
A RT I C L E

The Rockefeller University Press  $30.00
J. Gen. Physiol. Vol. 133 No. 5  525–546
www.jgp.org/cgi/doi/10.1085/jgp.200810153 525

I N T R O D U C T I O N

Transient receptor potential (TRP) channels are a su-
perfamily of 28 different proteins present in mam-
mals (Ramsey et al., 2006; Venkatachalam and Montell, 
2007). TRP channels have varied expression patterns 
and biophysical properties, and they have been impli-
cated in a wide range of physiological responses, including 
sensory transduction pathways involved in temperature, 
pressure, light, taste, and painful chemical stimuli.

The seven members of the canonical subfamily of 
TRP channels (TRPC) are most similar to the Drosophila 
TRP channel required in fly vision. All of the TRPC sub-
family members are nonselective cation channels with 
modest Ca2+ permeability that, at present, appear to be 
activated by both G protein–coupled receptors (GPCRs) 
and growth factor receptors coupled to PLC. The TRPC 
subfamily can be further divided into TRPC1/C4/C5 
and TRPC3/C6/C7. These can form homotetramers, 
or in some cases heterotetramers, between subfamily 
members (Strubing et al., 2001, 2003; Hofmann et al., 
2002). For the TRPC3/C6/C7 subfamily, activation may 
be mediated, at least in part, by diacylglycerol re-
leased by PLC hydrolysis of phosphatidylinositol 4,5-
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bisphosphate (PIP2) into diacylglycerol and inositol tris 
(1,4,5) phosphate (IP3). For the TRPC1/C4/C5 subfamily 
of channels, the intermediates between receptor, PLC ac-
tivation, and channel activation are not fully understood.

Early work established that in hippocampal neurons, 
TRPC1/5 heteromers and TRPC5 homomers were ex-
pressed in neuronal cell bodies, whereas only TRPC5 
homomers were trafficked to neuronal processes (Greka 
et al., 2003; Bezzerides et al., 2004). We have found no 
evidence for functional TRPC1 homomeric channels in 
heterologous expression systems (Strubing et al., 2001, 
2003), and the evidence that they exist in native cells is 
conflicting (Kim et al., 2003; Hartmann et al., 2008). In 
contrast, TRPC1/4, TRPC1/5, and TRPC4 and TRPC5 
homomeric channels clearly exist in both heterologous 
expression and native tissues.

Modulatory influences on the activity of the TRPC1/
C4/C5 subfamily channels have been described, typi-
cally for TRPC4 or TRPC5 homomeric channels. These 
include inhibition of TRPC4 ( isoform) channels by 
PIP2 (Otsuguro et al., 2008), inhibition of TRPC5 chan-
nels by nucleotides (Dattilo et al., 2008), desensitization 
of TRPC5 channels by PKC phosphorylation (Zhu et al., 
2005), and interaction of both TRPC4 and TRPC5 
channels with Ca2+ binding proteins. For example, 
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Whole cell currents were filtered at 5 kHz (4-pole low-pass Bessel) 
and sampled at 20 kHz. During whole cell recordings the capacity 
current was minimized by amplifier circuitry, and the series resis-
tance was compensated by 85%. We found that the strongly 
outwardly rectifying TRPC5 current was sensitive to the series re-
sistance remaining after compensation. Thus, outward currents 
were analyzed only in cells where the initial uncompensated series 
resistance was <10 MΩ. To calculate the current density, cell capac-
itance was either measured from the uncompensated response to 
10-mV pulses (average of 8–14 sweeps acquired at 50 at 10 kHz 
bandwidth) or from the capacitance value on the amplifier after 
compensation. All voltages were corrected for the 11- or 13-mV 
measured junction potentials present between the internal solu-
tions and the 2 Ca external solution present before seal formation. 
Experiments were performed at room temperature (21–24°C).

TRPC5 currents were elicited by voltage ramps consisting of a 
40-ms step to 100 mV, followed by a 200-ms ramp to +100 mV, 40 ms 
at +100 mV, and finally a 20–40-ms step to 60 mV. Voltage ramps 
were applied at 0.5 Hz from a holding potential of 40 mV.  
Inward currents were the average of 25 ms during the holding po-
tential preceding each ramp; we chose this potential to minimize 
the contribution of a contaminating Cl current (reversal poten-
tial 53 mV), which was occasionally recorded in cells using 
high internal [Ca2+]. Due to constitutive TRPC5 activity, currents 
were not typically leak subtracted; however, constitutive current 
was absent in recordings made using internal solutions with free 
<350 nM [Ca2+] in nominally Ca-free external solutions without 
agonist. In these cases (i.e., Figs. 6, 12, and 13), the inward current 
was leak subtracted with the average of four to eight sweeps, re-
corded in nominally Ca2+-free external solution before carbachol 
(CCh) addition.

To examine possible changes in instantaneous I-V relation for 
TRPC5 channels during potentiation by Ca2+ (Fig. 9), we used two 
protocols that gave similar results. In both, voltage steps to a con-
ditioning potential of either +90 (for 50 ms) or +100 mV (for 15 ms) 
activated TRPC5 channels, and then tail currents were measured 
from 0.7 to 0.85 ms after repolarization to potentials ranging from 
120 through +100 mV. In one set of experiments, repolarization 
was to 120, 90, 60, 30, and +60 mV for 40 ms. These were 
applied in a single sweep immediately after one another; sweep to 
sweep onset was 1 Hz. In another set of experiments, repolariza-
tion was to 100 to +100 mV (in 5-mV increments) for 50 ms; 
sweep to sweep onset was 2 Hz.

Solutions
The standard Cs-Asp internal solution contained (in mM): 150 Cs-
aspartate, 2 MgCl2, 0.36 CaCl2, 1 EGTA, 4 MgATP, 0.3 NaGTP, and 
10 HEPES, pH 7.20 with CsOH (calculated free [Ca2+] = 100 nM). 
In several experiments, we varied the amount of CaCl2 and buffer 
added to internal solutions to set free [Ca2+] to different values; 
the precise components of each internal solution are noted in the 
figure legends. The free [Ca2+] for all internals was calculated us-
ing WebMaxChelator (http://www.stanford.edu/~cpatton/maxc.
html), assuming an ionic strength of 0.16. The standard external 
solution (“2 Ca external”) contained (in mM): 150 NaCl, 4 KCl, 2 
CaCl2, 1 MgCl2, 10 HEPES, and 10 d-glucose, pH 7.40, with NaOH. 
2 Ba external solution was identical, except 2 mM BaCl2 replaced 
the CaCl2. “Nominally Ca-free” external solution contained (in 
mM): 150 NaCl, 4 KCl, 3 MgCl2, 10 HEPES, and 10 d-glucose, pH 
7.40, with NaOH. In some experiments (e.g., Fig. 12), the concen-
trations of divalent cations Ca2+ and Mg2+ were varied; again, the 
solution composition is noted in the figure legend.

Single-channel analysis
Single-channel currents were filtered with a 4-pole low-pass Bessel 
filter at 2 kHz and sampled at 50 kHz. Recordings were converted 
to idealized traces using pClamp 9 software, including only events 

calmodulin has been reported to accelerate TRPC5 ag-
onist-activated current (Ordaz et al., 2005), presumably 
via a direct interaction with the channel; upstream ef-
fects via myosin light chain kinase activation have also 
been reported (Kim et al., 2006; Shimizu et al., 2006). 
Furthermore, Ca2+ binding protein 1 has been reported 
to inhibit intracellular Ca2+ activation of TRPC5 current 
(Kinoshita-Kawada et al., 2005), whereas neuronal Ca2+ 
sensor 1 (NCS-1) appears to have permissive or stimula-
tory actions (Hui et al., 2006).

The multitude of Ca2+-dependent effects, causing 
both stimulation and inhibition, is likely crucial for con-
trol of TRPC4 and TRPC5 activity. Thus, a detailed 
knowledge of the effects of Ca2+ on the activity of these 
channels is important in understanding their potential 
physiological roles where they are expressed. This in-
cludes smooth muscle cells, neuroendocrine cells, and 
numerous neuronal cell types (Plant and Schaefer, 2005). 
Here, we focus on TRPC5 homomeric channel currents. 
We examined the regulation of heterologously expressed 
TRPC5 activity by intracellular Ca2+ using both whole 
cell and single-channel patch clamp recordings. We find 
that 1 µM intracellular [Ca2+] can lead to a 25-fold in-
crease in agonist-activated TRPC5 current at physiologi-
cal voltages, likely resulting from an increase in channel 
open probability.

M AT E R I A L S  A N D  M E T H O D S

Cell culture and transfection
Human embryonic kidney (HEK) cells were cultured in a 1:1 mix-
ture of DMEM/F-12 medium supplemented with 10% fetal bo-
vine serum at 37°C with 5% CO2 (Invitrogen). Cells were passaged 
6–24 h before transfection and transfected in 35-mm dishes using 
5 µl Lipofectamine 2000 (Invitrogen) with 1–1.5 µg of mouse 
TRPC5 (in pCI-neo) or mouse TRPC5-GFP (in pIRES, after exci-
sion of internal ribosomal entry site to generate a C-terminal fu-
sion of TRPC5 and GFP [Bezzerides et al., 2004]) and 0.8 µg of 
human muscarinic type 1 receptor (M1R; in pcDNA3). 0.05–0.1 µg 
eGFP-C1 or 0.25 µg DsRed-N1 (for fura-2 imaging experiments) 
was used as a transfection marker (Clontech Laboratories, Inc.). 
In experiments where mutant calmodulin with all four E-F hands 
disrupted (CaM1234) was used (Fig. 14), 1.64 µg CaM1234/pcD-
NA3zeo was included with the above plasmids. After 2–4 h of 
transfection, fresh media was added. 12–24 h later, the cells were 
plated onto glass coverslips. Recordings were made up to 8 h after 
plating. For inside-out single-channel recordings, coverslips were 
coated with 0.1 mg/ml poly-l-lysine to improve cell adhesion and 
subsequent patch excision.

Electrophysiology
Whole cell and single-channel currents were recorded using Axo-
patch 200A and 200B amplifiers, acquired and controlled using a 
Digidata 1320A and pClamp 9 (MDS Analytical Technologies). 
Analysis was typically performed in IGOR Pro 5 (Wavemetrics) 
and Prism 4 (Graphpad). Single-channel analysis was performed 
in pClamp 9. Pipettes were pulled from borosilicate glass capillar-
ies (WPI or A-M Systems), had resistances of 2–4 MΩ for whole 
cell recordings and 4–7 MΩ for single-channel recordings, and 
were wrapped with parafilm near their tips to reduce capacitance. 



� Blair et al. 527

teau at +100 mV (8.7-fold increase in current). The 
inward current at 40 mV increased to an even larger 
degree (17.9-fold), reaching its new peak 10 s later than 
the +100-mV peak. Despite the large current increase, 
the reversal potential did not change and the flat portion 
of the current voltage from 0 to +40 mV remained.

The different kinetics of current increase at +100 and 
40 mV are more obvious when the absolute value of 
the ratio between these currents is calculated (Fig. 1 B). 
This ratio initially increased sharply soon after CCh ad-
dition, as the outward current developed before the 
inward. After 30 s it reached a new value where the 
current at +100 mV was 16-fold larger than that at 
40 mV. However, as the CCh application continued, 
the rectification ratio steadily increased until a rapid in-
crease led to a peak where the outward current was 
67-fold larger than the inward. This large asymmetry 
in the inward and outward currents was maintained for 
only a short time, as over the next 14 s the ratio de-
clined to 7.3, lower than that achieved before the 
rapid increase in current level.

