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Abstract
Background—A functional polymorphism in the promoter region of the monoamine oxidase A
(MAO A) gene has two common alleles that are referred to as the high and low MAO A genotypes.
We report the first in vivo human study to determine whether there is an association between MAO
A genotype and brain MAO A activity in healthy male subjects.

Methods—Brain MAO A activity was measured with positron emission tomography and [11C]
clorgyline in 38 healthy adult male nonsmokers genotyped for MAO A polymorphism.

Results—There was no significant difference in brain MAO A activity between the high (n = 26)
and low (n = 12) MAO A genotypes.

Conclusions—The lack of an association between the high and low MAO A genotype and brain
MAO A activity suggests that this polymorphism by itself does not contribute to differences in brain
MAO A activity in healthy adult male subjects.

Keywords
Brain MAO activity; MAO A genotype

There is a well-characterized variable number tandem repeat (VNTR) functional
polymorphism in the promoter region of the monoamine oxidase A (MAO A) gene that has
two common alleles (4-repeat and 3-repeat) that occur in a ∼ 60:40 ratio in male humans
(Sabol et al. 1998). These are referred to as high and low MAO A genotypes, defined by their
significantly different transcriptional activities in human nonneuronal cell lines. Because of
the importance of MAO in the regulation of monoamine levels and on mood and behavior, the
MAO A genotype has been investigated as a variable in many clinical and behavioral
phenotypes (Chen 2004; Shih et al. 1999). In particular, there appears to be a link between the
low MAO A genotype and impulsive behavior (Manuck et al. 2000) through interaction with
early environmental stressors (Caspi et al. 2002; Huang et al. 2004; Kim-Cohen et al. 2006).
The relationship between MAO A genotype and brain MAO A activity has never been
examined in vivo in healthy human subjects, however. The purpose of this study was to
determine whether high and low MAO A genotypes correspond to high and low brain MAO
A activity in normal healthy male subjects using the MAO A radiotracer, [11C]-clorgyline and
positron emission tomography (PET; Fowler et al. 1996a, 2001).

Methods and Materials
Subjects

Thirty-eight healthy male nonsmokers were recruited specifically for this study. Nonsmoking
status was ascertained by breath carbon monoxide measurement. Exclusion criteria included
female gender due to a distribution of 9:1 of phenotypes (Caspi et al. 2002), current or past
psychiatric or neurologic disease, history of drug or alcohol abuse, dependence on any
substance other than caffeine, positive urine screen for drugs of abuse, history of head trauma
with loss of consciousness, history of cardiovascular or endocrinologic disease, and current
medical illness. Subjects were interviewed for age, education, and socioeconomic status (SES)
and assessed for intelligence (Table 1). Written informed consent was obtained as approved
by the local institutional review board.

Procedures
Brain MAO A activity was measured in each subject with PET and [11C]clorgyline (average
dose 6.2 ± .7 mCi; specific activity 250 mCi/μmol) using the scanning protocol reported
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previously (Fowler et al. 2001). Briefly, PET images were acquired using a whole body, high-
resolution PET (Siemen’s HR+) in 3-dimensional dynamic acquisition mode.

From each subject, DNA for MAO A genotyping was obtained from cheek swab samples
(Freeman et al. 2003). Polymerase chain reactions (PCRs) were performed as described by
Sabol et al. (1998), and PCR products were analyzed on an Applied Biosystems 3100 Genetic
analyzer. Alleles were seen in expected ranges using Genescan version 3.7 and Genotyper
version 3.6 software.

Data Analysis
Ten regions of interest (ROIs; medial frontal cortex, dorsolateral prefrontal cortex, anterior
cingulate gyrus, primary visual cortex, temporal cortex, precuneus, caudate nucleus, putamen,
thalamus, and pons) were selected. Right and left regions were averaged.

PET time-activity data for [11C]clorgyline from different brain regions and time-activity data
in arterial plasma were used to calculate the model term K1, the plasma to brain transfer constant
which is related to blood flow and λk3, which is a function of the concentration of catalytically
active MAO A molecules (Fowler et al. 2001). The model term k3 is related to the binding of
[11C]clorgyline by MAO A; λis defined as K1/k2 and is independent of blood flow and k2 is
related to the efflux of tracer from brain to blood.

