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Abstract
Predicting the behavior of living organisms is an enormous challenge given their vast complexity.
Efforts to model biological systems require large datasets generated by physical binding experiments
and perturbation studies. Genetic perturbations have proven important and are greatly facilitated by
the advent of comprehensive mutant libraries in model organisms. Small-molecule chemical
perturbagens provide a complementary approach, especially for systems that lack mutant libraries,
and can easily probe the function of essential genes. Though single chemical or genetic perturbations
provide crucial information associating individual components (for example, genes, proteins or small
molecules) with pathways or phenotypes, functional relationships between pathways and modules
of components are most effectively obtained from combined perturbation experiments. Here we
review the current state of and discuss some future directions for ‘combination chemical genetics’,
the systematic application of multiple chemical or mixed chemical and genetic perturbations, both
to gain insight into biological systems and to facilitate medical discoveries.

An important challenge facing the life sciences is to quantitatively describe the bewildering
complexity of living organisms1, both to appreciate the elegance of nature and to make
medically relevant predictions. The scope of this complexity is vast. Even the function of a
single mammalian cell typically involves coordinated activities among over 20,000 genes,
100,000 proteins2, and thousands of small-molecule lipids, carbohydrates and metabolites,
each of which may be expressed at differing levels over time. These components interact in
physical complexes and functional modules that operate at many levels of organization1. The
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systems biology approach to understanding such processes involves constructing large-scale
models of cellular function, using networks of metabolic and signaling pathways extended and
buttressed by incorporating interaction data obtained from physical binding experiments3.

Systems biology models are refined by exposing a system to experimental perturbations and
assessing responses for consistency with model predictions3. A striking example of this
approach was the construction of a detailed model of the pathways controlling sea urchin larval
gut development that could predict specific abnormal phenotypes (for example, gut
duplication) upon mutation4. Genetic perturbations are attractive because they make it possible
to manipulate individual macromolecular components with little ambiguity about which target
has been directly affected. Moreover, the advent of comprehensive mutant libraries for several
model organisms permits the large-scale investigation of phenotypic sensitivities across the
entire genome, which can be extended through the use of complementary DNA and RNA
interference libraries5,6. However, genetic perturbations are labor intensive, cannot resolve
protein functions that differ between contexts, and generate secondary effects by modulating
the target protein's own abundance. Because chemical perturbagens avoid many of these
concerns, genetic screens can be complemented by ‘chemical genetics’ studies that use organic
molecules as perturbers7.

Although single perturbations are effective at determining which components in a system are
essential for a phenotype, functional connections between components are best identified either
by direct interaction data or through combination effects8. For example, paired genetic
mutations can distinguish whether two nonessential genes have serial or parallel
functionalities9,10, and analyses across larger sets of perturbations can resolve the system into
functional modules and pathways11,12. With the arrival of genome-scale mutant libraries,
comprehensive combination genetic experiments are now being undertaken in model
organisms such as yeast8, nematodes13 and bacteria14. This approach has also been extended
to chemical-gene interactions15-17 and purely chemical combinations18,19, thus marking the
advent of a new area of investigation: combination chemical genetics.

Combination chemical genetics (CCG) can be defined as the systematic testing of multiple
perturbations involving chemical agents and can include purely chemical combinations or
mixed chemical and genetic perturbations. Classical and chemical genetics are generally
divided into ‘forward’ screens, in which uncharacterized perturbers are tested against a chosen
phenotype to identify genes affecting that phenotype, and ‘reverse’ studies, in which a specific
gene or protein is modulated and multiple phenotypes are monitored to determine the effects
of that target7,20. Studies involving combined perturbations can be similarly classified (Fig.
1) with the mechanistic focus shifted from individual targets to interactions between them.
Here we present an overview of this emerging field and discuss uses of CCG for both scientific
understanding and medical discoveries.