This biphasic activation, with a delayed, sudden in-
crease in TRPC5 current, was observed in 18 of 30 cells 
recorded with an internal solution containing 100 nM 
of calculated free [Ca2+] and 1 mM EGTA. These cells 
had peak current densities at 40 mV ranging from 
39 to 512 pA/pF (mean 153.0 ± 27.2 pA/pF). The 
latency from CCh addition to the peak current in these 
18 cells varied from 10 to 88 s, with some cells showing 
a nearly immediate current increase, whereas in others 
it developed more slowly (average 38.3 ± 5.5 s; Fig. 1 C). 
The current at +100 mV consistently reached its new peak 
2–10 s before the peak current measured at 40 mV. In 
the remaining 12 cells, the TRPC5 current activated 
with an approximately single-exponential time course 
before reaching steady state at 5.1 ± 0.8 pA/pF at 
40 mV (10.6 pA/pF maximum) for the duration of 
CCh application (typically 60–90 s). A similar delayed 
increase in TRPC5 currents activated by the histamine 
type 1 receptor or internal GTP--S has been reported 
by Obukhov and Nowycky (2004, 2008), suggesting that 
the response is not unique to the M1R.

Delayed potentiation of agonist-activated TRPC5 channels 
requires elevation of intracellular [Ca2+]
TRPC5 channels are Ca2+ permeable, with reported rel-
ative permeabilities of Ca2+ to Na+ (PCa/PNa) ranging 
from 1 to 14 (Plant and Schaefer, 2005). Thus, the large 
amplitude currents we recorded suggest that significant 
Ca2+ entry occurred. This Ca2+ entry might escape the 
buffering of the low concentrations of EGTA we used in 
our internal solution for Fig. 1. Thus, the delayed in-
crease in TRPC5 current could reflect a Ca2+ dependence 
of TRPC5 channels themselves or other components of 
the agonist activation pathway. If this increase is Ca2+ de-
pendent, increasing the buffering capacity of the internal 

that were >0.5 times the mean amplitude. We assumed a dead time 
of 0.25 ms. TRPC5 channel openings had single-channel conduc-
tances of 40–50 pS; in some excised patches we observed a 
smaller amplitude opening of 17.6 ± 1.1 pS (n = 5). We omitted 
these lower conductance channel-containing patches from analyses.

Calcium imaging
DsRed-positive cells were loaded with 100 µM fura-2 (pentapotas-
sium salt) via the patch pipette. Cells were held at 40 mV, and 
the typical voltage ramp protocol was applied at 0.2 Hz. Immedi-
ately before each voltage ramp, cells were alternatively illumi-
nated with 340 and 380 nm light (Lambda DG-4; Sutter Instrument 
Co.) for 100–200 ms, and the emission light >510 nm was cap-
tured using a CCD camera (Orca-ER; Hamamatsu Photonics) 
and analyzed with Slidebook (Intelligent Imaging Innovations) 
or Metamorph (MDS Analytical Technologies). After background 
subtraction, the ratio of the 340- and 380-nm excited images 
was calculated and converted to free [Ca2+] using: [Ca2+] = 
K*(RmaxR)/(RRmin), where K* = 2.7536 µM, Rmax = 12.4, and 
Rmin = 0.3. These values were calculated from average values mea-
sured using internal solutions with varying [Ca2+] in untransfected 
HEK cells as described by Neher (2005).

Chemicals
BAPTA tetracesium salt and fura-2 pentapotassium salt were pur-
chased from Invitrogen. Calmodulin inhibitory peptide and W-7 
were from EMD. Stock solutions were prepared in water (calmod-
ulin inhibitory peptide) or DMSO (W-7) and diluted fresh daily 
into the internal solution at the indicated concentrations. All 
other reagents were from Sigma-Aldrich.

Data analysis
Averaged results are presented as mean ± SEM. Population means 
were tested for significance with Student’s two-tailed t test, with  
P < 0.05 considered significant.

R E S U LT S

Agonist stimulation of M1Rs leads to biphasic activation  
of TRPC5 channels
Fig. 1 shows the typical currents evoked by voltage ramps 
in a HEK cell transiently transfected with mouse TRPC5 
and the human M1R, recorded using internal solutions 
with modest Ca2+ buffering (1 mM EGTA). The initial 
constitutive currents were quite small, with an average 
current density at 40 mV of 1.4 ± 0.2 pA/pF (n = 
30), but outwardly rectifying currents at +100 mV (20.0 ± 
2.6 pA/pF) indicated the presence of TRPC5 channels. 
Upon the addition of 100 µM CCh to activate M1Rs,  
a current with the characteristic TRPC5 I-V relationship 
immediately began to develop; the inward current was 
roughly constant from 100 to 50 mV and declined  
as the reversal potential (5 mV in our solutions)  
was approached. At potentials positive to the reversal 
potential, the current was small and flat until +40 mV, 
whereupon the current became large and relatively lin-
ear (Okada et al., 1998; Schaefer et al., 2000; Strubing 
et al., 2001).

The TRPC5 current amplitudes steadily increased 
over 60 s after CCh application, until the rate of cur-
rent change dramatically accelerated, reaching a pla-
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solution might slow or prevent the TRPC5 current po-
tentiation. Fig. 2 A shows the current densities of eight 
cells measured at 40 mV, recorded using Cs-Asp inter-
nal solution with calculated free [Ca2+] maintained at 
100 nM with 10 mM EGTA. Four of these cells had peak 
current densities at 40 mV of 14.2 pA/pF or less 
(10.9 ± 2.1 pA/pF), similar to cells in Fig. 1 C that did 
not undergo potentiation. The activation of the current 
in these four cells followed a similar single-exponential 
time course. In contrast, the currents at 40 mV from 
the remaining four cells reached peak densities ranging 
from 46.8 to 498.6 pA/pF (244.3 ± 95.1 pA/pF), 
similar to the cells that underwent potentiation in Fig. 1 C. 
The latency to peak in these cells was increased with 
10 mM EGTA in the internal solution and ranged from 
56 to 168 s after CCh application. This increase presum-
ably resulted from the requirement for more Ca2+ entry 
before escape from Ca2+ buffer control.

BAPTA and EGTA have similar KDs for Ca2+ binding, 
but BAPTA buffers 200-fold more rapidly (Naraghi, 
1997). Thus, BAPTA can more effectively reduce [Ca2+] 
at small time and spatial scales near Ca2+ entry points 
(Neher, 1998). When TRPC5/M1R-expressing cells were 
recorded using a Cs-Asp internal solution (100 nM of 
calculated free [Ca2+] now buffered with 10 mM BAPTA), 
we found that the current amplitudes were small and 
no delayed current potentiation occurred. Fig. 2 B shows 
the current densities at 40 mV for nine cells recorded 
with this internal solution: currents activated with a sin-
gle-exponential time course that reached an average peak 
amplitude of 6.3 ± 1.4 pA/pF. This result suggests that 
tight control of [Ca2+] close to Ca2+ entry sources by 
BAPTA can effectively prevent TRPC5 potentiation.

BAPTA itself might limit agonist-dependent signaling 
by inhibiting PLC (Hardie, 2005). To determine whether 
the reduction of TRPC5 current by high internal BAPTA 
results from this inhibition or from its fast Ca2+ buffer-
ing, we compared the responses in Fig. 2 B to record-
ings of TRPC5/M1R-expressing cells (1 mM EGTA in 
the internal solution) when the CCh concentration was 
reduced to 10 µM (not depicted). Previous work dem-
onstrated that heterologously expressed M1Rs activated 
with 10 µM CCh should result in 40–50% less PIP2 hy-
drolysis than with 100 µM CCh (Biddlecome et al., 1996; 
Willars et al., 1998). Out of 20 cells recorded in this way, 
10 displayed biphasic activation with large current am-
plitudes (average current density at 40 mV = 140.4 ± 
28.6 pA/pF), whereas the remaining cells had small cur-
rent amplitudes (average of 5.7 ± 0.6 pA/pF; n = 10). 
Thus, despite a lower level of agonist stimulation at M1R 
receptors, a large fraction of TRPC5/M1R-expressing 

Figure 1.  The activation of heterologously expressed TRPC5 
channels by M1R stimulation is biphasic. (A) TRPC5 currents 
evoked by stimulation of M1Rs with 100 µM CCh were elicited 
by 200-ms voltage ramps from 100 to +100 mV, applied at 0.5 Hz 
from a holding potential of 40 mV. (Top) Ramp currents re-
corded before (a) and 30 s after CCh addition (b) are shown. 
(Bottom) After 60 s in CCh (c), the TRPC5 current suddenly in-
creased 8.7-fold at +100 mV compared with b. The vertical scale 
bar corresponds to 0.75 nA in the top currents and 5 nA for the 
bottom. The dashed line indicates zero current level in this and 
all other figures. (B; Top) The current at +100 mV (open triangles, 
5 ms average at end of ramp) and 40 mV (closed circles, 25 ms 
averaged immediately before ramp) are plotted. The open bar 
indicates the timing of the application of 100 µM CCh. (Bottom) 
The rectification of the TRPC5 current, calculated as the absolute 
value of the current at +100 mV divided by the current at 40 mV, 
is plotted (open circles). (C) Average current density at 40 mV 
evoked by 100 µM CCh is shown for 30 TRPC5/M1R-expressing 
cells. For clarity, traces are truncated after the peak current den-
sity; the peak of one cell is truncated by the vertical scale. Cells 
that displayed biphasic activation (18 of 30) are shown in black, 
whereas cells that displayed a single phase of activation (12 of 
30) are shown in red. (D) Histogram of peak current density at 
40 mV after CCh addition in TRPC5-expressing cells. Internal 

solution (in mM): 150 Cs-Asp, 2 MgCl2, 0.36 CaCl2, 1 EGTA, 4 
MgATP, 0.3 NaGTP, and 10 HEPES, pH 7.20 with CsOH. External 
solution: 2 Ca external.
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1 mM BAPTA in the internal (three with 1 mM BAPTA 
and six with 0.99 mM BAPTA + 100 µM fura-2), seven 
cells had peak current densities at 40 mV from 31.9 
to 417 pA/pF (116 ± 52.3 pA/pF), with latencies 
from 20 to 270 s. The two other cells had small CCh-
elicited currents after reaching steady state (2.0 and 
2.3 pA/pF). The long latencies in two cells (220 and 
270 s) possibly resulted from the slower application of 
ramp voltages used in BAPTA/fura-2 experiments (0.2 
Hz vs. the 0.5 Hz used in all other experiments). Ca2+ 
entry might be enhanced during the hyperpolarizing 
portion of the voltage ramp, and slower application of 
ramp stimuli likely resulted in a slower intracellular 
[Ca2+] elevation.

The fact that increasing the Ca2+ buffering capacity of 
the internal solution slows or prevents the sudden po-
tentiation of the TRPC5 current suggests that potentia-
tion requires an increase in intracellular [Ca2+]. In these 
HEK cells, Ca2+ presumably enters through TRPC5 
channels, but it might also be released from endoplas-
mic reticular stores in response to IP3. To determine if 
Ca2+ entry is required for the potentiation of TRPC5 
channels, we tested whether the removal of external 
Ca2+ can prevent or reverse the delayed increase in CCh-
activated TRPC5 current (Fig. 3). For these experi-
ments, we used a Cs-Asp internal solution with 100 nM 
of calculated free [Ca2+] using 1 mM BAPTA. As shown 
for the cell in Fig. 3 A, voltage ramps applied before the 
addition of CCh elicited a small constitutive TRPC5 cur-
rent that was strongly reduced after the external solu-
tion was switched to nominally Ca-free external solution 
with 3 mM MgCl2 (51% reduction in current at +100 mV; 
86% reduction in current at 40 mV). This reduction 
was complete within the 2 s between applied voltage 
ramps and likely resulted from a decrease in the poten-
tiation of TRPC5 channels due to extracellular Ca2+ 
binding at a site in the presumed S5-pore linker region 
of the channel (Jung et al., 2003). This site is formed 
by a series of acidic residues and binds not only Ca2+ 
but also lanthanides (lanthanum and gadolinium) to 
increase channel open probability in a voltage-dependent 
manner. Constitutive TRPC5 current in the absence of 
agonist might result from constitutive activity of the 
overexpressed M1Rs (e.g., recruitment of PLC by G 
despite low Ca2+ concentrations [Drin and Scarlata, 2007]) 
or of PLC itself.

