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Abstract
The use of growth-modeling analysis (GMA)--including Hierarchical Linear Models, Latent Growth
Models, and General Estimating Equations--to evaluate interventions in psychology, psychiatry, and
prevention science has grown rapidly over the last decade. However, an effect size associated with
the difference between the trajectories of the intervention and control groups that captures the
treatment effect is rarely reported. This article first reviews two classes of formulas for effect sizes
associated with classical repeated-measures designs that use the standard deviation of either change
scores or raw scores for the denominator. It then broadens the scope to subsume GMA, and
demonstrates that the independent groups, within-subjects, pretest-posttest control-group, and GMA
designs all estimate the same effect size when the standard deviation of raw scores is uniformly used.
Finally, it is shown that the correct effect size for treatment efficacy in GMA--the difference between
the estimated means of the two groups at end of study (determined from the coefficient for the slope
difference and length of study) divided by the baseline standard deviation--is not reported in clinical
trials.
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Social scientists contribute to human well-being through the development of interventions to
prevent and to treat a wide range of psychological, educational, and behavioral problems.
Intervention research is a broad interdisciplinary field, with contributors from clinical
psychology, psychiatry, applied developmental psychology, prevention science, and
education. An important objective of these investigators is to conduct clinical trials to examine
the efficacy of psychosocial and psychopharmacological treatments. Thus, controlled clinical
trials are needed to answer two questions: Is a particular intervention effective? How powerful
are its effects? The former is addressed in data analysis through tests of statistical significance,
and the latter through calculation of effect sizes (McGrath & Meyer, 2006).

Growth-Modeling Designs for Controlled Clinical Trials
Traditionally, data from controlled clinical trials have been examined with classical statistical
techniques, such as analysis of variance (ANOVA), which use Ordinary Least Squares (OLS)
and the General Linear Model (GLM). Over the last decade, however, growth-modeling
analysis (GMA)--based on Generalized Least Squares (GLS) and the expectation-
maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977)--has emerged as a competing
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statistical framework for use in the evaluation of intervention efficacy. GMA compares
temporal trajectories (growth curves) between the treatment and comparison groups, with the
difference in the slopes for linear trend a common test of efficacy (Atkins, 2005). A difference
in trajectories indicates a difference between groups at the end of the study (Raudenbush &
Liu, 2001).

The GMA family includes: (1) Hierarchical Linear Models (HLM; Raudenbush & Bryk,
2002), also known as Mixed-effect Regression Models (MRM; Gibbons, Hedeker, Elkin,
Waternaux, Kraemer, Greenhouse, et al., 1993; Hedeker, & Gibbons, 2006), or multilevel
models (Hox, 2002), (2) Latent Growth Models (LGM; Muthen & Muthen, 2007; Singer &
Willett, 2003), also known as Latent Curve Analysis (LCA; Curran & Muthen, 1999; Muthen
& Curran, 1997), and (3) General Estimating Equations (GEE; Liang & Zeger, 1986). Prior to
the development of GMA, growth curves were modeled through OLS techniques. A classical
equivalent of a GMA is the mixed ANOVA with orthogonal polynomial contrasts that extends
the 2 x 2 design to fit trends for three or more repeated measures varying over time (Winer,
1971). Such trend analysis can examine whether the linear and quadratic sources of variation
for the repeatedly-measured outcomes (the within-subjects factor) are moderated by the
treatment (between-subjects) factor. Alternatively, a multivariate analysis of variance
(MANOVA) can be used that handles the repeated measures as multiple dependent variables
to model temporal trends to test the same effects--but with somewhat less restrictive statistical
assumptions--examined in an ANOVA (Hedeker & Gibbons, 2006; Gueorguieva & Krystal,
2004).

However, ANOVA and MANVOA both require complete data with time-structured measures
(temporal spacing between occasions must be identical and available for all subjects), and
cannot easily (1) handle time-varying covariates, (2) model between-subjects variations in
growth trajectories, (3) assess the significance of unconditional and residual variations in
growth parameters (i.e., random effects) across subjects, or (4) deal with dependence of
observations when, for example, repeated measures of outcomes are nested within patients
who are nested within clinics. In clinical trials, missing data is an expected consequence of
inevitable attrition (including loss of data as a result of inability to locate participants in intent-
to-treat approaches), and the intervals between assessment times often differ by subjects as a
result of scheduling conflicts. GMA uses data from all participants rather than from
“completers,” and is seen as providing less biased treatment effects.

Proliferation of Studies Using GMA
GMA is beginning to supplant classical methods as the primary statistical tool to analyze data
collected from controlled clinical trials in psychiatry, prevention science, and clinical
psychology.