Chemical genetics
Research in chemical genetics developed over time as a field derived from classical genetics,
and most of the methods and terminology used reflect that history. Genetic knockouts have
their counterparts in chemical ‘knockdowns’, and studies can be designed to be either forward
or reverse depending on the direction of learning that underlies their motivation7,20. Forward
studies involve testing many chemical probes against one or a few phenotypes in order to
identify active agents, and reverse studies perform multiple phenotype measurements on a few
related chemicals to characterize their function. In both cases, chemical agents can be analyzed
across a panel of phenotypic assays to identify either broad activity or selectivity between the
phenotypes. The essential tools for chemical genetics include large, diverse libraries of
chemicals with both known and unknown biological targets21 (Table 1). These can comprise
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approved drugs22 and mechanistically characterized chemical probes23, which are often
informed by chemical-protein associations from the literature24.

Chemical perturbations provide information that is distinct from and complementary to the
information provided by genetic mutations, given the differences between how they modulate
protein functions7. The advantages of chemical perturbations are that they (i) can target a single
domain of a multidomain protein, (ii) allow precise temporal control that is critical for rapidly
acting processes, (iii) can target orthologous or paralogous proteins, enabling comparisons
between species or redundant functions, and (iv) do not directly alter the concentrations of a
targeted protein, thus avoiding indirect effects on multiprotein complexes. Small molecules
also lend themselves more readily to combination interventions, making them especially useful
for integrating systems and chemical biology9,19.

The main challenges with using small molecules are that they are generally pleiotropic—they
have multiple dose-dependent molecular targets that are often not fully characterized, which
leads to unexpected activities. Some small molecules also have additional liabilities that can
hamper their use, such as in vitro aggregation, poor solubility, difficulty traversing biological
membranes and reactive or toxic functionalities. Moreover, compounds are subject to
metabolic modifications in vivo that can substantially alter their activities and toxicities. Such
liabilities can be minimized in many cases, but suitable precautions need to be taken; for
example, multiple structurally distinct probes sharing a known target can be used to distinguish
off-target from on-target effects. Finally, despite the impressive size of chemical databases
(Table 1), the known targets of bioactive libraries still cover only a small fraction of the
proteome22. This deficiency is due to the difficulty of finding biological targets, constraints
such as cellular compartmentalization or varying protein levels that make some targets
inaccessible, and the limited structural diversity of libraries generated by combinatorial
chemistry25.

Forward chemical genetic approaches have recently yielded medically relevant and
biologically informative insights. For example, comparing activity profiles across ∼70,000
compounds revealed that modulating the activity of mitochondrial voltage-dependent anion
channels causes the selective death of RAS-transformed tumor cells26, and subsequent
mechanistic studies27 showed that three such compounds achieve this selectivity through a
new, non-apoptotic cell death process. Similarly, gene expression profiles in cancer cell lines
identified genetic markers for acute myelogenous leukemia that were then used for a chemical
genetic screen across a diverse set of 1,739 compounds, to find 8 drug candidates that induced
favorable cell differentiation signatures28. As a final example, a cell-based screen of small-
molecule libraries identified chemicals that induce stem cell self renewal through modulating
specific combinations of targets29.

Reverse chemical genetics studies have been similarly revealing. For example, a number of
annotated compounds were screened for their ability to prevent the enigmatic cell death process
that occurs in olfactory sensory neurons, among the few types of neurons that turn over in
vivo30. The study found that jun kinase (JNK) inhibitors could prevent this cell death by means
of a new functional role for the target, and it validated this new signaling function for JNK
both in vitro and in vivo. As another example, after discovering inhibitors of the yeast
transcription factor component Hap3p in forward screens using immobilized small-molecule
arrays, the new inhibitor haptamide B was mechanistically characterized using whole-genome
transcriptional profiling of wild-type and knockout yeast cells31. Finally, a compendium of
expression profiles was used to functionally characterize small-molecule treatments32, which
demonstrates that transcriptional profiling is one of the most effective tools for reverse
chemical genetics.
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Experiments that test many compounds against a comparable number of phenotypes can be
used to integrate both forward and reverse approaches in a single study. For example, 100
diverse drugs and research probes were tested in cancer cells across ∼100 phenotypes (for 11
cancerrelevant proteins, each with ∼10 microscopic measurements of stains or fluorescent
antibodies tested at 12 concentrations of each drug)33, and the resulting dataset was used both
for assigning targets to previously uncharacterized drugs and for measuring the functional
responses to drugs with remarkable detail. Also in this category is the Connectivity Map
project34, which is systematically collecting whole-genome expression profiles across
multiple tumor cell lines for a large number of chemical agents, with both a forward goal of
identifying chemicals with desirable selectivity across a multigene expression phenotype and
a reverse objective of mechanistically characterizing drug responses.

