molecules maintain their antigen-
specificity, yet, because of their size, can extravasate more efficiently than an IgG molecule
and diffuse more readily within tumors but are also rapidly eliminated through the kidneys.
73 These molecules can be conjugated to toxins, radioisotopes, or effector molecules.
Pretargeting of neuroblastoma xenografts in mice with an anti-GD2 scFv fragment ligated to
streptavidin (5F11-scFv-SA) has been shown to improve the tumor-to-nontumor ratio of
biotinylated radionucleotides and polypeptides.74 SIPs that are constructed by connecting an
scFv to the dimerizing domain of human immunoglobulin γ1 chain penetrate tissues better than
IgG molecules do, yet have a slower clearance than scFv fragments. Two anti-GD2 SIPs have
been generated – one is a fully murine molecule containing the CH3 domain of mouse IgG1
and the other is a hybrid mouse–human molecule containing the CH4 domain of human IgE.
75 If the kinetics of these molecules prove to be favorable, these molecules alone or conjugated
to other molecules may improve the therapeutic index of GD2-targeted therapies.

Alterations in antibody structure to reduce undesirable immune effects and enhance desirable
antitumor effects have also been developed. At the St. Jude Children’s Research Hospital, we
are currently evaluating in children and young adults with refractory/recurrent neuroblastoma
or melanoma the safety of a modified version of the hu14.18 antibody (hu14.18K322A), which
has a single point mutation in the CH2 domain of the antibody. This region of the antibody has
been shown to be critical for antibody-dependent complement activation.76 Minimizing
complement activation may ameliorate some of the side effects observed in patients receiving
14.18 antibodies, such as pain, fever, rash, and capillary leak syndrome, which are probably
due to increased production of inflammatory peptides such as C3a and C5a. These toxicities
limit the dose of antibody that can be given. One potential drawback of decreasing complement
activation is that it may reduce the antitumor response of the antibody. However, Imai and
colleagues77 have shown in GD2-expressing–tumor-bearing wild-type, complement-
deficient, complement-receptor–deficient, and Fcγ receptor I/III-deficient mice treated with
anti-GD2 antibody 14G2a that the absence of complement does not appear to affect the anti-
tumor effect of anti-GD2 antibody except at low concentrations of the antibody. By contrast,
ADCC (absent in Fcγ receptor I/III-deficient mice) is required to eradicate tumors in the
presence of antibody. In addition to the new design elements (i.e., point mutation K322A)
incorporated into the hu14.18 molecule, the hu14.18K322A is expressed in a YB2/0 cell line.
Because of the lack of fucosylation activity in these cells, anti-human antibodies produced by
YB2/0 cell lines have higher levels of ADCC activity than antibodies produced by Chinese
hamster ovary cell lines.78, 79 In vitro, hu14.18K322A demonstrates less complement
activation than ch14.18 and has comparable or better dose-dependent ADCC activity than
ch14.18 and hu14.18 antibodies (unpublished data), suggesting that this antibody has the
potential to be less toxic (thereby allowing administration of higher doses) and more effective.

The development of anti-GD2 antibodies has been challenging; however, the observed
antitumor responses have driven further research to improve this therapy. As with other
antibodies developed for therapeutic use, the promise of antibody therapy lies in treating
minimal residual disease. These studies require large numbers of patients over an extended
period of time to assess the benefit of treatment in this setting.
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Cellular Therapy
Allogeneic transplantation was attempted in children in the 1980s for neuroblastoma, but the
outcome was poor in part because of high transplant-associated mortality and graft versus host
disease (GvHD). Reports of allogeneic transplantation for other pediatric tumors have been
anecdotal. However, the renewal of interest in allogeneic transplantation for solid tumors in
adult patients has led to several pilot studies which have indicated the presence of the graft
versus tumor (GvT) effect. This has generated interest in the cellular immune therapies for
neuroblastoma, especially because supportive care for patients undergoing allogeneic
hematopoietic stem cell transplant (HSCT) has improved considerably. In patients for whom
allogeneic HSCT has been effective in treating solid tumors, the GvT effect has usually
accompanied GvHD.

The existence of a graft-versus-leukemia (GvL) effect has been amply supported by both
experimental and clinical data, but less is known about the GvT effect in solid tumors. In
allogeneic transplantation, specific host cells are recognized as foreign by donor-derived
alloreactive T-cells, which results in GvHD. Antigens derived from broken-down proteins are
presented on the surface of antigen-presenting cells by class I or II HLA molecules. In the
context of an MHC identical donor and recipient, GvHD results when minor histocompatibility
antigens are bound and presented in the clefts of MHC molecules, thereby leading to activation
of donor T-cells. This basis for GvHD is also one way of achieving a GvT effect.

Cytotoxic T-lymphocytes can target several antigens found on malignant cells. These antigens
include lineage-restricted antigens found on tumors of similar origin and on related normal
cells (e.g., GD2 expressed on neuroblastoma), antigens found on tumors of different origins
but not on normal tissue, and tumor-specific antigens produced by mutant genes within the
tumor. The observed association of GvHD with GvT effects probably occurs when tumor cells
and normal host cells share the target antigen. However, because tumors also express antigens
that are unique to the tumor cells, or have a much higher expression of the target antigen than
the normal tissue does, it is possible to have GvT effects without GvHD.