Psychiatry (psychopharmacological treatment)
Gueorguieva and Krystal (2004) examined articles published in Archives of General
Psychiatry over a 12-year period. Whereas no study had used GMA in 1989, GMA designs
were used in 30% of clinical trials published in 2001. Examples of applications of GMA in
psychiatry can be found in research on the effects of tricyclic antidepressant medication on
depressive symptoms (Bock, 1983; see also re-analyses by Hedeker & Gibbons, 2006) and of
desipramine on drug use (Feingold, Oliveto, Schottenfeld, & Kosten, 2002).

Prevention science (psychosocial intervention)
The prevention research literature also indicates an increase in the popularity of GMA. A
manual search of articles published in Prevention Science from its launch in 2000 through 2006
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found 7 GMA-examined controlled trials in 2005−2006, the same number published in the
Journal's first 5 years. Half of these 14 prevention studies used an LGM framework, with HLM
and GEE approaches each used in about a quarter of the studies (4 HLM studies and 3 GEE
studies). Examples of applications of GMA in the prevention field can be found in studies of
the effects of a parenting intervention on child behaviors (DeGarmo, Patterson, & Forgatch,
2004) and of effects of a school-based intervention on adolescent substance use initiation
(Trudeau, Spoth, Lillehoj, Redmond, & Wickrama, 2003).

Clinical psychology (psychosocial treatment)
A manual search was conducted to identify controlled clinical trial studies that used GMA and
were published from 1997−2006 inclusive in the APA's Journal of Consulting and Clinical
Psychology (JCCP), long considered the most prestigious outlet for intervention research
(Feingold, 1989; Simpson, McGrath, & Yamada, 2003). In 1997−1998, only three studies used
GMA, but the numbers increased progressively to 13, 16, 16, and 27 for the years 1999−2000,
2001−2002, 2003−2004, and 2005−2006, respectively. A comprehensive review of the 43
JCCP trials published from 2003 through 2006 inclusive found that the vast majority (35 or
81%) of the articles reported use of HLM, with LGM used in 5 studies and GEE in 3 studies.
Thus, whereas prevention researchers who used GMA overwhelmingly favored the LGM
framework, the psychosocial treatment evaluators strongly preferred HLM. Examples of the
use of GMA in clinical psychology can be found in studies of the effects of couples therapy
on marital distress (Atkins, Berns, George, Doss, Gattis, & Christensen, 2005) and of cognitive
therapy on symptoms of posttraumatic stress disorder (Monson, Schnurr, Resick, Friedman,
Young-Xu, & Stevens, 2006).

Importance of Effect Sizes in Evaluation of Interventions
Effect sizes associated with hypothesis (significance) tests of efficacy are important for several
reasons. First, a summary of the effect sizes found for a particular intervention in independent
trials is important to establish the generality of the effect. Second, treatments examined in
different studies must be compared, which is often accomplished by modeling variations in
effect sizes across trials through meta-analysis (Hedges & Olkin, 1985; Lipsey & Wilson,
1993, 2001). Finally, effect sizes are needed for the cost-benefit analyses that are often
conducted by policy makers (Petitti, 2000). A treatment that is effective but has a small impact
on problem behavior will not be useful if it is expensive to implement. Because of the
importance of effect sizes, software has been created to calculate them (e.g., Shadish, Robinson,
& Lu, 1999), but only for findings obtained with classical designs.

Nonetheless, only 13 of the 43 clinical trial GMA studies published in JCCP in 2003−2006
reported effect sizes calculated using model-based coefficients (e.g., for the slope differences)
generated by GMA programs to convey the size of treatment effects. This was surprising
because APA mandates the inclusion of effect sizes in their journal articles (American
Psychological Association, 2001). More troublesome, the 11 retrieved studies that reported
both effect sizes and the methods used to obtain them (i.e., two of the 13 studies reported effect
sizes without specifying the formula used) applied formulas that were not mathematically
equivalent. Because effect sizes are the building blocks in a meta-analysis, and meta-analysis
is commonly used examine treatment efficacy (e.g., Weisz, Jensen-Doss, & Hawley, 2006),
the concern that effect sizes associated with GMA significance tests are not calculated
consistently merits close scrutiny.