Combined perturbers
Combined perturbation studies are inherently more complex than those based on single agents.
In particular, the interaction needs to be compared to the individual single-agent effects in order
to determine whether there is “synergy,” where the agents cooperate toward a phenotype, or
“antagonism,” where they impede each other's activity. Systematic combination experiments
also require quantitative models that represent the expected combination effects, against which
synergy and antagonism can be measured.

Historically, interactions between genes have been described as epistatic relationships deriving
from statistical concepts35. In these models, the fitness of a double mutant in the absence of a
genetic interaction is expected to be the product of the individual fitness measurements of the
corresponding single mutants. Another definition of epistasis derives from the work of Bateson
and is typically used to describe situations in which the activity of one gene masks effects at
another locus, allowing inferences about the order of gene action. Classical examples of
Bateson-type epistasis analysis include studies of signaling pathways that control the yeast cell
cycle, nematode pheromone responses and sex determination in Drosophila melanogaster35.
More recently, defining the nature of genetic interactions has been expanded36,37 and modeled
in the context of metabolic10 or other cellular networks38.

When working with chemicals, the effects of varying the concentrations need to be
considered39 (Fig. 2). Chemical agents generally transition from inactive to a fixed effect level
as the dose increases, and the rate of transition depends on the mechanistic interaction between
the perturber and its target (for example, whether the chemical is a competitive or allosteric
inhibitor). Introducing a second agent can cause synergy or antagonism either by boosting the
high-dose response to a different effect level or by shifting the transition to a higher or lower
concentration. Many chemical perturbers also affect multiple targets, in some cases at distinct
doses, leading to several transition levels in their response curves and further complicating any
combination analysis. Chemical responses can be measured for drug-gene interactions using
serially diluted dose series experiments with and without the genetic perturbation. For chemical
combinations, however, the optimal dosing ratio between the agents is unknown, so it is useful
either to test the combination as a fixed doseratio series, where component drugs are mixed at
a high concentration and the mixture is diluted serially, or to use a factorial “dose matrix”
testing all pairs of serially diluted single-agent doses. The results from a dose matrix experiment
can be visualized as a three-dimensional response surface, or from the top using color to
represent the different effect levels. By focusing on a chosen effect contour with an
“isobologram,” it is possible to visualize how much dose shifting has occurred at that level
owing to synergy or antagonism between the agents.

Determining synergy for chemical combinations is also more complicated39. The genetic
interaction models have their counterparts (Fig. 2) in Bliss independence (multiplicativity) and
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Gaddum's non-interaction (masking). For medical applications, however, the most relevant
reference is Loewe additivity, which is the dose-additive expectation for a drug combined with
itself, usually compared to observed synergies via a combination index40. Although all three
reference models are indistinguishable when one of the perturbations has no effect alone, there
has been considerable disagreement concerning which null-interaction model is most generally
applicable to biological contexts19,37,39. For now, it seems that genetic interactions in
proliferation assays find mostly multiplicative effects37, whereas chemical combinations are
dominated by masking responses19. Ultimately, comparisons between genetic and chemical
effects should be made using a single null-effect reference that is mechanistically appropriate
to a common measured endpoint.