The application of 100 µM CCh in nominally Ca-
free external solution to the cell shown in Fig. 3 (A–C) 
activated TRPC5 current with a single-exponential time 
course, reaching a steady-state amplitude of 2,100 pA at 
+100 mV and 22 pA at 40 mV. Over the course of 
the 60-s CCh application, the TRPC5 current remained 
constant and never exhibited spontaneous potentia-
tion. When the extracellular solution was switched to  
2 Ca external solution (still with 100 µM CCh), both the 
inward and outward current immediately increased, again, 

cells can still undergo potentiation with low internal 
Ca2+ buffering. This suggests that the suppression of po-
tentiation by 10 mM BAPTA is likely the result of its abil-
ity to rapidly buffer Ca2+ entering the cell.

When the BAPTA concentration in the internal solu-
tion was reduced to 1 mM and Ca2+ was added to give 
100 nM of calculated free [Ca2+], the resulting TRPC5 
current amplitudes were similar to those recorded with 
1 mM EGTA (Fig. 2 C). In nine cells recorded with 

Figure 2.  Increased internal Ca2+ buffering slows or prevents the 
delayed increase in CCh-activated TRPC5 current. The calculated 
free [Ca2+] for all internal solutions was 100 nM. The TRPC5 
I-V curves were not affected by the composition of these inter-
nal solutions. (A) The average 40-mV current densities of eight 
cells recorded using an internal solution containing (in mM): 150 
Cs-Asp, 2 MgCl2, 3.62 CaCl2, 10 EGTA, 4 MgATP, 0.3 NaGTP, and 
10 HEPES, pH 7.20 with CsOH. The four cells where the peak 
current density at 40 mV remained less than 15 pA/pF during 
the CCh application are shown in red. (B) The average 40-mV 
current densities from nine cells recorded using an internal so-
lution containing (in mM): 110 Cs-Asp, 10 CsCl, 2 MgCl2, 3.10 
CaCl2, 10 Cs4-BAPTA, 4 MgATP, 0.3 NaGTP, and 10 HEPES, pH 
7.20 with CsOH. (C) The average 40-mV current densities of 
nine cells recorded using either an internal solution containing 
(in mM): 146 Cs-Asp, 2 MgCl2, 0.31 CaCl2, 1 Cs4-BAPTA, 4 MgATP, 
0.3 NaGTP, and 10 HEPES, pH 7.20 with CsOH (shown as black 
traces), or 145 Cs-Asp, 2 MgCl2, 0.307 CaCl2, 0.99 Cs4-BAPTA, 
0.1 fura-2 (pentapotassium salt), 4 MgATP, 0.3 NaGTP, and 10 
HEPES, pH 7.20 with CsOH (shown as blue traces). The two  
cells where peak current density at 40 mV remained less than 
2.3 pA/pF are shown in red (the same fura-2–free internal solu-
tion as above). 95 s have been omitted from the trace to show the 
long latency peaks in two cells. External solution: 2 Ca external 
solution for each.
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likely due to potentiation at the extracellular Ca2+/lan-
thanide site (Fig. 3 B). Over the course of the next 28 s, 
the current further increased, reaching a plateau that 
was largely maintained while extracellular Ca2+ was 
present. At this point, the peak current at +100 mV was 
approximately eightfold larger relative to the current 
recorded immediately after Ca2+ readdition; the inward 
current at 40 mV was 18-fold larger. Removal of ex-
ternal Ca2+ reversed the current potentiation, with the 
current immediately falling after Ca2+ removal, and con-
tinuing to decline over the next 90 s. The TRPC5 cur-
rent finally reached a new steady-state amplitude that 
was smaller than the initial amplitude of the CCh-acti-
vated current in nominally Ca-free external solution. 
This reduction might result from a desensitization of 
the overall response, arising either from reductions in 
the activity of TRPC5 channels themselves or other com-
ponents of the signaling pathway (e.g., receptors, het-
erotrimeric G proteins, or PLC). A subsequent readdition 
of extracellular Ca2+ (still with CCh) in this cell gen-
erated another similar response, with an immediate 
increase in TRPC5 current amplitude followed by a de-
layed peak. Although the peak currents after the first 
external Ca2+ addition were 8–18-fold larger than cur-
rents recorded immediately after the return to 2 Ca ex-
ternal solution, they retained the reversal potential and 
flat portion of the TRPC5 I-V relation from 0 to +40 mV 
(Fig. 3 C). Also, removal of external Ca2+ after CCh acti-
vation of TRPC5 did not cause a change in the reversal 
potential, strongly suggesting that the effects occur by 
altering the activity of TRPC5 channels and not unre-
lated conductances.

We quantified the extent of Ca2+ potentiation of 
TRPC5 current as the peak amplitude in 2 Ca external 
solution relative to the amplitude immediately after 
Ca2+ readdition. From eight TRPC5/M1R-expressing 
cells recorded in this way (i.e., as in Fig. 3 A), the aver-
age potentiation of the current at +100 mV was 4.75 ± 
0.62-fold. In contrast, the inward current at 40 mV was 
potentiated to a much greater extent, with the peak 
current 24.0 ± 8.5-fold larger. Replacement of external 

Figure 3.  Removal of extracellular Ca2+ abolishes large-amp-
litude CCh-activated currents in TRPC5/M1R-expressing cells.  
(A; Top) The average currents at +100 mV (triangles) and 40 mV 
(squares) recorded during the application of ramp voltage stim-
uli in the presence of the external solutions indicated by the bars. 
The black bar indicates nominally Ca-free external, the gray bar 
indicates nominally Ca-free external with 100 µM CCh, and the  

open bar indicates 2 Ca external solution with 100 µM CCh. 
(Bottom) The average TRPC5 current at 40 mV on an expanded 
scale. The lowercase letters indicate the timing of the I-V curves 
elicited by voltage ramps shown in B. (B) I-V curves for TRPC5 
current elicited by voltage ramps before (top) and after (bottom)  
potentiation. Note that the currents above 1 nA (+60 to +100 mV) 
are not shown (hatched bars; these currents continue upward 
at the same slope without saturation). (C) I-V curves near the 
TRPC5 reversal potential are shown immediately after the ad-
dition of external Ca2+ (c) and 48 s after current had reached the 
potentiated plateau (d) on an expanded scale to show reversal 
potentials. Internal solution (in mM): 150 Cs-Asp, 2 MgCl2, 0.31 
CaCl2, 1 Cs4-BAPTA, 4 MgATP, 0.3 NaGTP, and 10 HEPES, pH 
7.20 with CsOH. External solution: 2 Ca and nominally Ca-free 
external solutions had 1 and 3 mM MgCl2, respectively.
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peak was much longer in these cells (101.8 ± 31.7 s; n = 4) 
than in the M1R-expressing cells after the addition of 
10 Ca external. The reasons for such large differences 
in current activation by the two receptors are unclear, 
but they might reflect differing expression levels or re-
ceptor-dependent modulatory effects. However, Ca2+ 
potentiation can occur in response to the activation of 
multiple Gq/11-coupled receptors.

Intracellular [Ca2+] above 1 µM maximally potentiates 
agonist-activated TRPC5 channels
Our results indicate that a rise in intracellular [Ca2+] is 
required to potentiate TRPC5 current, but its detailed 
concentration dependence is unclear. Overexpression 
of TRPC5 channels might lead to non-physiological [Ca2+] 
after the activation of M1Rs. To determine the range of 

Ca2+ with Ba2+ also led to a reversal of TRPC5 current 
potentiation (e.g., Fig. 9 B), similar to Mg2+ replacement. 
The greater potentiation of inward current relative to 
outward current resulted in a more linear I-V relation 
(the flat portion positive to the reversal potential was 
maintained). A similar finding was recently reported by 
Obukhov and Nowycky (2008).

Although 18 of 30 TRPC5/M1R-expressing cells re-
corded in weakly buffered internal Ca2+ underwent 
potentiation, the 12 cells that did not undergo potentia-
tion might have had lower expression levels that re-
sulted in insufficient Ca2+ entry. Alternatively, modulatory 
processes might have prevented the ability of TRPC5 
channels in this subset of cells from responding to any 
increase in intracellular [Ca2+]. To distinguish between 
these alternatives, we increased the calcium in the ex-
ternal solution to 10 mM for cells that failed to undergo 
potentiation after initial activation by 100 µM CCh in 
2 Ca external solution. As shown in Fig. 4 (A and B), 
application of 10 Ca external solution rapidly, but 
not immediately, induced potentiation. The current 
increased over 8 s to a level approximately sevenfold 
greater than in 2 Ca external solution, and this level was 
maintained. Interestingly, returning cells to 2 Ca ex-
ternal did not abolish the potentiation, suggesting that 
the increased TRPC5 current after potentiation might 
have been sufficient to maintain high intracellular [Ca2+] 
and potentiation.

In 13 of 15 TRPC5/M1R-expressing cells treated in 
this manner, we observed potentiation of the current 
after extracellular perfusion of 10 Ca external solution 
and CCh (Fig. 4 C). The average current density at 40 mV 
in 2 Ca external solution was 7.3 ± 1.2 pA/pF, which 
increased to a peak of 70.1 ± 10.6 pA/pF (n = 13) after 
external [Ca2+] was increased to 10 mM. The average 
potentiation of the current at 40 mV was 14.6 ± 2.7-
fold (n = 13; Fig. 4 D). As shown in Fig. 4 C, the latency 
to peak current after the addition of 10 Ca external 
solution was bimodal: in 7 of the 13 cells the peak oc-
curred 8.3 ± 1.0 s (n = 7) after 10 mM Ca2+ application, 
whereas in the remaining 6 cells the peak occurred with 
a significantly longer latency of 44.0 ± 4.7 s. Both values 
are longer than the solution exchange time and pre-
sumably reflect the time course of the intracellular 
[Ca2+] rise.

We tested whether a different Gq/11-coupled recep-
tor can lead to potentiation of TRPC5 currents. Coex-
pression of the mGluR1 receptor with TRPC5 channels 
and activation by 100 µM (RS)-3,5-dihydroxyphenylgly-
cine alone did not result in potentiation in five tested 
cells, likely due to the resulting small currents (1.35 ± 
0.28 pA/pF at 40 mV, not depicted). However, subse-
quent application of 10 Ca external solution potentiated 
TRPC5 currents in four of the five TRPC5/mGluR1-ex-
pressing HEK cells, on average 22.6 ± 4.3-fold (the re-
maining cell current did not change). The latency to 

Figure 4.  The application of 10 mM of extracellular Ca2+ rap-
idly induces large-amplitude TRPC5 currents in TRPC5 and M1R 
cotransfected HEK cells. (A) The average TRPC5-mediated cur-
rents at +100 mV (triangles) and at 40 mV (squares). Open and 
black bars indicate the timing of the addition of external solution.  
(B) I-V curves taken from ramps applied at the times shown by the 
lowercase letters in A. Currents before (top) and after (bottom) 
potentiation are shown. (C) The average current densities at 40 mV 
of 15 cells in response to 10 Ca external; before calcium increase, 
the bath contained 2 Ca external solution + 100 µM CCh. Cells 
that were potentiated are shown in black, and unpotentiated cells 
are shown in red. (D) Potentiation of current at 40 mV in 10 
Ca2+ external (right) relative to 2 Ca external. Internal solution 
(in mM): 150 Cs-Asp, 2 MgCl2, 0.36 CaCl2, 1 EGTA, 4 MgATP, 0.3 
NaGTP, and 10 HEPES, pH 7.20 with CsOH (100 nM calculated 
free [Ca2+]). External solution: 2 or 10 Ca external, both with  
1 mM MgCl2.



532 CALCIUM POTENTIATION OF TRPC5

intracellular [Ca2+] required for TRPC5 potentiation, 
we recorded TRPC5 currents and monitored intracellu-
lar [Ca2+] using 100 µM fura-2 added to the internal so-
lution (100 nM of calculated free [Ca2+] with 0.99 mM 
BAPTA). Fig. 5 shows the currents and the calculated 
[Ca2+] recorded from one such TRPC5/M1R-express-
ing cell after the application of 100 µM CCh. Both the 
TRPC5 current at 40 mV and intracellular [Ca2+] ini-
tially increased slowly, but after 150 s in CCh the rise in 
the current and intracellular [Ca2+] accelerated. At the 
point where the time derivative (dI/dt) of the current 
at 40 mV reached 50% of its maximum, the calculated 
free [Ca2+] was 945 nM (in this cell). As the CCh appli-
cation continued, TRPC5 current and [Ca2+] increased 
further until both reached a plateau. The fura-2 signal 
indicated that [Ca2+] was 4 µM at this point, although 
with its high affinity (KD 250 nM) the fura-2 was very 
likely saturated, and real intracellular [Ca2+] might have 
been even higher. It is clear that the 0.99 mM BAPTA 
present in the internal solution is unable to adequately 
buffer Ca2+ entering through TRPC5 channels.