Effect-Size Calculation Controversy for Repeated-Measures Designs
The correct approach to the calculation of the effect size for a within-subject (repeated-
measures) or mixed design is controversial because there are two possible denominators that
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can be used in the formula: (1) the standard deviation of the pretest-posttest change scores that
reflect within-group variations in improvement over the course of the trial (Gibbons, Hedeker,
& Davis, 1993; Mullen & Rosenthal, 1985; Rosenthal, 1991) or (2) the standard deviation of
the raw scores (often based on the pretest or baseline data) that estimate variations in the
outcome measure in the population (Becker, 1988). Advocates of the use of the standard
deviation of raw scores contend that effect sizes based on change scores are “biased” estimates
of the true effect sizes, which are estimated correctly when raw scores are used (Dunlap,
Cortina, Vaslow, & Burke, 1996; Hunter & Schmidt, 2004; Lipsey & Wilson, 2001). Morris
and DeShon (2002) offered a compromise view that the appropriate denominator depends on
the research domain. For example, an effect size calculated with the standard deviation of
change scores might be justifiable for studies on, say, learning but not for studies (including
clinical trials) that compare two or more independent groups.

The controversy is exclusive to repeated-measures and mixed designs because such designs
include a source of variance not found in between-subjects designs--namely, the correlation
between the paired scores (Dunlap et al., 1996; Morris & DeShon, 2002). When the standard
deviation of change scores is used for the denominator, treatment potency and the strength of
the pretest-posttest correlation are confounded. However, this correlation must contribute to
effect sizes used for power analysis because it is one of the determinants of power (Cohen,
1988). Thus, whereas effect sizes calculated from standard deviations of change scores are
appropriate for use in power analysis, standard deviations of raw scores should be used to
determine intervention potency. These concerns are equally applicable to effect sizes for GMA,
which also analyze repeatedly-assessed outcomes.

Overview of Current Study
First, state-of-the-art procedures for calculation of effect sizes for classical experimental
designs are demonstrated with the use of an artificial dataset. Next, it is shown that these
formulas can be adapted to calculate effect sizes from GMA outputs (regardless of whether the
GMA is conducted with HLM, LGM, or GEE) that estimate the same parameters as do
traditional formulas when applied to data collected from classical designs. Finally, the effect-
size formulas used in contemporary controlled clinical trials that used GMA are applied to the
mock data to identify sources of effect size discrepancies, and the implications for both power
analysis and meta-analysis are discussed.

Clinical Trials Designs and Mock Data Analysis
Mock Longitudinal Dataset

Table 1 reports hypothetical data from a trial in which 20 subjects were randomly assigned to
either an intervention (with subjects coded .50 for Tx, or treatment) or a control condition (with
subjects coded −.50 for Tx), with an equal number (n = 10) in each group. At the baseline
assessment, T1, the scores for the dependent variable were the same in the treatment and control
groups, with each distribution perfectly symmetrical. Thus, means and standard deviations
were identical for the two groups at T1. Three additional waves of data (T2-T4), with equal
spacing between intervals, were generated for these subjects. Control subjects’ raw scores
increased by one point between assessment times, whereas the scores for subjects administered
the intervention increased by two units per wave over the same period. Thus, in both groups,
scores increased as a purely linear function of time, but the rate of improvement was steeper
for the treatment group, indicating that the intervention was efficacious. In addition, the within-
group standard deviations were homogeneous across the eight cells formed by crossing
condition with time. These data are used to demonstrate the comparability of effect sizes for
treatment potency (and inconsistency of corresponding effect sizes needed for power analysis)
among different designs.
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Research Designs for Evaluating Interventions
Independent groups (completely randomized) design—Subjects are randomly
assigned to treatment and control groups; the intervention is administered only to the treatment
group; and the means of the two groups are compared at the end of the study (Morris & DeShon,
2002). The mock data in Table 1 can be examined by a between-subjects ANOVA (or a t test
for independent groups) if the data from the first three waves (T1-T3) are excluded from the
analysis and the ANOVA compares the means of the two groups at T4, F(1, 18) = 33.75, p < .
001.

Cohen (1988) developed the effect size d to convey the magnitude of the difference in central
tendency between two groups for this design, which is calculated by dividing the mean
difference between groups by the pooled within-group standard deviation (SD, the square root
of the MSe from the ANOVA).

(1)

= (11 − 8)/1.15 = 2.60,1 where MT is the end-of-study mean of the treatment group and MC is
the corresponding mean of the control group.

Within-subjects (one-group pretest-posttest) design—A single group of subjects is
administered a pretest, the intervention, and a posttest. The pretest and posttest means are then
compared via the F test from a repeated-measures ANOVA (or t test for dependent groups,
where t is the square root of the F from the ANOVA).