Going beyond simply measuring synergy or antagonism, dose matrix responses to chemical
combinations can also provide detailed mechanistic information. Although modeling
combination effects for theoretical networks of reactions has historically proven difficult41,
largely because the combination index at a chosen effect level can be very sensitive to the
assumed kinetic parameters in each reaction, more recent efforts focused on the dynamic
responses of multiply inhibited simulated networks across different effect levels have yielded
more stable predictions19,42. When performed in dose matrices, such simulations produce a
variety of synergistic and antagonistic responses whose surface shapes contain information on
the topological connectivity between inhibited targets19 (Fig. 3). Experimental dose matrices
can be morphologically compared to responses from many simulations like these, each of which
represents a mechanistic hypothesis about how the targets are connected in the network under
study, to determine which hypotheses are most consistent with the data.

The experimental designs for CCG studies bear a direct resemblance to those used for classical
and chemical genetics (Fig. 4). Tests in each phenotype become either paired-dose series or
full-dose matrices, depending on whether the perturbers can be continuously dosed, and in each
case the combination data are used to derive a score quantifying synergy or antagonism between
the perturbers. By analogy with chemical genetics, forward CCG studies involve testing
multiple combinations against one or a few phenotypes in order to identify synergistic
interactions or conditional sensitivities, and reverse studies perform multiple phenotype
measurements on combinations aimed at a few related interactions to characterize their
function. Both approaches can be integrated by collecting profiles across many combinations
for many phenotypes, thus enabling large-scale profile comparisons in either direction.

Chemogenomics
The most advanced area of combined chemical genetics involves the joint application of
chemical and genetic perturbations. The budding yeast Saccharomyces cerevisiae has
dominated this field, owing to the comprehensive genetic tools that have been developed. These
resources include a systematic gene deletion set, where precise start-to-stop mutant strains were
constructed for ∼6,000 genes (homozygous for inessential and heterozygous for essential
genes)15. The strains were constructed with molecular tags to permit individual mutant
sensitivities to be extracted from genome-wide competitive growth in a single culture43.
Mutant libraries are being developed for a number of other model organisms, and the
construction of large RNA interference (RNAi) probe sets and open reading frame (ORF)
libraries (Table 1) has opened up still more organisms for systematic genetic testing. Using
these tools, “chemogenomic” chemical sensitivity screens can be carried out that can test large
sets of cells with mutated, silenced or overexpressed genes against panels of chemical
perturbations.

Early large-scale efforts in CCG focused on discovering interactions between chemical and
genetic perturbations in bacteria, beginning with statistical epistasis between random
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mutagenesis and chemical stresses44. The introduction of large-scale yeast mutant libraries,
however, caused a rapid transition to chemogenomic screening, which had both the forward
and reverse aspects of integrated chemical genetics. For example, a screen of 74 drugs and
chemical probes against a panel of ∼3,000 heterozygous yeast mutants identified sensitive
strains as likely targets for most of the chemicals17. Another study that tested ten drugs at
multiple doses against a comprehensive panel of yeast mutants identified multiple genes that
conferred sensitivity to each of the drugs16. Mutant sensitivities involving haploinsufficient
essential genes were used to identify direct targets of the drug, but those from homozygous
deletions discovered gene products that act indirectly on the drug's targets16. When such drug
sensitivity profiles are compared with double-mutant fitness profiles involving a drug target's
pathway45, the degree of similarity can provide further information on the drug's mechanism
of action. As an example of reverse CCG among these studies, chemogenomic screening with
homozygous strains produced insights on the machinery of RNA processing16.
Chemogenomic screens in yeast cells have also been used to discover a new antineoplastic
mechanism that induces mitotic arrest46 and to identify potential toxicities related to the off-
target effects of psychoactive drugs47.

Chemogenomic screening in other organisms has also advanced, often with a more direct focus
on drug discovery applications. For example, screening natural compounds using a Candida
albicans mutant set identified fungal-specific inhibitors of mRNA polyadenylation48, thereby
opening a new mechanistic class for potential antifungal therapies. In human cells, combining
RNAi perturbation with small molecules49 offers insights into the activity of chemical
combinations on both normal and abnormal disease-relevant cell types. For example, small
interfering RNA screens with commonly used antineoplastics in tumor cell lines have identified
potential targets for cotherapeutic cancer treatment50. Whole-genome expression signatures
have also been used as a phenotype to identify a beneficial interaction between the mTOR
inhibitor rapamycin and the glucocorticoid receptor as a potential therapy for lymphoid
malignancies51.