In our statistical analysis, we first examined the normality assumption of the continuous
variables using the Shapiro—Wilk test. Depending on the normality of the data, the parametric
or nonparametric test was applied. We compared model terms K1 and λk3 for the high and low
MAO A genotypes using the Wilcoxon Rank Sum Test for the 10 brain regions (because most
of these regions are not normally distributed) setting the significance level at p = .005
(Bonferroni corrected). The nonparametric Kruskal—Wallis test was applied to examine
whether ethnicity would influence K1 and λk3 among the high or low MAO genotype. All tests
were two-tailed.

Results
The genotype distribution for the 38 male subjects recruited for this study was consistent with
a previous study (Sabol et al. 1998) with 26 (68%) classified as the high and 12 (32%) as the
low MAO A genotype. The two groups were well matched for age, socioeconomic status,
education, and intelligence but not ethnicity (except for African Americans; Table 1).

For all subjects, [11C]clorgyline binding was highest in the thalamus and visual cortex and
lowest uptake was in the caudate nucleus (Figure 1). We found no significant difference K1 or
λk3 (which is proportional to MAO A activity) between the high and low MAO A genotypes
in any brain region (Table 1) although there was a trend for a small difference for λk3 in the
visual cortex (p = .026, high > low). There were no ethnic differences in absolute measures of
λk3 for all subjects and between the MAO A genotyped groups.

Discussion
The prevalence of the high and low MAO A genotypes in the male population has stimulated
many studies on the association of MAO A genotype with impulsivity, inhibitory control, and
aggression (Huang et al. 2004; Manuck et al. 2000; Passamonti et al. 2006). Of particular
interest are a number of studies showing that MAO A genotype influences vulnerability to
environmental stress both in humans (Caspi et al. 2002) and animals (Newman et al. 2005)
and that this biological process can be initiated early in life (Kim-Cohen et al. 2006). In
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addition, the low MAO A genotype was recently reported to be associated with pronounced
limbic volume reductions (ventral cingulate and amygdala; Meyer-Lindenberg et al. 2006).

A possible biochemical link underlying genotype—phenotype associations is that high and
low MAO A genotypes may be associated with high and low levels of brain MAO A.
Monoamine oxidase A is an enzyme that regulates the concentration of the MAO A—specific
substrates—serotonin and norepinephrine, as well as dopamine. A number of direct studies in
nonneuronal cell lines and in postmortem human brain provide conflicting results. For example,
normalized MAO A specific activity from the high MAO A genotype has been reported to be
significantly higher than that for the low MAO A genotype in human fibroblast cultures
(Denney et al. 1999). In contrast, a direct assay of A from cortical autopsy samples from 31
human subjects did not find a significant association of any single MAO A polymorphism with
expression levels of MAO A (Balciuniene et al. 2002). Whether the high and low MAO A
genotypes (which are defined in terms of their respective transcriptional activities) are
associated with differences in MAO A (the gene product) has not been determined in vivo,
however.

Here we report the first in vivo measurement of brain MAO A activity in 38 healthy adult male
volunteers of high (n = 26) and low (n = 12) MAO A genotypes matched for age, SES,
education, intelligence, and without smoking or drinking histories. We found no significant
difference between MAO A genotype and brain MAO A activity in any brain region examined
except for a trend for a small elevation in the visual cortex (high > low). The sample size in
this study would guarantee a power of 76% for the Wilcoxon Rank Sum Test to detect the
difference between the groups at the magnitude of effect size 1 (ratio between the mean
difference and the pooled standard deviation) at the significance level of .05 (two-sided). In
our study, the pooled standard deviation is about 13%–18% of the population mean. Thus, we
have a power of 76% to detect a mean difference at the magnitude of 13%–18% of the individual
population mean. This indicates that the effect of the MAO A genotype in MAO A activity in
the healthy adult brain, if any, is smaller than the variability in MAO A brain concentration
between adult subjects. This could reflect that either MAO A genotype has no effect on MAO
A activity or that other factors (environmental, developmental, other genes) have a greater
effect in modulating brain MAO activity in the adult brain. We note that other PET studies
have also addressed the effect of genotype on brain levels of associated protein products such
as the dopamine transporter, the dopamine D2 receptor, and the serotonin transporter. Overall,
these studies, which used different tracers and different study populations, show that the effect
of genotype on protein expression in the adult brain is inconsistent, and those that show
differences report small differences (Martinez et al. 2001; Parsey et al. 2006; Shioe et al.
2003; van Dyck et al. 2004).

