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The discovery of tunnelling nanotubes (TNTs) and their 
proposed role in long intercellular transport of organelles, 
bacteria and viruses have led us to examine their potential role 
during prion spreading. We have recently shown that these 
membrane bridges can form between neuronal cells, as well 
as between dendritic cells and primary neurons and that both 
endogenous and exogenous PrPSc appear to traffic through these 
structures between infected and non-infected cells. Furthermore, 
prion infection can be efficiently transmitted from infected 
dendritic cells to primary neurons only in co-culture conditions 
permissive for TNT formation. Therefore, we propose a role for 
TNTs during prion spreading from the periphery to the central 
nervous system (CNS). Here, we discuss some of the key steps 
where TNTs might play a role during prion neuroinvasion.

Prion diseases, or transmissible spongiform encephalopathies 
(TSEs), are fatal neurodegenerative disorders that have been found 
in a number of species, including scrapie in sheep, bovine spongi-
form encephalopathy in cattle (BSE), Chronic wasting disease in 
deer and Creutzfeldt-Jacob, the Gerstmann-Straüssler-Scheinker 
syndrome, fatal familial insomnia and kuru in humans (reviewed 
in ref. 1). Human TSEs can be sporadic, genetic or acquired by 
infection. A new variant of Creutzfeldt-Jakob disease (termed 
vCJD) was reported from the UK in 1996.2 The majority of vCJD 
cases diagnosed to date resulted from a peripheral exposure via the 
consumption of BSE-contaminated food. Pathological features of 
TSE diseases can include gliosis, neuronal cell loss and spongiform 
changes, but the common feature of all members of this group of 
diseases is the build-up of an aberrant form of the host cellular 
protein PrPC, named PrPSc (from scrapie). The normal cellular 
isoform, PrPC, is an endogenous glycosylphosphatidyl inositol 
(GPI)-anchored protein present in numerous tissues in mammals, 
including neurons and lymphoid cells. While the exact function 

of PrPC remains unclear, evidence suggest putative roles in neuro-
protection, cell adhesion and signal transduction (reviewed in 
refs. 3 and 4). According to the ‘protein-only hypothesis,’ the 
causative agents of prion diseases are proteinaceous infectious 
particles (‘prions’), which are composed essentially of misfolded 
PrPC, or PrPSc.5,6 Prions replicate through a molecular mechanism 
in which abnormally folded PrPSc acts as a catalyst and serves as 
a template to convert normal PrPC molecules into PrPSc.5,6 PrPSc 
differs from PrPC in the conformation of its polypeptide chain, 
which is enriched in β-sheets and is protease resistant. Although 
the conversion process is believed to have a predominant role in the 
pathogenesis of prion diseases, the cellular and molecular basis for 
the pathogenic conversion of PrP are still unknown.