The mock data in Table 1 can be examined in this design by using only the T1 and T4 data
from the 10 subjects in the treatment group. For this subsample, the pretest mean is 5 and the
posttest mean is 11, indicating a 6-unit increase in the outcome variable for treated subjects, F
(1, 9) = 540.00, p < .001.

The F value from the within-subjects analysis is much larger than that previously reported for
the independent groups analysis because (1) there is a high correlation (r = .75) between pretest
and posttest scores (and the variance associated with this covariation can be removed from the
error term to yield a more powerful statistical test), and (2) there is a maturation effect bias
(Shadish, Cook, & Campbell, 2002). In the unused data from the control group, the means
increased from 5 at pretest to 8 at posttest. Thus, an estimated half of the improvement in the
treatment group from baseline to posttest was due to maturation and the rest to the intervention.

The two effect sizes for the treatment effect obtained from the within-subjects analysis of the
mock data in Table 1 (with corrections for maturation bias) are:

(2)

(3)

1Strictly speaking, with such a small sample size, a correction should be applied to the effect size (Hedges & Olkin, 1985). However,
for pedagogic reasons, the correction will be ignored.
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The dWS-CHANGE is larger than dWS-RAW, which indicates that the within-subjects design is
more powerful than the between-subjects design, but dWS-RAW conveys treatment potency--
and is identical to the d reported previously for the randomized design.

Independent-groups pretest-posttest design (IGPP)—Subjects are administered a
pretest and then randomly assigned to intervention or control groups; the intervention is
administered only to subjects in the treatment condition; both groups are assessed again at the
end of the study. The analysis determines whether the magnitude of the change in the
intervention group differs significantly from that in the control group.

The mock data in Table 1 can be examined by IGPP by using only the T1 and T4 waves from
each group. The last column reports the T4 – T1 change (gain) scores for all subjects. The F
ratio compares the means of the change scores between the treatment and control groups at T4.
In other words, the same analytic methods are applied in IGPP as in the independent groups
design except that the change scores are used as the dependent variable instead of the T4 scores,
F(1, 18) = 67.50, p < .001. 2

As in the within-subjects design, two effect sizes that can be calculated from an IGPP design,
one using the standard deviation of the change scores in the denominator and the other using
the standard deviation of the raw scores (Morris & DeShon, 2002; Morris, 2008):

(4)

= (6/.82) − (3/.82) = 3.67, where SDCHANGE-T is the mean change score for the treatment group
and SDCHANGE-C is the mean change score for the control group. (If homogeneity of variance
across conditions is assumed, each of these terms can be replaced by SDCHANGE.)

(5)

= (6/1.15) − (3/1.15) = 2.60, where MCHANGE-T is the mean of the change scores for the
treatment group, MCHANGE-C is the mean of change scores for the control group,
SDRAW(PRE-T) is the pretest SD for the treatment group, and SDRAW(PRE-C) is the pretest SD
for the control group. (If homogeneity of variance is assumed, each of the last two terms can
be replaced by SDRAW.) Note that the values for both effect sizes are identical to the
corresponding maturation-corrected within-subjects effect sizes (Eqs. 2 and 3), and the effect
size calculated with the raw score standard deviation is also the same as in the independent
groups design (Eq. 1).

GMA design—The IGPP can be conceptualized as a simple GMA design that uses an OLS
framework. First, growth is estimated for each subject by calculating the change (pretest-
posttest difference) score. Second, the mean of the growth scores in the treatment group is
contrasted with that of the control group. In HLM, by comparison, three or more assessment
times are required to yield a growth score for each subject using empirical Bayes estimates of
change that consider both the longitudinal data for each subject and the data from other subjects
in the analysis, and can handle missing data when every subject is not observed at all scheduled
times (Raudenbush & Bryk, 2002). The empirical Bayes estimate of the person-specific slope
indexes the rate of growth for each subject, which is analogous to the pretest-posttest difference

2These data could also be analyzed equivalently by a mixed, or split-plot, ANOVA, in which the T1 and T4 scores constitute the two
levels of a repeated-measures factor and the two groups form the two levels of the between-subjects factor. The treatment effect is tested
by the F for the interaction of the two factors, which is identical to the F from the one-way ANOVA performed on the change scores.
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score for each subject in the IGPP. As with IGPP, at stage two, the means of the growth scores
are compared between groups, although GMA uses GLS rather than OLS in analysis
(Raudenbush & Bryk, 2002).