From six cells where TRPC5 currents and intracellu-
lar [Ca2+] were simultaneously measured, five cells un-
derwent potentiation of the current (Fig. 5 C). In those 
cells, the intracellular [Ca2+] at 50% maximal dI/dt 
ranged from 611 to 1,802 nM (mean 1,117 ± 222 nM). 
Cells in which the 50% maximal TRPC5 current dI/dt 
occurred at lower [Ca2+] tended to reach higher abso-
lute dI/dt values and have shorter latencies compared 
with cells where the current and intracellular [Ca2+] de-
veloped slowly. The variation in calcium sensitivity is vis-
ible when the current densities at 40 mV, from the 
initial application of CCh until the peak, are normal-
ized to their own maximum and plotted against the re-
corded intracellular [Ca2+] (Fig. 5 D). Despite latencies 
varying from 48 to 216 s in these cells, the TRPC5 cur-
rent increased in a graded manner with intracellular 
[Ca2+]. One of the five cells had a very high initial [Ca2+] 
of 1,500 nM and significant basal current; the 50% 
maximal dI/dt point occurred at 1,802 nM.

In the one cell that did not undergo potentiation, 
TRPC5 current activated with a single-exponential time 
course, and the intracellular [Ca2+] reached a transient 
peak of 615 nM, before declining to 360 nM over 
125 s. The current in this cell also declined, displaying 
an unusually fast desensitization that was rarely seen in 
other cells.

The fura-2 imaging experiments above indicate that 
intracellular [Ca2+] over 600 nM enables the potentia-
tion of TRPC5 channels; however, [Ca2+] was constantly 

Figure 5.  TRPC5 current increases occur with intracellular [Ca2+] 
at 1 µM. (A; Top) The average currents at +100 mV (triangles) 
and 40 mV (squares) recorded during repetitive voltage ramp 
stimuli applied at 0.2 Hz during the addition of 100 µM CCh in 2 
Ca external (open bar). (Bottom) Intracellular [Ca2+] monitored 
by fura-2 fluorescence recorded in the same cell. The arrowheads 
indicate the point at which the time derivative of the current at 
40 mV reached 50% of its maximum. (B) I-V curves for current 
before (a) and during (b) the peak response to CCh application. 
(C) The current densities at 40 mV from CCh application to the 
peak value are plotted versus intracellular [Ca2+] for five cells that 
underwent potentiation. The time between symbols is 4 s for each 
cell, so that traces with more symbols represent cells with greater 
latencies to peak (e.g., latency to peak current was 48 s in the cell 
shown by open circles, whereas it was 216 s in the cell shown by 
open triangles). The [Ca2+] axis is truncated above 5 µM. The cell 
in A is shown by plus signs. Alternating cells are shown in red and 
black for clarity. (D) Current densities at 40 mV from C are nor-
malized to their peak values and plotted against [Ca2+] on a log-

scale (symbols correspond to the same cells). For clarity, cells with 
long peak latencies (shown as open triangles and plus signs) have 
only every third symbol displayed. Internal solution (in mM): 146 
Cs-Asp, 2 MgCl2, 0.31 CaCl2, 0.99 Cs4-BAPTA, 0.1 fura-2, 4 MgATP, 
0.3 NaGTP, and 10 HEPES, pH 7.20 with CsOH.
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changing in those cells. Any delays between the [Ca2+] 
elevation and channel potentiation might lead to an 
underestimate of the Ca2+ sensitivity for potentiation. 
To confirm that 1 µM intracellular [Ca2+] causes po-
tentiation of TRPC5 channels, we recorded CCh-acti-
vated currents from TRPC5/M1R-expressing HEK cells 
using internal solutions where calculated free [Ca2+] 
was buffered to levels varying from 100 nM to 17 µM. 
These experiments were performed in nominally Ca-
free external solution to prevent escape from control of 
the internal Ca2+ buffer, as was evident in Fig. 5.

Fig. 6 A shows the CCh-activated TRPC5 current re-
corded from cells using a Cs-Asp internal solution with 
350 nM of calculated free [Ca2+] buffered with 10 mM 
BAPTA, or with 1.8 µM of calculated free [Ca2+] buff-
ered with 5 mM HEDTA. The application of 100 µM 
CCh in both cases activated a current during voltage 
ramps that had the typical TRPC5 shape: outwardly 
rectifying, with reversal near 0 mV and a flat region 
between 0 and +40 mV. The activation of the current 
followed a single-exponential time course and was com-
plete within 30 s; after this point, the current main-
tained its amplitude or declined slightly as the agonist 
application continued. However, the amplitude of the 
current density at 40 mV recorded with 350 nM of 
calculated free Ca2+ was 1.23 pA/pF, whereas with  
1.8 µM of internal [Ca2+] it was >100-fold larger, at 
131.8 pA/pF.

Fig. 6 B summarizes the average CCh-activated cur-
rent densities at 40 mV for TRPC5/M1R-expressing 
cells recorded with a range of internal [Ca2+]. The 
TRPC5 current amplitude has a sharp dependence on 
calculated free [Ca2+] in the internal solution and was 
essentially maximal when internal [Ca2+] was >1 µM, 
similar to the result from the fura-2 imaging experiments. 
When the pipette solution calculated free [Ca2+] was 
buffered to 100, 200, or 350 nM (all with 10 mM BAPTA), 
the currents at 40 mV were small, similar to the cell 
shown in Fig. 6 A. The average current density at 40 mV 
from cells recorded with internal solutions up to 350 nM 
of calculated free [Ca2+] was less than 2.5 pA/pF. 
These values are similar to the TRPC5 current ampli-
tudes recorded using internal solutions with 100 nM 
of calculated free [Ca2+] buffered with 1 mM EGTA or 
BAPTA in external solutions with no added Ca (e.g., 
Fig. 3, trace b; average current density at 40 mV was 
0.94 ± 0.29 pA/pF, n = 7, and 4.78 ± 1.04, n = 6, re-
spectively). The similarity in current density amplitudes 
again suggests that regardless of possible direct inhibi-
tion of PLC by BAPTA, TRPC5 currents are small when 
calculated free [Ca2+] was in the range of 100 to 350 nM.

In contrast, CCh-activated TRPC5 currents recorded 
with internal solutions >1 µM were much larger. The av-
erage current densities at 40 mV from cells recorded 
using internal solutions with 1.4, 1.8, or 17 µM of calcu-
lated free [Ca2+] (buffered with 10 or 5 and 5 mM 

Figure 6.  Internal free [Ca2+] > 1 µM dramatically increases 
TRPC5 current density. (A; Left) The average CCh-activated cur-
rent at 40 mV in a TRPC5/M1R-expressing cell recorded with 
an internal solution containing 350 nM of calculated free [Ca2+] 
(top) and in a different cell recorded with an internal solution 
with 1.8 µM of calculated free [Ca2+] (bottom). The currents 
recorded with 350 nM of calculated free [Ca2+] are shown on an 
expanded current scale. (Right) I-V curves elicited by ramp volt-
age stimuli before the application of 100 µM CCh (a) and during 
the peak of the response (b). The external solution was nominally 
Ca free. The currents recorded with 350 nM of calculated free 
internal [Ca2+] were digitally smoothed using a Gaussian filter 
(3db = 1 kHz; top). (B) The average peak CCh-activated cur-
rent density at 40 mV from cells recorded with internal solu-
tions with varying calculated free internal [Ca2+]. Also shown are 
the average current densities at 40 mV of CCh-activated TRPC5 
currents in nominally Ca-free external solution before and after 
potentiation, recorded with 1 mM of EGTA-containing internal 
solutions. The average current density at 40 mV with 100 nM  
of calculated free [Ca2+] was 0.40 ± 0.08 pA/pF (n = 8), with  
200 nM it was 2.08 ± 0.37 pA/pF (n = 22), and with 350 nM it 
was 2.44 ± 0.63 pA/pF (n = 8). Higher calculated free [Ca2+] val-
ues gave the following: 1.4 µM, 87.95 ± 13.81 pA/pF (n = 10); 1.8 
µM: 74.13 ± 19.19 pA/pF (n = 7); and 17 µM: 102.03 ± 16.38 
pA/pF (n = 9). Error bars represent ± SEM; missing error bars are 
smaller than symbols. Internal solutions with calculated [Ca2+] < 
350 nM each contained (in mM): 110 Cs-Asp, 10 CsCl, 2 MgCl2, 10 
Cs4-BAPTA, 4 MgATP, 0.3 Na-GTP, and 10 HEPES, pH 7.20 with 
CsOH, with 3.1 CaCl2 for 100 nM [Ca2+], 4.7 mM CaCl2 for 200 
nM, and 6.0 mM CaCl2 for 350 nM. Internal solutions with calcu-
lated free [Ca2+] > 1 µM each contained (in mM): 150 Cs-Asp, 2 
MgCl2, 4 MgATP, 0.3 NaGTP, and 10 HEPES, pH 7.20 with CsOH, 
and the following CaCl2 and HEDTA: 1.11 CaCl2 and 10 HEDTA 
for 1.4 µM [Ca2+], 0.43 CaCl2 and 5 HEDTA for 1.8 µM [Ca2+], and 
1.89 CaCl2 and 5 HEDTA for 17 µM [Ca2+].
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ages depolarized from the reversal potential, the out-
ward current carried by Cs+ increased, until it began to 
decline as Vm reached 0 to +25 mV. This reduction is 
presumably the result of increasing block by internal 
Mg2+, which is responsible for the flat portion of the I-V 
in normal external sodium (Obukhov and Nowycky, 
2005). Positive to +25 mV, the current was strongly 
outwardly rectifying. As the potentiation of TRPC5 chan-
nels declined, there was a minimal shift in the reversal 
potential even as the current at 100 mV decreased 
from 250 to 12 pA. This demonstrates that al-
though TRPC5 is somewhat permeable to NMDG, its 
permeation does not change with intracellular Ca2+ po-
tentiation. From two cells, the reversal potential of 

HEDTA, respectively) ranged from 74 to 102 pA/pF. 
These values are only slightly larger than the average 
current density at 40 mV reached in cells recorded 
with 100 nM of calculated free [Ca2+]/1 mM BAPTA 
internal solutions immediately after the return to nomi-
nally Ca-free external solution from the potentiated 
amplitude (e.g., Fig. 3 C, trace e), which was 69.04 ± 
13.69 pA/pF (n = 8). This suggests that TRPC5 chan-
nels recorded using high [Ca2+] internal solutions in 
nominally Ca-free external solution might be in the same 
potentiated state as that reached by most cells recorded 
using 1 mM EGTA- or BAPTA-buffered internal solu-
tions and normal 2 Ca external solution.