As the number of genetic perturber sets expands (Table 1), chemogenomic approaches will
provide ever larger sets of interaction data to aid with systems biology modeling efforts52. The
analysis of chemogenomic screens presents a formidable challenge because they involve
profiles with thousands of combinations, where each single agent might have multiple states
of genetic perturbations (knockout, knockdown, overexpression) and many doses of chemical
components. Such datasets will require both appropriate synergy analyses for each individual
response matrix19 and global displays and statistics for determining mechanistic patterns
between the interactions53.

Combinations of chemicals
The usefulness of synergistic drug combinations has long been appreciated9,39,54,55,
especially in the therapeutic areas of cancer and infectious diseases. Multitarget synergies
between drugs can be used to overcome resistance to one of the components, to make use of
targets that are individually insufficient for therapy and to reduce side effects through dose
sparing56. However, although there have been numerous individual studies of synergistic
combinations39, it is only recently that systematic large-scale testing of chemical combinations
has been pursued18,19,57. Owing to the required investment in concentration sampling, these
efforts have focused on testing integrative phenotypes, such as growth, that are influenced by
many cellular components, rather than monitoring many genes simultaneously.

The first systematic CCG efforts involving pure chemical combinations were aimed directly
at drug discovery. Using a dedicated screening platform, an effort focused on cancer,
inflammation and fungal assays identified a number of synergies as potential combination
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therapeutics57. All three assays yielded unexpected interactions involving drugs not normally
administered toward the target therapy. Both the anticancer and the anti-inflammation synergy
translated to animals57, and the latter has since been confirmed in a phase 2a clinical trial58.
Drug discovery approaches of this kind must consider the possibility of synergistic toxicity
and in vivo pharmacological interactions59 that can complicate delivery of the combination to
targeted tissues or cause metabolic hepatotoxicity. Synergies in cell-based assays can also fail
to translate when tested in animals or humans. To avoid such concerns, it is essential to carry
out counterscreens and preclinical investigations, which can be guided by published toxicity
or drug interaction data for the single agents, before considering any potential combination
therapies for the clinic.

The use of chemical combination screens to extract mechanistic information is at an earlier
stage. The first such screen tested all pairs of 21 antibiotic drugs in Escherichia coli bacterial
proliferation at single combination dose points18. This study found a wide variety of
combination effects between the drugs and was able to identify modules of drug pairs whose
group interactions were purely synergistic or antagonistic, where each module comprised drugs
targeting related cellular functions. Another chemical genetic screen in Candida glabrata
yeast19, testing all pairs of ten antifungal drugs in six-by-six dose matrices, confirmed the
relationship between response matrix morphology and target connectivity expected from
dynamic pathway simulations19 (Fig. 3). Also in that study, an analysis of synergy profiles
derived from an anticancer screen in HCT116 cells that tested all pairs of 90 drugs and research
probes in six-by-six dose matrices found that probes with related targets had more similar
synergy profiles than those with disparate functions19. These examples illustrate how CCG
using chemical combinations, especially with varying doses, can reveal constraints on the
topology of the underlying cellular network and assist with identifying unknown activities of
chemical probes in the library. It is important to note that the relevance of combination effects
from phenotypic experiments is limited to the cell systems under study and that mechanistic
conclusions from in vitro synergies can fail to translate to other contexts (for example, due to
cell type differences or in vivo pharmacological drug interactions). In any case, such studies
are dependent on libraries of well-characterized chemical probes with known biological targets,
and it is especially valuable to have several chemically distinct probes targeting the same
protein when possible in order to separate on-target (consistent responses) from off-target
(inconsistent response) effects.