Unlike in the previous designs, a GMA can use all four waves of mock data reported in Table
1, and an HLM analysis was conducted in which the time factor was mean centered by using
linear weights (−3, −1, 1, and 3 for T1 through T4, respectively) for a four-level design obtained
from a table of orthogonal polynomials (Snedecor & Cochran, 1967) for the within-subjects
(Level 1 in HLM terminology) facet of the analysis. As shown in Table 1, Tx was a dummy-
coded variable (control = −.50, treatment = .50), and its effect was obtained in the between-
subjects (Level 2) facet of the analysis. The treatment effect is manifested in the unstandardized
coefficient reflecting the degree to which treatment group assignment moderates the slope
effect associated with improvement over time (Raudenbush & Liu, 2001). Because the Level
2 treatment predictor is a dummy variable with codes differing by one unit, the unstandardized
coefficient (β11 ) is the difference between the means of the slopes of the treatment and the
control group, β11 = .50, t(18) = 8.80, p < .001.

Raudenbush and Liu (2001) presented two formulas for effect sizes for GMA analyses
associated with treatment effects, both of which correspond directly to the effect sizes described
previously for IGPP (i.e., dIGPP-CHANGE and dIGPP-RAW, Eqs. 4 and 5):

(6)

(7)

Note that β11 is the difference between the groups in mean growth rates, and is thus analogous
to MCHANGE-T – MCHANGE-C that is used as the numerator in the formulas for computing the
effect sizes in IGPP (Eqs. 4 and 5). The square root of τ (the denominator in dGMA-CHANGE)
is the estimate of the within-group variability of the “true” scores of the slopes, which is
analogous to SDCHANGE in the formula for dIGPP-CHANGE (Eq. 4). The value of β11 (average
growth rate) must be multiplied by time to obtain the difference between the model-estimated
means of the two groups at the end of the study (adjusted for baseline differences between
groups). (Because the linear weights for time used in the analysis differed by two units between
waves, the value for time in the numerator of dGMA-RAW is 6.) The effect size of 2.60 calculated
with the standard deviation of raw scores equals the effect size found when classical designs
were used to analyze the mock data. Most important, and consistent with the current
formulation, Raudenbush and Liu (2001) used the formula for dGMA-CHANGE for power
calculations and dGMA-RAW to convey effect magnitude.

Effect-Size Formulas Reported in the Clinical Treatment Literature
Table 2 lists the 11 clinical trial articles published in JCCP in 2003−2006 inclusive that
calculated effect sizes from GMA outputs and also reported the formula used for the
calculations. The formulas are also tabled, and the last column reports the effect size for the
treatment effect in the mock dataset when calculated from each formula.

Table 2 shows that 6 of the 11 studies (Antoni, Lechner, Kazi, Wimberly, Sifre, et al.,
2006;Atkins, Eldridge, Baucom, & Christensen, 2005;Brown, Catalano, Fleming, Haggerty,
& Abbott, 2005;Christensen, Atkins, Berns, Wheeler, Baucom, & Simpson, 2004;Dimidjian,
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Hollon, Dobson, Schmaling, Kohlenberg, et al., 2006;Tolan, Gorman-Smith, & Henry, 2004)
calculated a GMA effect size defined herein as dGMA-CHANGE (Eq. 6). As previously noted,
this statistic is appropriate for use in calculations of power analysis for planned HLM studies
but not for conveying effect potency because it uses the standard deviation of change scores
rather than raw scores. Thus, the value for d in the table for these 6 studies is the same effect
size reported for the dGMA-CHANGE in the analysis of the mock data.

Two of the remaining 5 studies (Atkins, Berns, George, Doss, Gattis, & Christensen, 2005;
Schultz, Cowan, & Cowan, 2006) reported effect sizes in the r metric obtained from a formula
that uses the t ratios and the df--both of which are reported for treatment effects in HLM
outputs--that is widely found in texts directed at meta-analysts (e.g., Rosenthal, 1991). Thus,
the effect size for the mock data using this formula had to be converted to an algebraically
equivalent d (McGrath & Meyer, 2006). The resulting d is incorrect because the r was biased,
as it was calculated from statistics that incorporated the intercorrelations among the repeated
measures and is thus an effect size based on the standard deviation of change scores. (Because
a study by Beevers and Miller, 2005, reported HLM coefficient-based effect sizes in the r
metric, it is likely they also used this formula, although it was not specified in their article.)
An additional study (Sandler, Ayers, Wolchik, Tein, Kwok, et al., 2003) used an effect-size
formula that was algebraically equivalent to that used by Atkins et al. (2005) and Schultz et
al. (2006) but was expressed in the d rather than r metric. Thus, no conversion was needed to
produce the same effect size found in Atkins et al. and Schultz et al. when applied to the mock
data.