Another important question is how PrPSc spreads to and within 
the brain. After oral exposure, PrPSc accumulates into lymphoid 
tissues, such as the spleen, lymph nodes or Peyer’s patches, prior to 
neuroinvasion.7-9 The exact mechanisms and specific cells involved 
in the spreading from the gastrointestinal track to the lymphoid 
system and to the peripheral nervous system (PNS), leading to 
neuroinvasion of the CNS remain to be elucidated. However, a 
range of evidence suggests that the accumulation of PrPSc within 
lymphoid tissues is necessary for efficient neuroinvasion.9-11 In 
particular it has been shown that PrPSc accumulates first within 
follicular dendritic cells (FDCs)12 and macrophages.13 FDCs are 
stromal-differentiated cells in the germinal centres of activated 
lymphoid follicles. A number of studies have demonstrated that 
FDCs play a critical role during spreading of infection since 
their absence greatly impaires the neuroinvasion process.8,11,14,15 
However, because FDCs are immobile cells, it is not clear how they 
acquire PrPSc and how it spreads from the FDCs to the PNS. FDCs 
and nerve synapses occupy different anatomical sites16,17 and 
therefore the lack of physical contact between the gut and FDCs 
and between FDCs and the nerve periphery imply the presence of 
intermediate mechanisms for the transport of PrPSc. Dendritic cells 
(DCs) have been proposed to play a critical role in the transport 
of PrPSc from the gut to FDCs.18 DCs function as sentinels for 
incoming pathogens. Bone-marrow dendritic cells (BMDCs) are 
migratory cells that are able to transport proteins within Peyer’s 
patches and into mesenteric lymph nodes.19 Interestingly, mucosal 
dendritic cells which play a role in the transport of intestinal 
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cultures first led us to study whether these structures could in fact 
provide an efficient mechanism for prion cell-cell spreading.37 
We initially characterized TNT-like structures in the mouse cate-
cholaminergic neuronal cell line, Cath.a-Differentiated cells (CAD 
cells) a well-recognized neuronal cell model for prion infection.38 
Under our culturing conditions, over 40% of the CAD cells could 
efficiently form actin-rich TNT-like structures between differ-
entially labelled cell populations. In CAD cells, these nanotubes 
were very heterogeneous, both in length and in diameters. Indeed, 
TNT-like structures had lengths ranging from 10 to 80 μm and 
while over 70% of the nanotubes had diameters smaller than  
200 nm, the remaining TNT-like structures had larger diameters 
(200 to 800 nm). We demonstrated that vesicles of lysosomal 
origins, a fluorescent form of PrP (GFP-PrP), infectious Alexa-
PrPSc, as well as both endogenous and exogenous PrPSc could traffic 
within TNTs between neuronal cells (Fig. 1). The lysosomal and 
GFP-PrP vesicles observed to move through TNTs had a directed 
movement with a speed in the range of actin-mediated motors,37 
consistent with previous studies suggesting the involvement of an 
actomyosin-dependent transport.39 Interestingly, active transfer 
of endogenous PrPSc, lysosomal or GFP-PrP vesicles occurred 
through TNTs with larger diameters, suggesting distinct roles for 
the different TNT-like structures observed.37 These results do not 
seem to be specific to CAD cells since the transfer of GFP-PrP 
throught TNTs was observed in different types of transfected cells, 
including HEK293 cells (unpublished data). Furthermore, these 
results were in agreement with previous observations by Onfelt 
and colleagues showing the presence of a fluorescent GPI model 
protein (GFP-GPI) in TNTs formed between EBV-transformed 
human B cells34 suggesting that different GPI-anchored proteins 
can be transferred along the surface and inside vesicles within 
TNTs. In order to determine the relevance of this type of inter-
cellular communication in the case of prion diseases, it was 
necessary to evaluate the trafficking of the pathological form of 
PrP (PrPSc) within TNTs, by analyzing the transfer of endogenous 
PrPSc between chronically infected ScCAD cells and non-infected 

antigen for presentation to Peyer’s patches and to mesenteric lymph 
nodes, can also extend trans-epithelial dendrites to directly sample 
bacteria in the gut.20,21 However, the transport of PrPSc from FDCs 
to the PNS remains controversial and evidence for a direct role of 
DCs during this process has been debated.22,23 Several mechanisms 
have been proposed for the intercellular transfer of PrPSc, including 
cell-cell contact, transfer via exosomes or by GPI-painting.24-26 For 
example, similar to other types of pathogens such as HIV-1, which 
was proposed to follow the “exosomal” pathway to be released from 
the cells,27 it has been shown that the supernatant of prion infected 
cells contain large amount of PrPSc in membranous vesicles known 
as exosomes.25,28 Thus, it was suggested that exosomes might be 
a way to spread prion infection in vivo.25,28 Recently, a different 
type of vesicles known as plasma membrane-derived microvesicles, 
were also described as a potential spreading mechanism during 
neuroinvasion.29