TRPC5 channels potentiated by internal Ca2+ do not 
increase their permeability to large cations
The biphasic agonist activation resulting in large amp-
litude and more linear inward TRPC5 currents bears 
some resemblance to the large enhancement of TRPV1- 
and TRPV3-mediated currents during strong agonist 
stimulation (Chung et al., 2005; Chung et al., 2008). In 
these channels, prolonged activation with high concen-
trations of agonist reportedly can lead to an increase in 
the permeability to large cations such as NMDG. To di-
rectly assess whether TRPC5 channels change their per-
meability properties during potentiation by intracellular 
Ca2+, we monitored the reversal potential of the CCh-
activated current when extracellular Na+ was completely 
replaced by NMDG (Fig. 7). 100 µM CCh was initially 
applied to TRPC5/M1R-expressing cells in a nominally 
Ca-free external solution with NMDG; the absence of 
external Ca2+ prevented the potentiation of TRPC5 cur-
rent. Then, the external solution was changed to 2 Ca 
external solution, with 150 mM NaCl and 2 mM CaCl2. 
This allowed Ca2+ to enter and caused subsequent po-
tentiation of TRPC5 channels. For the cell shown in 
Fig. 7 A, the very large peak current at 100 mV of 
11.6 nA indicates that the channels were very likely 
potentiated. Next, the external solution was replaced 
with one containing NMDG, still with 2 mM CaCl2 pres-
ent to maintain high intracellular [Ca2+] and current 
potentiation. Finally, we removed Ca2+ from the exter-
nal NMDG solution and monitored the reversal poten-
tial soon after external Ca2+ removal, when TRPC5 
channels were still potentiated, and 60 s later, when 
potentiation was almost fully reversed. In both cases the 
external solution was identical, so that any change in 
the reversal potential would result from alterations in 
active conductances or their properties.

The current–voltage curves of CCh-activated TRPC5 
channels recorded in nominally Ca-free NMDG exter-
nal solutions are shown in Fig. 7 B. Inward currents at 
100 mV were small, only 1.5–2.5% of the level in nor-
mal Ca2+- and Na+-containing external solution, reflect-
ing the poor absolute permeability of NMDG+. The 
reversal potential of these currents was 65 mV. At volt-

Figure 7.  Potentiation by intracellular Ca2+ does not alter NMDG 
permeability of TRPC5. (A) The average 100-mV current pre-
ceding voltage ramps in response to the application of the indi-
cated external solutions (5 ms at 100 mV immediately before 
the ramp was averaged in this case). Black bars indicate the addi-
tion of nominally Ca-free NMDG external, the open bar indicates 
the application of 2 Ca external solution, and the gray bar indi-
cates the application of 2 Ca and NMDG external (100 µM CCh 
present throughout). (B) I-V relation of currents elicited by 200-ms 
voltage ramps recorded with nominally Ca-free NMDG/CCh 
external solution 2 s after the removal of external Ca2+ (a) and 
64 s later (b). (Inset) The region near the reversal potential on an 
expanded scale. To emphasize the reversal potential, traces were 
digitally smoothed using a Gaussian filter (3db = 500 Hz). Inter-
nal solution (in mM): 150 Cs-Asp, 2 MgCl2, 0.36 CaCl2, 1 EGTA, 4 
MgATP, 0.3 NaGTP, and 10 HEPES, pH 7.20 with CsOH. External 
NMDG solutions (in mM): 150 mM NMDG-Cl, 4 KCl, 10 glucose, 
10 HEPES, pH 7.40, with HCl, and 2 CaCl2 with 1 MgCl2 or 3 mM 
MgCl2 alone.
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(not depicted). The average current density at 40 mV 
recorded from three TRPC4/M1R-expressing cells us-
ing the internal solution with 1.8 µM [Ca2+] and 5 mM 
HEDTA was 32.6 ± 7.7 pA/pF. Thus, average currents 
were enhanced approximately fourfold relative to cur-
rents recorded with low Ca2+ buffering (despite the 
absence of Ca2+ in the external solution), suggesting 
that intracellular Ca2+ also potentiates TRPC4 channels. 
The inability of 10 mM of external Ca2+ to potentiate 
currents and the smaller average current densities with 
elevated [Ca2+] in the internal might result from lower 
expression of TRPC4 channels or from the apparently 
enhanced desensitization of TRPC4 compared with 
TRPC5 (Schaefer et al., 2000). We did not test other 
isoforms of TRPC4; whether they might differ in poten-
tiation by Ca2+ is unknown.

TRPC5 channel potentiation by intracellular Ca2+ results 
from an increase in open probability
In principle, the intracellular Ca2+-dependent potentia-
tion of TRPC5 channels could result from increases in 
the number of active channels, in the single-channel 
conductance, or in the channel open probability. The 
different extent and kinetics of inward current potenti-
ation relative to outward current suggest that increases 
in the number of active channels alone cannot underlie 

TRPC5 current in NMDG external solutions immedi-
ately after the removal of external Ca2+ was 3 mV more 
depolarized than after the potentiation declined. This 
value is much smaller than the >40-mV depolarizing 
shift demonstrated in NMDG external solutions for ei-
ther TRPV1 channels (Chung et al., 2008) or TRPV3 
channels (Chung et al., 2005).

Intracellular Ca2+ also potentiates agonist-activated  
TRPC4 channels
TRPC5 and TRPC4 are closely related, sharing 80% 
sequence similarity. They also share many of the same 
functional characteristics, including activation by Gq/ 
11-coupled receptors and potentiation by external Ca2+ 
and lanthanides (Schaefer et al., 2000, 2002; Strubing  
et al., 2001). We tested whether intracellular Ca2+ can 
potentiate TRPC4 channels as well as TRPC5 channels. 
In HEK cells expressing the TRPC4 isoform and M1Rs, 
the application of 100 µM CCh activated a current with 
a similar I-V relation to TRPC5 (Fig. 8 B). We used this 
isoform as it tends to result in larger currents compared 
with TRPC4. Despite the use of internal solutions with 
100 nM of calculated free [Ca2+] and 1 mM EGTA, we 
never observed biphasic activation in any of the 10 cells 
recorded for up to 60 s in CCh. Instead, the current 
activated with a single-exponential time course and re-
mained at steady state throughout the CCh application 
(Fig. 8 A). The average TRPC4-mediated currents were 
small, 8.35 ± 2.9 pA/pF at 40 mV (n = 10), similar in 
amplitude to TRPC5-expressing cells that did not un-
dergo potentiation (e.g., Fig. 1 C). One cell did have a 
peak current density at 40 mV of 30.0 pA/pF, but its 
activation was not biphasic.

Because the addition of 10 Ca external solution po-
tentiated TRPC5 current in 13 of 15 cells (Fig. 4), we 
tested whether high external Ca2+ would also potentiate 
TRPC4 current (Fig. 8 B). TRPC4 current was acti-
vated by the application of 100 µM CCh for 20–30 s, un-
til a new steady state was reached. When the external 
solution was changed to 10 Ca external solution, only 
one of three cells underwent an increase in current am-
plitude at 40 mV. The current peaked after 6 s at an 
amplitude 2.9-fold larger than in the standard 2 Ca ex-
ternal solution. This is much smaller than the 14-fold 
increase we found for TRPC5 channels. After the peak, 
the current began to decline rapidly, such that after 64 s 
the current was reduced by 65%.

The small inward current amplitudes recorded from 
TRPC4/M1R-expressing cells might have resulted in 
only modest intracellular [Ca2+] increases, despite rais-
ing external Ca2+ to 10 mM. Thus, we tested whether 
supplying elevated [Ca2+] in the internal solution could 
lead to large amplitude TRPC4 currents. As in simi-
lar experiments with TRPC5 channels (Fig. 6), we re-
corded these currents in external solutions with nomi-
nally Ca-free external solution, preventing Ca2+ entry 

Figure 8.  Heterologously expressed TRPC4 channels are po-
tentiated by intracellular Ca2+. (A) TRPC4 current densities at 
40 mV during the application of 100 µM CCh recorded from 
nine cells. One cell, with 30 pA/pF current density, is shown 
in black; the remaining currents were less than 17 pA/pF and 
are shown in red. (B; Left) The application of 10 Ca external so-
lution–potentiated TRPC4 channels. The average 40-mV cur-
rent from a TRPC4-expressing cell (not shown in A) in response 
to 100 µM CCh in standard 2 Ca external (open bar) or 10 Ca 
external (black bar). (Right) I-V relation of current elicited by 
voltage ramps applied at the times is indicated by lowercase let-
ters. Internal solution contained (in mM): 150 Cs-Asp, 2 MgCl2, 
0.36 CaCl2, 1 EGTA, 4 MgATP, 0.3 NaGTP, and 10 HEPES, pH 
7.20. External solutions both contained 1 mM MgCl2.
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calcium potentiation. We tested whether the conductance 
of TRPC5 channels changed by measuring the open-
channel I-V relation before and after potentiation by 
intracellular Ca2+. CCh-activated TRPC5 currents were 
recorded using pipette solutions with low calcium buff-
ering in the presence of standard 2 Ca external solu-
tion. To measure the open-channel I-V, 15 (or 50)-ms 
conditioning pulses were applied to activate TRPC5 chan-
nels, and the tail currents immediately after hyperpolar-
ization to a range of potentials were recorded. Fig. 9 A 
shows the voltage-dependent activation and deactiva-
tion of TRPC5 channels 15 and 91 s after the applica-
tion of 100 µM CCh. Currents were initially small in 
amplitude (+1.19 nA at +100 mV), presumably before 
intracellular Ca2+ potentiation. The current continued 
increasing, interrupted only by the replacement of ex-
ternal calcium with barium, which prevented the cur-
rent increase similar to magnesium replacement (Fig. 9 B, 
c.f., Fig. 3). After external calcium was reapplied, the 
TRPC5 current rapidly increased as calcium potentia-
tion occurred, reaching a peak amplitude of +17.45 nA. 
Furthermore, large inward tail currents were visible in 
response to the hyperpolarizing steps. Note that the 
current amplitudes at +100 mV were constant through-
out the sweep; under these conditions, there is little or 
no use dependence of TRPC5 channels during repeti-
tive depolarizations.

To compare the open-channel I-V before and after po-
tentiation, when current amplitudes varied up to a fac-
tor of 10, we normalized the currents to the amplitude 
of the current immediately after the repolarization to 
+60 mV (Fig. 9 C). We measured the relative instanta-
neous tail current during the hyperpolarizing potentials 
at the same time point where the TRPC5 channel open 
probability, reached during the +100-mV conditioning 
pulse (or +90 mV for some cells), remains constant. We 
used the smaller current amplitudes at +60 mV for nor-
malization rather than the +100-mV amplitude to mini-
mize possible effects of uncompensated series resistance 
when currents at +100 mV were very large. From six 
cells we found that the instantaneous I-V relationship was 

Figure 9.  The TRPC5 open channel I-V relationship does not 
change during intracellular calcium potentiation. (A) CCh-ac-
tivated TRPC5 currents were elicited by 15-ms voltage steps to 
+100 mV, followed by 40-ms steps to multiple hyperpolarizing 
potentials (applied at 1 Hz). The black trace shows the current 
recorded 15 s after the addition of 100 µM CCh, and the red 
line shows the peak currents recorded 91 s after CCh addition 
(lowercase letters indicate sweep timing in B). (B) The average 
CCh-activated TRPC5 currents at +100 mV (triangles, final 3 ms 
of first +100-mV conditioning pulse) and 40 mV (squares, 10-ms 
average at sweep onset) during the application of 2 Ca external 
(open bars) and 2 Ba external solution (black bar). a, the tim-
ing of sweeps used for subtraction of the uncompensated capacity 
current. (C) Capacity-corrected traces from A were normalized to 
the amplitude of the TRPC5-mediated current 0.7 ms after repo-
larization to +60 mV to account for the large difference in abso-
lute current amplitudes. The smaller relative +100-mV current in 
c likely indicates that the open probability at +60 and +100 mV are 

more similar after potentiation. The resulting instantaneous tail 
currents were similar. (Inset) The tail current at 60 mV on an 
expanded scale. The solid red lines show single-exponential fits 
to the current. (D) The size of the CCh-activated TRPC5 tail cur-
rents after normalization (as in C) was measured in three to six 
cells both before (black open circles, 30 or fewer seconds after 
CCh addition) and after (red squares, 100 s or fewer after CCh, 
when current reached peak amplitude) potentiation. Currents 
were measured 0.7–0.85 ms after the +100-mV conditioning pulse 
to allow any uncorrected fast capacity current to settle. Error bars 
show SEM; absent error bars are smaller than symbol. Internal 
solution (in mM): 150 Cs-Asp, 2 MgCl2, 0.36 CaCl2, 1 EGTA, 4 
MgATP, 0.3 NaGTP, and 10 HEPES, pH 7.20 with CsOH (100 nM 
calculated free [Ca2+]). External solution: 2 Ca external and 2 Ba 
external (CaCl2 completely replaced by BaCl2; all else the same).
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not affected by intracellular Ca2+ potentiation (Fig. 9 D). 
For example, the relative peak tail current at 60 mV 
was 0.967 ± 0.076 before potentiation and 1.107 ± 
0.058 after potentiation. The larger inward currents af-
ter potentiation were instead caused by a slower and less 
complete deactivation of the tail current. Tail currents 
at 60 mV before intracellular Ca2+ potentiation deacti-
vated with a single exponential with a tau of 2.54 ± 0.44 ms, 
which increased to 3.91 ± 0.54 ms after potentiation. Thus, 
the fivefold difference in potentiation between inward 
and outward TRPC5 currents is not likely to arise from 
large, asymmetrical changes in channel conductance.