The final two studies (Fraser, Galinsky, Smokowski, Day, Terzian, et al., 2005; Rye,
Pargament, Pan, Yingling, Shogren, & Ito, 2005) used non-standard formulas, without
adequate explanations for their use. Neither of the two formulas used the estimate of the
population standard deviation (i.e., standard deviation of raw scores) in the denominator nor
produced the effect size of 2.60 found consistently in the analyses of the mock data.

Absence of Effect-size Formulas in the Prevention Literature
The review could not locate a single study in Prevention Science that provided formulas for
effect size calculations. A comparison of reporting practices for GMA analyses between this
journal and JCCP is problematical because of the confounding of journal with GMA
methodology. The vast majority of GMA studies published in JCCP used HLM, and the vast
majority of GMA studies published in Prevention Science used LGM. Nearly all reported
model-based effect sizes observed in the GMA articles reviewed were calculated by
investigators who used HLM (and published in JCCP).

A key reason for this difference in reporting practices is that the LGM approach is grounded
in a structural equation modeling framework. When intervention evaluators use LGM, their
reports generally include path analysis-type figures that display the regression coefficients for
all the different paths. The diagrams include coefficients for the paths from the intervention to
a latent “slope factor” that reflects the treatment effect. The mostly developmental researchers
who use LGM to evaluate interventions are primarily interested in formulating a structural
model that will not be rejected by a chi-square test, and less concerned with reporting analogues
of d than with providing the goodness-of-fit indices (e.g., Comparative Fit Index, Root Mean
Square Error of Approximation) associated with the tests of their models.
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Discussion
Explanations for Effect-Size Discrepancies in JCCP

None of the formulas used to calculate the GMA-derived effect sizes reported in JCCP during
a recent four-year period yielded the expected effect size of 2.60 when applied to the analyses
of mock data. What is the source of the discrepancies in effect sizes? And why do most
researchers using GMA (especially prevention researchers who conduct LGM analysis) fail to
report model-based effect sizes at all, even when such reportage is mandatory for publication
of research in APA journals (and journals like Prevention Science that recommend authors
follow APA recommendations for article preparation)?

One likely reason why most interventions researchers do not report effect sizes for GMA is
that the topic has not yet been covered in the texts and users’ manuals for either HLM (e.g.,
Hedeker & Gibbons, 2006; Hox, 2002; Raudenbush & Bryk, 2002; Raudenbush et al., 2004)
or LGM (e.g., Muthen & Muthen, 2007). Moreover, none of the key programs used to conduct
GMA provide effect sizes associated with the coefficients they report (and test for statistical
significance). Unfortunately, users of GMA programs often report the coefficient for the slope
difference as if it were the effect size rather than an unstandardized regression value that equals
the mean differences in slopes of arbitrarily-scaled outcome measures.

With limited guidance available on the computation of effect sizes for GMA in the same metric
used in traditional designs, program evaluators have adapted procedures described in meta-
analysis texts (e.g., Rosenthal, 1991), or reported effect sizes based on group differences in
observed data (e.g., end-of-trial means for completers) rather than from estimates based on the
GMA models (e.g., Blumenthal, Babyak, Carney, Keefe, Davis, et al., 2006). GMA researchers
who cited Raudenbush and Liu's (2001) article on effect sizes for HLM designs all used the
less appropriate of the two formulas the authors presented because that article's focus was on
the effect size appropriate for use in power analysis for GMA (i.e., dGMA-CHANGE, Eq. 6). The
formula they provided for the effect magnitude (dGMA-RAW, Eq. 7) was mentioned only in
passing, and expressed verbally rather than mathematically (see the last complete paragraph
on p. 393, where Raudenbush and Liu calculated a dGMA-RAW of .30 for illustrative data from
a four-year study where β11 was .0219 and the population standard deviation was estimated as
15).

Most important, the literature addressing the differences between the two types of effect sizes
in repeated measures has limited the discussion to traditional designs (e.g., Morris & DeShon,
2002). Thus, the present article is the first to discuss the relevance of these issues to GMA.
Also, the authors who have advocated the use of raw score standard deviations for effect size
calculations have directed their concerns to meta-analysts (Dunlap et al., 1996; Hunter &
Schmidt, 2004: Lipsey & Wilson, 2001) when it is primary researchers who need to calculate
and report effect sizes associated with significance tests for the efficacy of their interventions
(Fidler, Cumming, Thomason, Pannuzzo, Smith, et al., 2005). As a result, the important
distinctions between the two types of effect sizes are not widely known.