Almost all of the past CCG screens involving combinations of chemicals have been essentially
forward studies, aimed at uncovering unexpected synergies or interactions between drug
targets. Reverse CCG studies are a more recent development but are increasingly undertaken,
especially to elucidate the mechanisms of anticancer synergies. For example, whole-genome
transcriptional profiling in prostate cancer cell lines of synergies between taxane microtubule
binders and either estramustine60 or capecitabine61 identified genes associated with the
synergistic response that were not present in the single agents' profiles. Another study testing
the combination of the apoptosis inducer taurolidine with tumor necrosis factor (TNF)-related
apoptosis-inducing ligand (TRAIL) used esophageal carcinoma cells and flow cytometry to
characterize the synergistic responses in many apoptosis-related signaling proteins62. In yeast,
chemogenomic screening performed over multiple doses of several drug combinations was
used to map strain-specific interaction measurements onto the yeast genetic network and
identify protein complexes that buffer the cell from the drug combination53. Given recent
trends, we expect such studies to increase in frequency and complexity.

Discussion and future directions
Combination chemical genetics is an emerging field of research. Whether genetic and chemical
perturbations are applied together or combinations are purely between chemicals, CCG allows
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the testing of interactions between cellular components to be studied in new contexts and with
more detail than can be achieved with single agents or only genetic perturbations.

To make the best use of available resources, CCG researchers will need to agree on standards
for the design, data collection and analysis of experiments, building on resources already
established for chemical genetics. For example, the US National Institutes of Health (NIH)
Molecular Library Initiative63 aims to create a publically available collection of biologically
active compounds64 and experimental standards65. For CCG, it will be helpful to coordinate
common probe libraries that can facilitate comparisons between experiments, and to agree on
combination effect reference models for analyses across combination studies. Interaction data
can be collected in existing public repositories (for example, BioGRID66), which will need to
be equipped with cheminformatics tools to allow integration with the knowledge in chemical
databases21.

Chemical genetic studies will benefit from continued improvement and extension of available
chemical libraries. Efforts to catalog the druggable genome for existing chemicals22 have led
to collections of biologically active compounds with known targets23,67. Ligands for protein
targets can be identified using traditional affinity purification7, radiolabeling68 and live-cell
target-labeling approaches69. Yeast three-hybrid techniques70 and the use of immobilized
chemical or protein arrays71 can reveal direct drug-protein binding events, and
haploinsufficiency fitness tests15 can associate small molecules with their target genes, which
will be especially helpful toward characterizing the mechanisms of bioactive natural
products72. Chemical genetics probe sets are also being extended by comparing response
profiles across cell-based phenotypes33,67, by gene expression profiling28,34 and by analysis
of drug activities and side effects73. Considerable progress has also been made with
establishing libraries for specific target classes (for example, epidermal growth factor receptor
kinases74). For modulating the many targets that are not covered by current probe sets, it
remains critical to develop libraries with greater chemical diversity. Current efforts to this end
involve assembling bioactive molecular fragments75, or using diversity-oriented synthesis76
to produce complex, natural product–like libraries.

Chemogenomics efforts are becoming increasingly complex and diverse with the introduction
of expanded probe sets and higher content experimental platforms. The resources for genome-
scale genetic perturbations in S. cerevisiae and other yeasts have grown dramatically, and the
set of model organisms has expanded to include bacteria77-82, other yeasts83-85,
invertebrates13,86-88 and select vertebrates5,6 (Table 1). Genome-wide overexpression
libraries are being constructed in yeast that can be applied in conjunction with knockout
experiments to provide a complete characterization of genetic perturbations89. Finally, the
rapid adoption of RNAi technology promises a smooth transition from sequence to function
in more complex cells and metazoans90, and flow cytometry readouts permit high-throughput
analysis of changes in cell-cycle state or the expression of cytoplasmic and cell-surface
markers.