In 2004, Rustom and colleagues discovered a new mechanism 
of long distance intercellular communication in mammalian cells, 
called tunnelling nanotubes (TNTs).30 TNTs are transient, long, 
actin-rich projections that allow for long-distance intercellular 
communication (reviewed in refs. 31–33). TNT-like structures 
have been described to form in vitro between numerous cell 
types, including neuronal and immune cells.30,34,35 These studies 
demonstrated that TNT-like structures formed bridges or channels 
between distant cells that can be used to transfer material between 
cells, including Lysotracker positive or endosomal vesicles, calcium 
fluxes, bacteria or viruses through their cytoplasms or along the 
surface of the nanotubes.31-33 Interestingly, a model GPI-anchored 
protein, GFP-GPI, was found to move at the surface of these 
tubes34 and while studying the neuritic transport of prions in 
neuronal cells, Magalhães and colleagues noticed a strong correla-
tion between internalized PrP-res and Lysotracker positive vesicles 
in neurites,36 suggesting that PrP-res might also be able to transfer 
through TNTs during prion cell-cell spreading.

The results from the studies mentioned above and random 
observations of TNT-like structures in neuronal model cell 

Figure 1. Endogenous PrPSc transfer from ScCAD cells to CAD cells via TNTs. Endogenous PrPSc is found in punctate structures inside TNTs and in the 
cytoplasms of recipient cells. CAD cells were transfected with Cherry-PLAP (red) and co-cultured with ScCAD for 24 h. Cells were fixed, treated with 
Gnd and immunostained for PrP using SAF32 Ab (green). (A) Merge projection of Z-stacks obtained with a confocal Andor spinning-disk microscope. 
(B) Three-dimensional reconstruction of (A) using OsiriX software. (C) Zoom in on TNT-like structures. PrPSc is found in vesicular structures inside TNTs 
and in the cytoplasm of the recipient non-infected CAD cells (see blue arrow heads). Scale bar represents 10 μm.
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By using filters and conditions unfavorable for other mechanisms 
of transport, we found that moRK13 cells,28 as well as CGNs 
(unpublished data), could be infected by co-cultures with BMDCs 
loaded with infectious brain homogenate.37 Overall, these data 
indicate that TNTs could be an efficient mechanism of prion 
transmission between immune cells and neuronal cells, as well as 
between neuronal cultures. Since DCs can interact with periph-
eral neurons,42 we propose that TNTs could be involved in the 
process of neuroinvasion at multiple stages, from the peripheral 
site of entry to the PNS by neuroimmune interactions with DCs, 
allowing neurons to retrogradely transport prions to the CNS, and 
within the CNS (Fig. 2).

Recently, it was demonstrated that the distance between FDCs 
and the neighbouring PNS was critical for prion neuroinvasion.43 
Indeed, in the spleen of CD19-/- mice, FDC networks were 
found to be 50% closer to the nerve fibers compared to wild-type 
mice.43 The authors suggested that the increase in prion spreading 
efficiency in these mice was directly dependent on the reduction 
in the distance between the FDC networks and the PNS in these 
mice. These results would be consistent with a mechanism of 
transfer such as exosomes release. However, shortening the distance 
between FDCs and the PNS would also reduce the route of trans-
port that mobile cells would have to travel and increase the chances 
for transfer of prions to the PNS, resulting in an increase in prion 
spreading efficiency. While the importance of FDCs in prion repli-
cation during the spreading to the CNS seems to be clear,11,14,15 
their specific role in the transfer of prions and their possible 
interactions with other mobile cells are much more debated.22,23 

CAD cells. By immunofluorescence after guanidium treatment, 
endogenous PrPSc was found inside TNTs and in the cytoplasm 
of recipient non-infected CAD cells. Similar to exogenous PrPSc, 
endogenous PrPSc particles were not present in non-infected CAD 
cells not in contact with ScCAD cells after overnight co-cultures, 
thus excluding exosomal transfer or protein shedding.37 Similarly, 
no transfer was observed between cells in direct contact with one 
another or upon treatment with latrunculin, which inhibits TNT 
formation. Strikingly, the transfer of endogenous PrPSc was visible 
only when TNTs were present, demonstrating that in vitro, PrPSc 
can efficiently exploit TNTs to spread between cells of neuronal 
origin. These data suggested that TNTs could be a mechanism for 
prion spreading within the cells of the CNS.