Implications for Power Analysis
Because GMA outputs can be used to estimate the same effect size parameter as results from
an independent groups analysis, the GMA effect size for efficacy (i.e., dGMA-RAW, Eq. 7) can
be used in the calculation of power for a planned independent groups analysis (as well as for
both within-subjects and IGPP analyses if either the pretest-posttest correlation or population
standard deviation is also known). However, the effect size calculated using the standard
deviation of change scores (dGMA-CHANGE, Eq. 6) that is appropriate for use in the power
calculations for HLM should not be used in power calculations for ANOVA. By contrast, effect
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sizes calculated from observed means (i.e., from traditional analyses) cannot be used as the
required statistics for calculation power for an HLM study using the methods and programs of
Raudenbush and his colleagues (Raudenbush & Liu, 2001;Spybrook, Raudenbush, Liu, &
Congdon, 2006) because the HLM power analysis requires an effect size based on the standard
deviations of the “true” scores of the slopes (i.e., τ, Eq. 6). Because this effect size can only be
obtained from an HLM study, only dGMA-CHANGE from a previous HLM analysis can be used
for calculating power for a planned HLM analysis.

Implications for Meta-Analysis
Both types of GMA effect sizes may be fruitfully used in meta-analyses but for different
purposes. The ds based on the standard deviation of model-based estimates of change
(dGMA-CHANGE, Eq. 6) could be cumulated from a series of HLM studies to obtain an estimate
of the effect size that would be useful for power analysis in planning future HLM studies.
Indeed, a recently developed program to calculate power for HLM analysis requires the user
to estimate dGMA-CHANGE (Spybrook et al., 2006), and meta-analyses of these values from
prior HLM analyses would be the ideal means to obtain such estimates. Additionally, moderator
variables analysis could be employed when ds are heterogeneous to identify study
characteristics associated with the effect sizes. This would allow a researcher planning a study
with an HLM design to assume the dGMA-CHANGE that would be expected given the study
characteristics of the planned research.

By comparison, the ds calculated with the standard deviation of raw scores (dGMA-RAW, Eq.
7) should be included in a meta-analysis that examines the strength of the treatment effect by
pooling outcomes from different GMA studies, or studies using diverse designs that include
GMA. A key difficulty with using either effect size in a meta-analysis to which they should
appropriately contribute relates to the sampling variance associated with each effect size
(Morris & DeShon, 2002). The sampling variances of the effect sizes, which needs to be
included in a meta-analysis, have been derived for traditional designs (Becker, 1998;Glass,
McGaw & Smith, 1981;Hedges & Olkin, 1985;Morris & DeShon, 2002) but not for GMA.

Until statisticians have derived the sampling variances for GMA effect sizes, psychologists
need interim solutions. It would almost certainly be unwise to exclude a randomized clinical
trial from a meta-analysis because the sampling variability is not precisely known when an
unbiased estimate of the effect size and the sample size are both available. It also would be
inappropriate to use in a meta-analysis end-of-treatment statistics from a completers’
subsample to calculate an effect size for “independent groups” because any advantages gain
by conducting a GMA at the empirical level would be lost at the meta-analytic level.

One possible alternative would be to enter into a standard meta-analysis program the GMA
effect size and the requisite sample sizes. The program would then handle the effect size exactly
as if it had been obtained from an independent group design with the same sample size. This
approach would be superior to using end-of-treatment data to calculate d because the effect
size used would be based on data from all subjects using end-of-study means estimated by the
GMA model.

HLM versus LGM Designs
Although the mock dataset was analyzed by HLM to illustrate calculation of effect sizes, the
identical mean difference between slopes can be obtained in LGM, thus allowing for the
computation of dGMA-RAW using outputs from LGM programs (e.g., Mplus). Because of the
mathematical model used, however, no within-group variations in change estimates are
available for LGM (Muthen & Curran, 1997). Thus, dGMA-CHANGE cannot be calculated using
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LGM outputs, and other methods are needed to compute power analyses for studies using LGM
(see Muthen & Curran, 1997).

Choice of Standard Deviation for Use in Calculation of GMA Effect Sizes
Although there is a consensus that the denominator in the effect size should use the estimate
of the standard deviation of the outcome in the population, there is a debate as to whether that
estimate should be based on the pooled-within group standard deviation, or obtained from the
control group alone. This controversy has existed since the dawn of meta-analysis (Glass et
al., 1981). Most meta-analytic procedures used today assume homogeneity of variance, and
work with variances pooled from the two groups to yield a more stable estimate of within-
group variability (e.g., Hedges & Olkin, 1985). This is also a practical approach because the
meaningfulness of d is difficult to interpret when groups differ simultaneously in central
tendency and variability (Feingold, 1995). However, HLM can be used to examine variability
differences to test the assumption, and to compare groups when both types of differences are
significant (Raudenbush et al., 2004). More important, the concern with estimating variability
from the control group alone really applies only to completely randomized designs, in which
all estimates of variability are obtained after the administration of the intervention. When
baseline data are collected at the onset of a study in which participants have been randomized
to groups (as in both IGPP and GMA), all descriptive parameters should be identical in both
groups.