Drug discovery will remain a major driving force for combination chemical genetics, and we
expect to see expanded efforts involving forward, reverse and integrated CCG approaches
toward this goal. One advantage of forward CCG is that it is a purely empirical approach,
allowing new biological interactions to be revealed. Another potential advantage is suggested
by a recent comparison of synthetic lethality in yeast (with deletion alleles) and nematodes
(using double RNAi), which concluded that synthetic lethal interactions are not conserved91.
This suggests that the kinds of interactions probed by CCG are likely to be organism and context
specific, offering the possibility that combination therapies targeting such interactions may
achieve higher levels of selectivity than single agents toward targeting infectious diseases or
other context-dependent conditions such as cancer.
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Considering theoretical simulations, an obvious extension of the current modeling is to
simulate chemical combination effects at genome scales. This can be achieved by adapting the
metabolic simulations10 previously used for genetic interaction predictions to allow partial
inhibition rather than total knockouts for target genes. The response surfaces from such
simulations could be compared to data from matched combination experiments, and
inconsistencies could guide improvements in our understanding of the underlying biological
network. Another promising approach is to use combination effects to infer topological models
of the target network, using linear or nonlinear regression methods92 adapted for combination
data constraints93. This approach provides a data-driven complement to the model-driven
predictions from a priori reaction networks, and combining both methods should provide an
effective strategy for refining predictive biological models.

An area with considerable promise involves high-order combinations of three or more
perturbagens. Current CCG studies in yeast extend to third order (combinations of three
agents), using designs that (i) test pairwise combinations against single mutants94 or
chemogenomic profiles53, (ii) screen double mutants for sensitivity to drug treatments95 or
varying conditions96 and (iii) investigate purely chemical combinations97. All three designs
generally find synergies that pairwise interactions could not fully account for. Theoretically,
high-order combinations should yield ever more selective control of complex systems42, and
it should even be possible to use high-order testing to quantify the functional complexity of a
biological system98. Extending chemical genetic studies to yet higher order combinations
should provide constraints on the limits of medically useful synergy98 as well as mechanistic
insights into biological networks99. Another dimension to explore is the effect on synergy due
to nonsimultaneous drug application, both on heterogeneous and synchronized cell
populations, which could reveal conditional dependencies on cellular state changes. Designing
and analyzing high-order and phased combination experiments will be challenging, and it will
be an area of considerable activity in coming years.