Interestingly, DCs were shown to form networks of TNTs 
both in vitro40 and in vivo.41 In an elegant study, Watkins and 
Salter demonstrated that DCs could propagate calcium flux upon 
cell stimulation to other cells hundreds of microns away through 
TNTs, both between DCs and between DCs and THP-1 mono-
cytes.40 These data suggested the possibility that DCs could form 
tubular connections with neuronal cells in order to transport PrPSc 
to the PNS via TNTs. Using BMDCs in co-cultures with both 
cerebellar granular neurons (CGNs) and primary hippocampal 
neurons, we showed that BMDCs could form networks of TNTs 
with both types of neurons. Furthermore, these TNTs appeared 
to be functional, allowing for the transport of Lysotracker positive 
vesicles and infectious Alexa-PrPSc between loaded BMDCs and 
primary neurons, suggesting that DCs could transfer the infec-
tious prion agent to primary neuronal cultures through TNTs. 

Figure 2. Transport of PrPSc via TNTs, an alternative spreading mechanism during neuroinvasion. Studies in our laboratory suggest that TNTs allow for 
the intracellular transport of PrPSc between dendritic cells and neurons and between neurons (see inset). The exact mechanism of transport remains to 
be determined. For instance, it is still not clear, whether PrPSc is strictly transported within endocytic vesicles, or whether it can slide along the surface or 
be transported as aggregosomes within the tubes. Similarly, the types of motors used, as well as the possible gated mechanisms to enter the recipient 
cells are not known. Because of the high propensity of DCs to form TNTs with different cell types, we propose that TNTs could play important roles in 
delivering PrPSc to the proper cell types along the neuroinvasion route. For instance, DCs could deliver PrPSc from the peripheral entry sites to FDCs in 
the secondary lymphoid tissues (2) or in a less efficient manner, they might occasionally directly transport PrPSc to the PNS (1). They could also bridge 
the immobile FDC networks and the PNS (3), since we have shown that DCs can form TNTs with nerve cells. Finally, once PrPSc has reached its final 
destination within the CNS, TNTs might play a final role in the spreading of PrPSc within the brain between neurons and possibly between neuronal 
cells and astrocytes (4).
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filopodia-like structures observed during dorsal closure in droso-
phila.49 In addition, TNT-like structures were observed in the 
mouse cornea between DCs and were shown to increase under 
inflammatory conditions.41 The authors postulated that these 
TNT-like structures could play a role in Ag-specific signalling, 
especially as a response to eye inflammation. Therefore, the 
possibility that TNTs might play numerous roles during cell 
development, in the immune system and as conduits for the 
spreading of pathogens could lead to major changes in the way 
we view animal cell interactions. Specifically, understanding how 
pathogens usurp these cellular connections to spread could allow 
for the screening and the identification of new therapeutic inhibi-
tors. To this aim, characterizing the basic mechanism of TNT 
formation within cell model systems will be necessary to improve 
the knowledge of TNTs in general, to analyze the transfer of 
pathogens more specifically, and to identify key molecules during 
this process. In the case of prions, whether they hijack nanotubes 
to spread between cells or whether prions increase the formation 
of filopodia and TNT-like structures similar to some viruses33,50 
and/or the efficiency of transfer remain to be determined. Overall, 
in this specific field, the constant improvement of cell imaging 
techniques and the emergence of imaging tools to study prion 
spreading36,37,51-53 could lead to exciting new insights both in the 
physiology of these intercellular connections and in the pathology 
of these devastating diseases.
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