These findings suggest that variables other than baseline MAO A regional activity in the adult
brain need to be considered in explaining gene behavior, gene—brain function, and gene—
brain structure relationships in healthy individuals. One possibility is that the influence of the
MAO A genotype may occur predominantly during brain development in the fetal and postnatal
periods. The MAO A genotype may be the main variable regulating developmental
catecholamine levels including those of serotonin, known to be crucial for brain development
particularly because MAO B develops later than MAO A and would not be present to
compensate for deficient MAO A (Shih et al. 1999). Compelling evidence suggests that the
absence of MAO A during development results in an aggressive phenotype in both animals
(Cases et al. 1995; Mejia et al. 2002; Whitaker-Azmitia et al. 1994) and humans (Brunner et
al. 1993). In contrast there is evidence of aggression as a side effect in adults treated with MAO
A—inhibiting drugs, and in rodents MAO A inhibition in adulthood reduces stress-induced
aggression (Ossowska et al. 1999). Stress-induced monoamine surges could be particularly
damaging during fetal and childhood development. Thus, the determination of brain MAO A
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levels corresponding to high and low MAO A genotype at different developmental stages as
well as their interaction with environmental factors such as smoking that can further inhibit
brain MAO (Fowler et al. 1996a, 1996b) pregnancy merits further investigation. Similarly,
future studies to MAO evaluate the relationship between MAO A genotype and brain MAO A
levels in diverse neuropsychiatric populations will allow determination of whether MAO A in
the adult brain is differentially regulated in some neuropsychiatric diseases.
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Figure 1.
Averaged parametric images (λk3) of the high (left panel) and the low (right panel) MAO A
genotype groups showing 23 transaxial planes from the top of the head to the base of the skull
and using a rainbow color scale where red indicates regions of highest monoamine oxidase A
(MAO A) activity and blue indicates regions of lowest MAO A activity. Note the similarity in
image intensity between the two groups, corroborating the findings of the region of interest
analysis (Table 1).
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Table 1
Demographic Characteristics and Brain Monoamine Oxidase A (MAO A) Levels (λk3) for 38 Study Participants

High MAO A
Genotype (n = 26)

Low MAO A
Genotype (n = 12)

Age 31.15 ± 6.7 32.9 ± 6.4

Education 14.96 ± 2.3 15.4 ± 1.3

Socioeconomic Status
 (Hollingshead) 44.04 ± 10.6 43.17 ± 14.04

Intelligence

 WRAT-3 Readinga 102.76 ± 25 101.67 ± 13

 WASI MATRIX Reasoningb 11.42 ± 2.02 11.4 ± 2.4

Ethnicity

 White 18 4

 African American 4 5

 Hispanic 4 2

 Asian 0 1

MAO A (λk3) mL g− min−1

 Medial Frontal Cortex .273 ± .037 .273 ± .039

 Dorsolateral Prefrontal
 Cortex .279 ± .046 .264 ± .049

 Anterior Cingulate Gyrus .299 ± .044 .289 ± .036

 Primary Visual Cortexc .350 ± .055 .307 ± .048

 Temporal Cortex .293 ± .039 .289 ± .034

 Precuneus .319 ± .047 .293 ± .046

 Caudate Nucleus .228 ± .039 .230 ± .045

 Putamen .266 ± .045 .262 ± .042

 Thalamus .389 ± .053 .376 ± .062

 Pons .311 ± .057 .312 ± .045

a
Wide Range Achievement Test III Reading subscale; estimate of verbal IQ.

b
Matrix Reasoning from the Wechsler Abbreviated Scale of Intelligence; estimates of nonverbal/fluid IQ.

c
p = .026 (high > low).
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