To gain further understanding of the biophysical 
changes that occur during potentiation of TRPC5 by in-
tracellular Ca2+, we performed cell-attached recordings 
from TRPC5/M1R-expressing HEK cells using pipettes 
filled with the standard 2 Ca external solution and 100 µM 
CCh (Fig. 10, A–C). Cells were initially bathed in 2 Ca 
external solution, and TRPC5 channel activity at 50 mV 
was recorded for 20 s. Despite the presence of CCh in 
the pipette, TRPC5 activity remained low. At this point, 
100 µM CCh in 2 Ca external solution was added to the 
bath, activating M1R receptors and TRPC5 channels 
throughout the cell. In two of nine cells, this led to a 
dramatic increase in NPo (number of channels multi-
plied by the open probability) of 14.0 ± 0.39-fold (P = 
0.017), with a 14.3–17.1-s delay. Because in these experi-
ments it is unknown whether intracellular [Ca2+] reached 
levels sufficient to cause potentiation, we then added 10 
Ca external solution with CCh to the bath to increase 
Ca2+ entry, similar to whole cell experiments shown in 
Fig. 4. In the two cells that already displayed an elevated 
NPo, the addition of 10 Ca external solution with CCh 
caused no further change. In six of the remaining seven 
cells tested, perfusion of 10 Ca external solution and 
CCh caused a dramatic increase in NPo: the average peak 
increase in NPo was 10-fold, with a delay <10 s. To test 
whether this increase in TRPC5 channel NPo was due to 
the increase in intracellular [Ca2+], we changed the bath 
solution to nominally Ca free with CCh in four patches 
(Fig. 10 D). This led to a large decrease in NPo that 
reached levels similar to initial 2 Ca external solution 
alone (0.86 ± 0.32-fold; P = 0.16). The lower peak po-
tentiation of NPo in these experiments compared with 
whole cell experiments might result from lower [Ca2+] 
caused by a reduced driving force on Ca2+ in the cell-at-
tached configuration. The activation of large TRPC5 
currents after bath CCh addition would likely drive cells 

Figure 10.  Potentiation of a single TRPC5 channel by Ca2+ in 
cell-attached recordings. (A) Channel activity as shown by con-
tinuous NPo trace (averaged 10-s bins). (B) The current trace  
recorded 50 mV relative to the cell membrane potential. Chan-
nel openings are downward deflections from the baseline.  
(Bottom right) Single-channel I-V relation. (C) Expanded trace for 
the region indicated by the black circle in B. C and O indicate closed 
and open levels, respectively. (D–G) Summary of single-channel 
properties from nine independent patches (normalized as fold 
change relative to preceding condition due to baseline NPo vari-
ability from patch to patch). The large increase in single-channel 
activity (NPo) evoked by the addition of 10 mM of extracellular 
Ca2+ in D (10.42 ± 2.8-fold; n = 7; P = 0.025), resulted from (E) 
increased channel-opening frequency (9.76 ± 2.13-fold; n = 8;  
P = 0.003) and (G) channel open time (2.09 ± 0.38-fold; n = 8; 

P = 0.011). (F) Single-channel conductance did not change. In 
this figure and Fig. 11, symbols represent patches recorded in the 
bath solutions indicated; for clarity, patches at similar amplitudes 
are offset horizontally and shown in different shapes for differ-
ent solution conditions. Internal solution: standard 2 Ca external 
with 100 µM CCh. Bath solutions: 2 Ca and 10 Ca each had 1 mM 
MgCl2. Nominally Ca-free external had 3 mM MgCl2.
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mal potentiation of that channel. 100 µM CCh was in-
cluded in the pipette so that TRPC5 channels within the 
patch were likely to be activated and passing Ca2+ for 30 s 
before bath perfusion of CCh. If the resulting Ca2+ ele-
vation near the activated TRPC5 channels in the patch 
saturated the potentiation mechanism, increases in bulk 
Ca2+ after the addition of CCh and 2 or 10 mM Ca2+ to 
the bath would not induce further potentiation. Instead, 
the 10-fold potentiation of NPo we observed after the 
bath addition of CCh and Ca2+ suggests that Ca2+ that 
has flowed into the cell through other TRPC5 channels 
is also sensed by the TRPC5 recorded in the patch.

To directly determine the effect of varying [Ca2+] at 
the cytosolic face of TRPC5 channels, we performed 
excised inside-out patch recordings from TRPC5 and 
M1R-transfected HEK cells, again with 2 Ca external 
solution and 100 µM CCh in the pipette. The cytosolic 
face of the patch was exposed to solutions of varying 
calculated free [Ca2+] to determine whether TRPC5 
channels were intrinsically sensitive to Ca2+. In 5 of 12 
patches, we observed a dramatic potentiation of single-
channel activity when the intracellular surface of the 
channel was exposed to 1.8 and 100 µM Ca2+, with NPo 
increasing 23-fold and 45-fold over 100 nM Ca2+,  
respectively (Fig. 11, A–E). One of these responsive 
patches was dramatically stimulated by Ca2+ with NPo 
increasing 150-fold in 100 µM Ca2+. Latency to peak 
activity ranged from <2 to 20 s. Single-channel con-
ductance ranged from 45 to 49 pS and did not sys-
tematically change with bath solution. Similar to the 
cell-attached recordings, the increase in NPo was due 
to a large increase in the number of channel openings 
and increased mean open time. Compared with 0.1 µM 
of calculated free Ca2+, the frequency of openings in 
1.8 µM of calculated free Ca2+ increased by 15-fold, 
and in 100 µM Ca2+ by 34-fold. The stimulation of 
channel activity was also caused by an increase in mean 
open time, which was 50% for both 1.8 µM of calcu-
lated free Ca2+ and in 100 µM Ca2+. Returning patches 
to low [Ca2+] caused the channel activity to decrease, 
indicating that the potentiation was reversible, as in 
whole cell recordings.

The remaining seven patches were not responsive to 
changes in [Ca2+] (Fig. 11 F). Most of these patches ini-
tially displayed a relatively high NPo, even in 0.1 µM of 
calculated [Ca2+], but open times and conductance 
were similar to the other five patches. These patches 
might contain channels that are already potentiated 
and locked in this state. Collectively, these results sug-
gest that in some cases the ability of Ca2+ to strongly in-
crease TRPC5 channel activity can survive patch excision, 
and that this potentiation might reflect the same pro-
cesses that occur during the potentiation seen in whole 
cell experiments. However, the absence of potentiation 
in some patches suggests that an important factor was 
lost upon patch excision.

to 0 mV, compared with the 40-mV holding poten-
tial used in whole cell recordings.

The increase in NPo was apparently derived from a 
substantial increase in the frequency of channel open-
ings (Fig. 10 E): the average increase during Ca2+ poten-
tiation was approximately ninefold, whereas 0 Ca2+ and 
CCh perfusion returned frequency to near initial levels. 
Channel mean open time also increased (Fig. 10 G) on 
average approximately twofold, which reversed upon per-
fusion of nominally Ca-free external solution (1.1 ± 0.2; 
P = 0.34). Concurrently, channel mean closed time de-
creased substantially: before potentiation closed time was 
64.6 ±4.5 ms (n = 697 closings), but during potentiation 
it dropped to 15.4 ± 0.2 ms (n = 751 closings; P < 0.0001).

It is unclear whether the changes in NPo were the re-
sult of an increase in the number of active channels in 
the patch or an increase in single-channel open probabil-
ity. Three patches contained occasional double openings 
that could be observed under all conditions, indicating 
the presence of multiple channels. However, we never 
observed an increase in the number of open channel lev-
els during Ca2+ potentiation of TRPC5, although in some 
cases NPo was quite low (ranging from 0.003 to 0.376). 
The NPo of patches with one apparent channel is similar 
to previous reports (Schaefer et al., 2000; Jung et al., 
2003; Obukhov and Nowycky, 2008). For those patches in 
which only one channel was observed even after Ca2+ po-
tentiation (average NPo was 0.0562 ± 0.034, range 0.0033–
0.156; n = 5), we used the following equation to estimate 
the probability that the observed openings during Ca2+ 
potentiation were actually the result of two channels 
(Colquhoun and Hawkes, 1995): P(r > nO) = µ(n

o
1), 

where µ = (1Po)/(1Po/2), and nO = observed number 
of single-channel openings (in our case, nO = 1,562). By 
this calculation, the maximum probability of more than 
one channel being present during Ca2+ potentiation in 
those patches was 1020. Therefore, we suggest that the 
primary effects of Ca2+ potentiation are to increase open 
probability via a small increase in mean open time and a 
larger decrease in closed time.

We found that the single-channel conductance was 
unchanged during Ca2+ potentiation of TRPC5 (Fig. 10 F). 
Before Ca2+ potentiation, the average single-channel 
conductance was 50.36 ± 4.1 pS, whereas after potentia-
tion it was 49.65 ± 4.7 pS (after 0 Ca2+ and CCh perfusion 
it was 53.19 ± 5.1 pS). The single-channel conductance 
of TRPC5 at negative membrane potentials is report-
edly 38–48 pS (Schaefer et al., 2000; Yamada et al., 2000; 
Strubing et al., 2001). The slightly larger conductance 
that we observed might result from an added contribu-
tion of the cell’s resting potential. The single-channel 
current–voltage relation (Fig. 10 B) was outwardly recti-
fying, closely resembling previous reports (Jung et al., 
2003; Obukhov and Nowycky, 2008).

These data support the hypothesis that Ca2+ entry 
through a single TRPC5 channel does not cause maxi-
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Intracellular Ca2+ potentiation of TRPC5 channels reduces 
potentiation by external Ca2+ and lanthanides
The results in Figs. 10 and 11 suggest that intracellular 
[Ca2+] can increase the open probability of TRPC5 at 
voltages 50 mV, and our whole cell experiments sug-
gest that the extent of this potentiation is voltage de-
pendent, increasing with hyperpolarization. Potentiation 
of TRPC5 channels by external Ca2+ and lanthanides 
also enhances channel open probability, which increases 
with hyperpolarization (Jung et al., 2003). If both mech-
anisms exist, the ability of external Ca2+/lanthanides to 
further increase current might be reduced when chan-
nels are already potentiated by elevated intracellular 
[Ca2+]. The experiments in Fig. 3 suggest that this is 
the case. TRPC5 channels initially activated in nomi-
nally Ca-free external solution were not potentiated, 
and when 2 Ca external solution was added, the imme-
diate increase in current presumably resulted from 
binding at the external Ca2+/lanthanide site. On aver-
age, the current at 40 mV increased 7.02 ± 1.40-fold, 
whereas the current at +100 mV increased 1.61 ± 1.17-
fold (n = 8; compare traces b and c in Fig. 3). After the 
addition of external Ca2+ led to potentiation of the 
TRPC5 current, intracellular [Ca2+] presumably reached 
high levels. At this point the removal of external Ca2+ 
resulted in an immediate decrease in current amp-
litude, reflecting loss of the potentiation at the Ca2+/
lanthanide site (compare traces d and e in Fig. 3). The 
average potentiation by 2 mM Ca2+ at this point was 2.22 ± 
0.17-fold at 40 mV and 1.11 ± 0.04-fold at +100 mV  
(n = 8). Thus, after TRPC5 channels were potentiated 
by intracellular [Ca2+], the effect of extracellular Ca2+ 
was reduced by 68% at 40 mV and 31% at +100 mV.