In light of the new potential of combined immune therapies, the current results of using
alloimmune cellular therapies for neuroblastoma are not sufficient to draw firm conclusions.
Two studies in the mid-1990s suggested that allogeneic HSCT is not superior to autologous
HSCT, which is the current standard of care for high-risk neuroblastoma. The first study was
a case control study of allo-HSCT for children with advanced or poorly responding
neuroblastoma, using data from the European Bone Marrow Transplant Solid Tumor Registry.
80 Seventeen patients receiving allogeneic and 34 receiving autologous HSCT were matched
for several prognostic factors, including age, sex, prior treatment duration, pre-graft response
status, and bone and bone marrow involvement before HSCT. The progression-free survival
(PFS) for the allogeneic and autogeneic HSCT groups was not significantly different − 35%
and 41% at 2 years, respectively. Only half of the patients receiving allogeneic HSCT
developed GvHD: 7 of 9 grade I-II and only 2 of 9 grade IV. The authors speculated that the
absence of risk factors for GvHD in young children could be a major obstacle in achieving an
anti-tumor effect with allogeneic HSCT in neuroblastoma. A second study reported in the same
year compared the toxicity, relapse rate, and PFS of high-risk neuroblastoma patients receiving
identical induction therapy and myeloablative chemotherapy plus total-body irradiation
followed by allogeneic or autologous purged HSCT.81 Patients with human leukocyte antigen
(HLA)–compatible siblings received allogeneic bone marrow (n = 20). The remaining patients
(n = 36) received autologous bone marrow that had undergone multimodality purging and had
no remaining detectable tumor cells by immunocytology. Four of 20 patients receiving
allogeneic HSCT had a treatment-related death compared with 3 of 36 patients receiving
autologous HSCT. The relapse rate among patients receiving allogeneic HSCT was 69%,
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compared with 46% for those receiving autologous HSCT (P = 0.14). The estimated PFS rates
4 years after HSCT were 25% for patients receiving allogeneic HSCT and 49% for those
receiving autologous HSCT (P = 0.051). The overall outcome for patients with neuroblastoma
given this same induction therapy followed by autologous purged marrow was similar to that
for patients given allogeneic marrow.

The new concepts of allogeneic HSCT for neuroblastoma and other solid tumors do not rely
on increasing the chemotherapy intensity and reducing tumor load but rather on the GvT effect.
82 A recent case report suggests that that novel approaches to allogeneic cellular therapies
might be useful in treating chemo-resistant neuroblastoma. Inuoe et al. reported the case of a
5-year-old boy who received CD34-positive HLA haplo-identical HSCT from his father as
treatment for refractory advanced neuroblastoma.83 He had residual disease in the para-aortic
lymph nodes and multiple bones after the transplant. He developed grade I acute GvHD but
had no symptoms of chronic GvHD or any other complications. All his residual disease
disappeared completely and he remained disease-free 3 years later. This case suggests the
possibility of a GvT effect against neuroblastoma by HLA-mismatched allogeneic HSCT. A
subsequent feasibility study using haplo-identical HSCT with T- and B-cell depletion was
conducted by Lang et al.84 Six patients with relapsed metastatic neuroblastomas (n = 4),
rhabdomyosarcoma (n = 1) or Ewing's sarcoma (n = 1) after previous autologous
transplantation received CD3/CD19-depleted grafts from mismatched family donors. There
was no transplant-related mortality. At the time of reporting the median survival time was 6
months (2–11), though this data is difficult to interpret with low numbers and patients with
advanced disease. Interestingly, analysis of post-transplant NK cell function revealed stable
cytotoxic activity against K562 targets, whereas activity against neuroblastoma targets was
low. However, stimulation with cytokines and use of appropriate antibodies clearly enhanced
specific lysis in vitro, suggesting that if cellular therapy proves useful in the future, it may well
be used as part of multimodal immune therapies.

More recently, Yoshida et al. reported a 7-year-old male with neuroblastoma who received an
ex vivo–expanded donor CD4(+) T lymphocyte infusion after recurrence in the bone marrow
following allogeneic HSCT from his HLA-identical mother.85 The disease transiently
responded to CD4(+) donor lymphocyte infusion, with reduction of tumor cells and a decrease
of serum neuron-specific enolase. The response was associated with development of continued
high fever and an increase of cytotoxic T lymphocytes in the peripheral blood. This case again
suggests the possibility of a GvT effect against neuroblastoma, although how this effect can
be used optimally is still unclear.

Conclusions
Current conventional therapies have proven inadequate in treating advanced disease in
neuroblastoma. Pre-clinical research has broadened our understanding of the immune response
to these tumors and guided the optimization of possible directed immunotherapies in the form
of antibodies, vaccines, cytokines and cellular therapies. However, based on the modest
antitumor responses of the individual therapies discussed in this review, the future success of
immunotherapy for neuroblastoma almost certainly involves combining these treatment
modalities and applying them in the setting of minimal residual disease.
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List of Abbreviations and Acronyms
ADCC, Antibody-dependent cell-mediated cytotoxicity
COG, Children’s Oncology Group
CNS, Central nervous system
CR, Complete response
DC, Dendritic cells
GD2, Disialoganglioside
GM-CSF, Granulocyte-macrophage colony stimulating factor
GvHD, Graft-versus-host disease
GvL, Graft-versus-leukemia
GvT, Graft-versus-tumor
HAMA, Human anti-mouse antibody
HLA, Human leukocyte antigen
HSCT, Hematopoietic stem cell transplant
IL, Interleukin
mAb, Monoclonal antibody
MHC, Major histocompatibility complex
MTD, Maximum tolerated dose
NK, Natural killer
PFS, Progression-free survival
PR, Partial response
SIPs, Small immunoproteins
TGFβ, Transforming growth factor beta
TNF, Tumor necrosis factor
VEGF, Vascular endothelial growth factor
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