Intercept and Non-linear Polynomial Differences between Groups
As with the effect size for IGPP (dIGPP-RAW, Eq. 5), the end-of-study effect size for GMA
(dGMA-RAW, Eq. 7) does not compare the means between the groups at the end of the study
but the degree to which that mean difference is greater at the end than at the onset. Assuming
random assignment at the start of the study, the expected mean difference between the two
groups at baseline is zero. Thus, the expected value of the numerator in the calculation of
dGMA-RAW at end of the study is the degree to which the mean is higher for treatment than
controls at that time. (However, dGMA-RAW is corrected for baseline group differences that
occur as the result of sampling errors.)

The concepts delineated to explain effect sizes for trajectory comparisons between intervention
and control groups can be extended to analyses in which two groups are not formed by
randomization, such as gender (e.g., Raudenbush, 1995) or diagnostic status (e.g., Feingold,
Kerr, & Capaldi, 2008). Because men and women, for example, may differ at baseline as well
as in their growth rates over time, the two types of end-of-study mean differences may not be
the same. Including both the intercept and linear slopes in the model to estimate end-of-study
means would yield an effect size that would reflect the sex difference at the end of the study
rather than the degree to which the sex difference was greater at the end than at the onset. In
addition, a quadratic term can be included in the growth model when differences in rates of
acceleration are hypothesized (Raudenbush & Liu, 2001). Indeed, the capability to examine
non-linear trends over the course of a study is a key reason to use GMA over IGPP. In general,
all polynomial functions that differentiate between groups need to be considered in determining
the model-based estimate of end-of-study means for each group, and Eq. 7 is a simplified
formula that is applicable when only a linear trend without an intercept is included in the GMA
model. (See Atkins, 2005, for an example of an approach that derives separate Level 1 linear
and quadratic coefficients as a result of Level 2 coefficients associated with the between-
condition differences for these two polynomials, and how these separate equations can be used
to obtain an estimate of the end-of-study mean for each group. The difference between these
two estimated means can then be divided by the estimate of the population standard deviation
to obtain dGMA-RAW .)
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Conclusions
Researchers who conduct controlled clinical trials need to calculate effect sizes that are
comparable across studies and suitable for inclusion in meta-analyses that combine studies
using different statistical designs (Olejnik & Algina, 2003). Such comparability and synthesis
are needed to advance the fields of treatment and prevention sciences, particularly when
combined with rigorous criteria for primary research (e.g., Flay, Biglan, Boruch, Castro,
Gottfredson, Kellam, et al., 2005). Effect-sizes for GMA can be expressed in same metric as
those calculated from classical designs by dividing the model-based estimates of mean
differences at the end of the study by the within-group standard deviation of raw scores that
estimates the variability in the outcome measure at baseline.
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Table 2
Formulas for Growth-Modeling Effect Sizes in the Clinical Literature Applied to Mock Data in Table 1

Study Reported Formula d

Antoni et al., 2006 d = β/(τ)1/2 29.36

Atkins, Berns et al., 2005 r = (t2/( t2 + df))1/2 4.15

Atkins, Eldridge et al., 2005 d = β/(τ)1/2 29.36

Brown et al. 2005 d = β/(τ)1/2 29.36

Christensen et al., 2004 d = β/(τ)1/2 29.36

Dimidjian et al., 2006 d = β/(τ)1/2 29.36

Fraser et al., 2005 d = β/(τ + σ2)1/2 .89

Rye et al., 2005 d = β/σ .89

Sandler et al., 2003 d = t (n1 + n2)/(df)1/2(n1n2)1/2 4.15

Schulz et al., 2006 r = (t2/(t2 + df))1/2 4.15

Tolan et al., 2004 d = β/(τ)1/2 29.36

Note. d is the effect size when the reported formula was applied to the statistics generated from HLM analysis of the mock data in Table 1 (with r-to-d

conversion applied when tabled formula was expressed in the r metric). In HLM, σ2 refers to the Level 1 error variance.

Psychol Methods. Author manuscript; available in PMC 2009 July 19.