We tested the proposed interaction between internal 
Ca2+ and external Ca2+/lanthanide potentiation using 
internal solutions with low (200 nM) or high (1.4–17 µM) 
calculated [Ca2+] to keep TRPC5 channels in non- 
potentiated and potentiated states, respectively. Using 
these internal solutions, we measured the response as 
external Ca2+ was increased from 0 to 10 mM (Fig. 12). 
TRPC5 channels were initially activated by the addition 
of 100 µM CCh in nominally Ca-free external solutions. 
After 45–60 s in CCh, the current had reached steady 
state and external [Ca2+] was increased to 0.3, 1, 3, and 
10 mM. The effect of changing external Ca2+ on TRPC5 

Figure 11.  TRPC5 channel activity is potentiated by increases 
in [Ca2+] in excised (inside-out) single-channel recordings. The 
cytosolic face of TRPC5 channels was exposed to varying [Ca2+] 
using excised patches from TRPC5 and M1R cotransfected HEK 
cells. (A) Channel activity NPo trace from a single patch in response 
to changing Ca2+ (NPo was averaged over 5-s bins). (B) Current re-
corded at 60 mV; channel openings are downward deflections 
from the baseline. (C) Stimulation of peak NPo from five patches 
with containing TRPC5 channels (relative to 100 nM Ca2+, NPo 
in 1.8 µM of calculated Ca2+: 22.9 ± 13.1-fold [median 10.9; P = 
0.043; t test]; in 100 µM Ca2+: 45.1 ± 26.27-fold [median 18.99; 
P = 0.048]). (D) Elevated cytosolic Ca2+ increases the frequency 
of channel openings. Fold increases were 14.81 ± 8.09 (median 
6.89; n = 4; P = 0.032) in 1.8 µM Ca2+ and 34.42 ± 19.07 (median 
16.57; n = 4; P < 0.0001) in 100 µM Ca2+. (E) Elevated cytosolic 
Ca2+ increased TRPC5 channel mean open time. Fold increase in 
mean open time was 1.5 ± 0.3-fold in 1.8 µM Ca2+ (n = 5; P = 0.01) 
and 1.58 ± 0.27-fold in 100 µM Ca2+ (n = 5; P = 0.001). (F) In seven 

additional patches, elevated Ca2+ did not increase NPo; these typi-
cally had high initial NPo. Internal solution: 2 Ca external with 
100 µM CCh. Bath solutions: 0.1 µM of calculated free [Ca2+] solu-
tion (in mM): 150 Cs-Asp, 2 MgCl2, 0.36 CaCl2, 1 EGTA, 4 MgATP, 
0.3 NaGTP, and 10 HEPES, pH 7.20 with CsOH. 1.4 µM of cal-
culated free [Ca2+] solution (in mM): 150 Cs-Asp, 1.11 CaCl2, 10 
HEDTA, 2 MgCl2, 4 MgATP, 0.3 NaGTP, and 10 HEPES, pH 7.20 
with CsOH. 100 µM of free [Ca2+] solution (in mM): 150 Cs-Asp, 
0.10 CaCl2, 2 MgCl2, 4 MgATP, 0.3 Na-GTP, and 10 HEPES, pH 
7.20 with CsOH.
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current was immediate and remained constant during 
each 10-s [Ca2+] application. In some cells recorded 
with low internal [Ca2+] (Fig. 12 A), the application of 
10 mM Ca2+ first led to an immediate increase in cur-
rent that then further developed, presumably as Ca2+ 
entry escaped control of BAPTA in the internal solu-
tion. In contrast, for some cells recorded with high in-
ternal [Ca2+] (Fig. 12 B), the application of 10 Ca 
external initially increased current (presumably as the 
potentiation at the external site increased), followed by 
a decline (as the current desensitized). For all cells, the 
current was averaged from the sweep immediately after 
the application of 10 Ca external solution exchange to 
minimize any contribution of these changes.

These experiments demonstrate that when TRPC5 
channels were recorded with low internal [Ca2+], the 
ability of extracellular Ca2+ to potentiate the current was 
much greater than when internal solutions with high 
[Ca2+] were used. For internal solutions with 200 nM of 
calculated free internal [Ca2+], the TRPC5 current den-
sities at 40 mV increased by 10-fold in 10 Ca exter-
nal solution (relative to the current in nominally Ca-free 
external). For internal solutions with 1.4, 1.8, or 17 µM 
of free [Ca2+], we averaged the results from all cells be-
cause the potentiation by external Ca2+ was equal for 
each. Current densities at 40 mV were potentiated 
by only approximately threefold in the 10 Ca external 
solution. Overall, potentiation of TRPC5 channels was 
equivalent for the two sets of internal solutions at 0.3 
and 1 Ca external solution. However, potentiation with 
high calculated free [Ca2+] internals was 35% smaller 
for 3 Ca external solution and 67% smaller for 10 Ca 
external solution.

We also tested whether potentiation by La3+ was re-
duced when TRPC5 channels were potentiated by ele-
vated intracellular [Ca2+] (Fig. 13). We applied 100 µM 
La3+ during whole cell recordings of CCh-activated 
TRPC5 currents using internal solutions containing  
200 nM, 1.8 µM, and 100 µM Ca2+ (to avoid competition 
between Ca2+ and La3+ for the external binding site, these 
experiments were performed in nominally Ca-free exter-
nal solution). After TRPC5 currents reached steady state 
after CCh application, the addition of 100 µM La3+ po-
tentiated TRPC5 current by 14.5-fold at 40 mV and 
5.5-fold at +100 mV (200 nM of calculated free [Ca2+] 
internal). This potentiation is larger than that caused by 
3 or 10 Ca external solution (Fig. 12), as expected given 
the fact that La3+ potentiates TRPC5 current in the pres-
ence of 2 mM of external Ca2+ (Jung et al., 2003).

At higher internal [Ca2+], we observed a voltage-de-
pendent reduction in La3+ potentiation. With 1.8 µM of 
calculated internal [Ca2+], 100 µM LaCl3 potentiated 

Figure 12.  The extent of TRPC5 current potentiation by intra-
cellular Ca2+ affects external Ca2+ current enhancement. (A) The 
average current at 40 mV recorded in a TRPC5/M1R-express-
ing HEK cell (left); internal solution with 200 nM of calculated 
free [Ca2+] containing (in mM): 110 Cs-Asp, 10 CsCl, 2 MgCl2, 
4.7 CaCl2, 10 Cs4-BAPTA, 4 MgATP, and 0.3 NaGTP, pH 7.20 with 
CsOH. The right panels here and in B show the I-V curves from 
each initial sweep in different [Ca2+]. Currents recorded in 0.3 
and 3 mM of external Ca2+ are shown in red; all others are shown 
in black. (B) The average current at 40 mV using an internal so-
lution with 1.8 µM of calculated free [Ca2+] containing (in mM): 
150 Cs-Asp, 2 MgCl2, 0.46 CaCl2, 5 HEDTA, 4 MgATP, and 0.3 
NaGTP, pH 7.20 with CsOH. (C) Potentiation of current at 40 mV 
relative to that in nominally Ca-free external solution is plot-
ted versus external [Ca2+] for cells recorded in 200 nM of internal 
calculated free [Ca2+] (open circles) or 1.4–17 µM of calculated 
free [Ca2+] (filled squares). Potentiation for the 200 nM Ca inter-
nal was 1.44 ± 0.05-fold for 0.3 Ca, 2.22 ± 0.14-fold for 1 Ca, 4.77 
± 0.59 for 3 Ca, and 10.11 ± 1.53 for 10 Ca (n = 6 each); whereas, 
for the >1.4 µM [Ca2+] internals it was 1.32 ± 0.04-fold, 2.00 ± 0.08, 
3.09 ± 0.15, and 3.33 ± 0.39 (n = 10; n = 8 for 10 Ca external). 
External solutions had the following added divalents (in mM):  

0 added CaCl2 with 3 MgCl2, 0.3 CaCl2 with 3 MgCl2, 1 CaCl2 with  
2 MgCl2, 3 CaCl2 with 1 MgCl2, and 10 CaCl2 with 1 MgCl2.
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TRPC5 currents on average 12.04-fold at 40 mV and 
2.06-fold at +100 mV. Increasing internal [Ca2+] to 100 µM 
further reduced La3+ potentiation of TRPC5 current to 
6.07-fold at 40 mV and 1.55-fold at +100 mV. Thus, the 
reduction in La3+ potentiation was voltage dependent, 
being more pronounced at +100 mV (approximately 
threefold reduction) than at 40 mV (20% reduc-
tion) when the internal solution contained 1.8 µM of 
calculated [Ca2+]. Jung et al. (2003) have demonstrated 
that the effect of La3+ is to increase channel open prob-
ability, overcoming direct channel block by La3+. Our 
single-channel data suggest that a primary feature of in-
ternal Ca2+ potentiation is also to increase channel open 
probability, which may occlude the action of La3+.

Calmodulin does not play a role in intracellular Ca2+ 
potentiation of agonist-activated TRPC5 channels
The primary sequence of TRPC5 channels contains three 
putative calmodulin-binding domains; interactions have 
been demonstrated at the two carboxy-terminal domains 
(Zhu, 2005). In one case, calmodulin binding appeared 
to speed TRPC5 channel activation kinetics (Ordaz et al., 
2005). We tested Ca2+/calmodulin’s participation in po-
tentiation by including calmodulin inhibitors in the in-
ternal solution and by coexpressing dominant-negative 
calmodulin (Fig. 14).

In the first of two experiments, we included 1 µM of 
calmodulin inhibitory peptide in a Cs-Asp–based inter-
nal solution with 1 mM EGTA and recorded TRPC5 
currents after activation by 100 µM CCh. This concen-
tration of calmodulin inhibitory peptide is well above 
the 7 nM IC50 determined in vitro (Torok et al., 1998). 
From five cells recorded in this way, we found that each 
had biphasic activation, and the peak current density 
at 40 mV was 113.3 ± 20.0 pA/pF, similar to control 
cells (e.g., Fig. 1 C). TRPC5 currents recorded with cal-
modulin inhibitory peptide activated more slowly than 
control cells, with an 2.5-fold increase in the latency 
to peak (68.7 ± 7.2 s for control, 160 ± 30.63 s for cal-
modulin inhibitory peptide; P = 0.0087). We also tested 
whether the calmodulin inhibitor W-7, applied at 10 µM 
in the 1-mM EGTA internal solution, was able to in-
hibit the development of large, biphasic TRPC5 cur-
rents activated by 100 µM CCh. From each of four cells 
recorded with W-7 in the pipette, we observed typical 
biphasic TRPC5 currents, with the average peak current 
density at 40 mV of 109.5 ± 32.0 pA/pF. In contrast 
to the calmodulin inhibitory peptide, W-7 treatment 

Figure 13.  Increased internal [Ca2+] depresses TRPC5 current 
potentiation by La3+. (A; Left) The average currents at +100 mV 
(triangles) and 40 mV (squares) recorded from TRPC5 and 
M1R cotransfected HEK cells during voltage ramps applied in the 
indicated solutions. (Right) I-V relations from the times indicated 
by lowercase letters. Boxes to the left of each trace indicate the 
calculated free [Ca2+] in the intracellular solution. (B) The aver-
age potentiation of TRPC5 current by 100 µM La3+. With 200 nM 
of calculated free [Ca2+] in the pipette, current at 40 mV was 
increased 14.53 ± 1.1-fold, and the current at +100 mV was in-
creased 5.53 ± 0.71-fold. With 1.8 µM of calculated free [Ca2+] in 
the pipette, the current at 40 mV was increased 12.04 ± 2.35-
fold, and the current at +100 mV was increased 2.06 ± 0.4-fold. With 
100 µM of calculated free [Ca2+] in the pipette, the current at  
40 mV was increased 6.07 ± 1.1-fold, and the current at +100 mV 
was increased 1.55 ± 0.1-fold (n = 5 for each). External solution 
was nominally Ca free to eliminate competition between Ca2+ 
and La3+ for the shared external binding site. Internal solutions: 
0.2 µM of calculated free [Ca2+] (in mM): 110 Cs-Asp, 10 CsCl,  
2 MgCl2, 10 Cs4-BAPTA, 4.7 mM CaCl2, 4 MgATP, 0.3 Na-GTP, and 

10 HEPES, pH 7.20 with CsOH; 1.8 µM of calculated free [Ca2+] 
solution (in mM): 150 Cs-Asp, 0.43 CaCl2, 5 HEDTA, 2 MgCl2,  
4 MgATP, 0.3 NaGTP, and 10 HEPES, pH 7.20 with CsOH; and 
100 µM [Ca2+] solution (in mM): 150 Cs-Asp, 0.10 CaCl2, 2 MgCl2, 
4 MgATP, 0.3 NaGTP, and 10 HEPES, pH 7.20 with CsOH. External 
solutions: 2 Ca and nominally Ca-free externals.
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Our results suggest that calmodulin is not involved in 
the intracellular Ca2+ potentiation of TRPC5 channels. 
Although previous studies have shown that calmodulin 
inhibitors do not affect TRPC5 current amplitudes 
(Ordaz et al., 2005), some report that calmodulin in-
hibitors reduce agonist-activated TRPC5 currents (Kim  
et al., 2006; Shimizu et al., 2006). These reports suggest 
that calmodulin acts via myosin light chain kinase to  
either affect upstream receptor signaling or the plasma 
membrane delivery of TRPC5 channels. The presence 
of large, CCh-activated TRPC5 currents in our experi-
ments might result from the overexpression of M1Rs or 
the use of low [Ca2+] internal buffering.