Combination chemical genetics brings together the traditions of genetic perturbation and
synergistic drug discovery to enable the detailed study of network topology. This has been
made possible by the assembly of large, diverse chemical libraries and comprehensive sets of
genetic mutants or RNAi suppressors. This marriage of large-scale genomic approaches,
synergy analysis and chemical genetic tools offers the promise of new insights into biology
and a new avenue for drug discovery.
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Figure 1.
Combined perturber studies in the context of forward and reverse genetics. (a) In classical and
chemical genetics, “forward” screens use many uncharacterized perturbers and a known
phenotype to discover genes or proteins that affect that phenotype, and “reverse” studies test
many phenotypes using a perturbagen with a known target to determine which phenotypes are
affected by that target. In both cases, the questions under investigation center on the function
of individual genes or proteins. (b) For combination chemical genetics, the focus of
investigations shifts from individual targets to interactions between them or conditional target
dependencies, and the perturbations are applied as combinations. Here forward screens use
combinations of many perturbagens to discover interactions, and reverse studies involve
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modulating a known interaction with a set of probes targeting its components to determine
which of many tested phenotypes are affected by that interaction. Figure adapted from ref.
20.
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Figure 2.
Measuring synergy for chemical combinations. (a) Continuous perturbations with sigmoidal
response curves can cooperate either to boost the high-dose effect to new levels or to shift the
effective concentration to lower doses, and the optimal dosing ratio is usually not known. A
factorial dose matrix design can capture all of these possibilities. (b) The resulting interaction
can be analyzed using the full three-dimensional response surface or using an isobologram to
measure linear dose shifting at a chosen effect level via a combination index CI. For this
example, we show a strongly synergistic antibiotic combination that targets folate metabolism
enzymes19. (c) Synergy reference models will differ depending on the null-effect assumption.
Bliss independence (multiplicative epistasis) or Gaddum's non-interaction (Bateson masking)
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are generally used to analyze genetic epistasis, and Loewe dose additivity is most widely used
for drug combinations. The multiplicative model produces stronger effects than either of the
single agents at high combined doses, whereas masking simply follows the strongest single
agent at corresponding doses. In dose-additive combinations, the agents cooperate in the same
way as increasing the dose of a single drug. All three models can be adapted for analyzing pairs
of agonists and generalized for three or more agents.
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Figure 3.
The response shape in dose matrix experiments depends on target connectivity. In simulations
of multiply inhibited metabolic networks19, the response surface morphology depended
strongly on how the inhibited targets were connected in the network. Here we show four
representative target connectivities, where substrates (green symbols) are metabolized by
reactions (black arrows), and the reaction enzymes (white circles) are modulated by inhibitors
(red markers). The resulting response surfaces from dynamic simulations are shown to the right
of each such pathway. (a,b) Inhibitor pairs with parallel targets produced either saturated (a)
or masking (b) effects in combination, depending on whether the targets affected independent
alternatives or codependent ingredients of the final reaction. (c,d) Inhibiting serial targets along
a pathway yielded multiplicative effects (c) for partially effective single agents, but serial
targets in pathways regulated by negative feedback (d) produced strong dose shifting like that
seen in our antibacterial example (Fig. 2b). Each of these cases represents a mechanistic
hypothesis relating response shape to target connectivity, generated by the pathway
simulations.
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Figure 4.
Designing combination chemical genetics experiments. (a) The dose sampling possible for
individual pairs depends on whether the perturbagens are discrete (for example, knockouts) or
continuous (for example, chemicals, overexpression or RNAi). When the perturbers have
known cellular targets, interactions can be described in terms of those targets. (b) Following
the practices of chemical genetics, CCG involves many such experiments, either testing
multiple combinations against a few phenotypes to discover synergistic interactions (forward)
or testing a few combinations against many phenotypes to characterize the function of an
interaction (reverse). These approaches can be integrated by collecting profiles across many
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combinations for a comparable number of phenotypes, allowing profiles in either direction to
be compared for similarity or selective effects.
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Table 1
Perturbation sets for combination chemical genetics

Chemical sets Number of probes Number of targets Notes

Existing drugs 1,357 324–1,048 Drugs approved in the United States22

Drugs and probes 4,765 4,447 DrugBank23 (www.drugbank.ca/, on 2008.08.18)

Bioactives 37,349 6,128 PubChem actives100 (http://pubchem.ncbi.nlm.nih.gov/)

Literature 128,120 1,320 WOMBAT24,100 (version 2006.1)

Registered chemicals >3.7 × 107 – CAS101 (http://www.cas.org/, on 2008.08.18)

Genetic libraries Number of probes % of genome Notes

Bacteria, E. coli ~3,900 93% KO77, ORF78

Bacteria, S. aureus ∼2,600 95% ORF79

Bacteria, Brucella ∼3,000 90% ORF80

Bacteria, Campylobacter ∼1,600 98% ORF81

Bacteria, F. tularensis ∼1,500 96% ORF82

Fungi, S. cerevisiae ∼6,100 98% KO15, OX89, ORF102

Fungi, S. pombe ∼5,000 95% KO (http://www.bioneer.com/), ORF83

Fungi, C. albicans ∼2,800 45% KO84

Fungi, C. glabrata ∼500 10% KO85

Worm, C. elegans ∼11,000 50% RNAi87

Fly, Drosophila ∼13,000 95% RNAi88, ORF (http://www.fruitfly.org/)

Vertebrate, Mus musculus ∼11,000 50% RNAi6, shRNA5

Vertebrate, Homo sapiens ∼22,000 90% RNAi6, ORF103

KO, knockout; OX, overexpression; ORF, open reading frame; RNAi/shRNA, RNA interference.
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