DISCUSSION

Our results suggest that intracellular [Ca2+] elevations 
will play an important role in controlling the amplitude 
of agonist-activated TRPC5 currents. Potentiation of the 
TRPC5 channel appears to be maximal at [Ca2+] > 1 µM, 
leading to an 25-fold increase in inward currents  
at physiological membrane potentials. These large cur-
rent amplitudes could generate a strong membrane 
depolarization and also further enhance Ca2+ entry 
directly through TRPC5 channels themselves. Fur-
thermore, the intracellular [Ca2+] dependence and the 
demonstrated ability of heterologously expressed TRPC5 
channels to overcome low internal solution buffering 
conditions must be considered when evaluating mecha-
nisms proposed to modulate TRPC5 activity. This is es-
pecially important in Ca2+ imaging experiments, when 
endogenous buffer capacity is unknown. Maintaining 
constant [Ca2+] levels with high concentrations of inter-
nal solution buffers, or removal of external Ca2+, will 
mitigate the confounding effects of uncontrolled intra-
cellular [Ca2+].

How does intracellular [Ca2+] alter the activity of TRPC5 
channels to generate potentiation?
Our results show that changes in the single-channel 
conductance do not occur during potentiation, suggest-
ing that some combination of increased channel num-
ber (N) or channel open probability is likely to be the 
cause. Although some fraction of TRPC5 channels 
are located in intracellular vesicles and can be inserted 
into the plasma membrane in response to activation of 
growth factor receptors (Bezzerides et al., 2004), the ki-
netics of that process (2.5 min to peak) are much 
slower than the typical onset of TRPC5 channel potenti-
ation, which had latencies of 30 s. Additionally, our 
single-channel data suggest that the likelihood of an in-
crease in channel number during potentiation in those 
experiments is very low. Lastly, the voltage dependence 
of this potentiation (5-fold at +100 mV and 25-fold at 
40 mV), and its occlusion of external Ca2+/lanthanide 
potentiation, suggests that changes in channel open 

did not significantly affect the latency to peak (control 
latency 68.7 ± 7.2 s vs. W-7–treated cells 123.0 ± 36.4 s; 
P = 0.17). In these experiments, we used bath perfu-
sion to exchange external solutions, likely causing the 
increased latencies for activation in control cells (com-
pare Fig. 1).

Finally, we coexpressed a dominant-negative calmod-
ulin in which all four Ca2+ binding E-F hands were mu-
tant (crucial aspartate residues mutated to alanine) 
with TRPC5 and M1Rs. Similar to the results obtained 
with calmodulin inhibitors, CCh-activated currents re-
corded from these cells exhibited the typical biphasic 
response (Fig. 14 C), with an average peak density at 
40 mV of 189.2 ± 37.2 pA/pF (n = 7). As in control 
cells (e.g., Fig. 3), removal of external Ca2+ in these cells 
led to an immediate decline in the current, followed by 
a slower reduction in the current over the next 90–120 s. 
There was no significant effect on the latency to peak 
current in these cells (control cells: 38.3 ± 5.5 s, n = 18; 
dominant negative cells: 31.4 ± 8.7 s, n = 7).

Figure 14.  Calmodulin inhibition does not prevent potentiation 
of TRPC5 by intracellular Ca2+. (A–C; Left) The average currents 
at 40 mV (squares) recorded from TRPC5 and M1R cotrans-
fected HEK cells during voltage ramps demonstrate Ca2+ potentia-
tion in the presence of calmodulin inhibitors. (Right) I-V relations 
corresponding to points at left indicated by the lowercase letters. 
(A) Internal 1 µM of calmodulin inhibitory peptide (n = 5).  
(B) Internal 10 µM W-7 (n = 4). (C) Coexpression of a dominant-
negative mutant calmodulin (CaM DN-1234) with TRPC5. Internal 
Solution (in mM): 150 Cs-Asp, 2 MgCl2, 0.36 CaCl2, 1 EGTA, 4 
MgATP, 0.3 NaGTP, and 10 HEPES, pH 7.20 with CsOH (100 nM 
of calculated free [Ca2+]). External solution: 2 Ca and nominally 
Ca-free external.
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ciated with the channel (yet still relatively distant from 
the channel mouth).

There are no predicted Ca2+ binding sites on TRPC5 
channels, but there are three motifs suggested to inter-
act with calmodulin or related Ca2+ binding proteins. 
One is located in the amino terminus, and two are in 
the carboxy terminus (Zhu, 2005). Ordaz et al. (2005) 
showed that calmodulin binding to the second carboxy-
terminal domain, called CBII (amino acids 828–854 of 
mouse TRPC5), results in faster agonist activation of 
TRPC5 currents, but leaves maximal current amplitudes 
unchanged. This observation is consistent with our result 
that inhibition of calmodulin does not affect Ca2+ po-
tentiation (Fig. 14). Ca2+ binding protein 1 has also been 
reported to bind the carboxy terminus of TRPC5 (over 
a larger region), although its inhibition of Ca2+ activa-
tion of TRPC5 channels makes it unlikely to act as the 
sensor for potentiation (Kinoshita-Kawada et al., 2005).

NCS-1 is another Ca2+ binding protein that has effects 
on CaV, KV, and IP3 receptor channels (for review see 
Burgoyne, 2007). NCS-1 has been shown to interact 
with TRPC5, again in the carboxy-terminal region (Hui 
et al., 2006). They showed that coexpression of a domi-
nant-negative E-F hand mutant of NCS-1 reduced TRPC5 
activity in response to muscarinic receptor activation, 
extracellular lanthanides, or intracellular Ca2+, but not 
through changes in surface TRPC5 expression. NCS-1 is 
a possible candidate underlying Ca2+ potentiation, though 
it is unknown whether NCS-1 interacts with TRPC4, 
which can also be potentiated.

Ca2+ has myriad effects on TRP channels and GPCR/PLC 
signaling pathways
Ca2+ plays a central role in controlling the activity of 
many TRP channels, either through direct binding to 
the channel or through the effects of Ca2+ binding pro-
teins, such as calmodulin (for review see Zhu, 2005). 
For example, TRPA1 is strongly potentiated by intracel-
lular Ca2+, which may bind at the E-F hand motif located 
in the amino terminus of the channel (Doerner et al., 
2007; Zurborg et al., 2007; Wang et al., 2008). Calmodu-
lin interacts directly with many TRP channels to effect 
both positive and negative regulation; examples include 
Drosophila TRPL (Zimmer et al., 2000), TRPC6 and TRPC7 
(Shi et al., 2004), TRPV1 (Rosenbaum et al., 2004), TRPV3 
(Xiao et al., 2008), TRPV4 (Strotmann et al., 2003), TRPV6 
(Lambers et al., 2004), TRPM2 (Tong et al., 2006), and 
TRPM4 (Nilius et al., 2005).

When using GPCR stimulation to activate TRP chan-
nels, it should be noted that numerous steps before 
channel activation are Ca2+ or calmodulin dependent, 
including receptor desensitization (Mundell et al., 2004; 
Turner and Raymond, 2005), PLC activation (McCullar 
et al., 2003; Horowitz et al., 2005), and PKC activation. 
Calmodulin regulation of components in the upstream 
activation pathways of some channels can lead to changes 

probability likely contribute to the effect. TRPC5 channels 
are voltage dependent, with depolarization-enhancing 
activation (Obukhov and Nowycky, 2008). One possibil-
ity is that the binding of intracellular Ca2+ shifts the po-
sition of the voltage dependence of activation toward 
more hyperpolarized potentials, analogous to the effect 
of Ca2+ on large-conductance Ca2+-activated potassium 
(i.e., BK) channels (Cui et al., 1997). Such a time-depen-
dent shift in the activation curve, as calcium increases, 
might also explain the different kinetics of potentiation 
for outward and inward current (Fig. 1 B). For example, 
if the current at +100 mV begins with a nonzero extent 
of activation, whereas the current at 40 mV begins at 
the foot of the activation curve, a hyperpolarizing shift 
in the activation curve will immediately result in increased 
current at +100 mV, whereas the current at 40 mV will 
activate with a delay. Such an explanation has been sug-
gested for TRPV1 activation by capsaicin and TRPM8 
activation by menthol (Voets et al., 2004). Lastly, the 
binding of extracellular Ca2+/lanthanides might result 
in a similar shift in the voltage dependence of activa-
tion, causing the observed voltage-dependent increase 
in TRPC5 channel open probability, as suggested by 
Obukhov and Nowycky (2008).

Where does Ca2+ bind to potentiate agonist-activated 
TRPC5 channels?
The precise location where calcium acts to potentiate 
TRPC5 channels is not completely clear from our ex-
periments. A location close to, or perhaps directly on, 
the channel is supported by the greater effectiveness of 
10 mM BAPTA relative to 10 mM EGTA in preventing 
potentiation (Fig. 2 B). A more distant location is sup-
ported by several results, including the dependence of 
TRPC5 potentiation on global [Ca2+], as directly mea-
sured by fura-2 (Fig. 5); the ability of 10 mM EGTA to 
slow, and in some cells prevent, potentiation (Fig. 2 A); 
and the slow decline in TRPC5 current after the removal 
of external calcium (Fig. 3). Furthermore, the persis-
tence of potentiation in some excised patches suggests 
that the mechanism can survive removal from the cell. 
Lacking detailed information on the contribution of 
calcium ions to the overall TRPC5 current, as well as 
uncertainties stemming from buffer saturation and vary-
ing channel expression level, it is difficult to model the 
profile of [Ca2+] near open TRPC5 channels. What is 
clear is that the Ca2+ entering through a single TRPC5 
channel is insufficient to generate potentiation, or else 
we would have observed it in every cell. Similarly, we 
would not have observed potentiation of TRPC5 chan-
nels in our cell-attached recordings (where the pipette 
contained 2 Ca external solution) after the addition of 
10 Ca solution to the bath (Fig. 10 A). This dependence 
on calcium arising from more distant TRPC5 channels 
might possibly lead to the correlation between global 
[Ca2+] and potentiation, even with a sensor location asso
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Kohlmeier et al., 2008). Furthermore, Ca2+-dependent 
nonselective cation currents have been described in neu-
rons from the substantia nigra (Lee and Tepper, 2007) 
and the entorhinal cortex (Magistretti et al., 2004), but 
the source of the [Ca2+] required to activate these cur-
rents is unknown. These currents may be generated by 
TRPC4 or TRPC5 channels, or by other Ca2+-sensitive 
TRP channels. The typically small amplitude of most 
neuronal nonselective currents, in the presence of mul-
tiple endogenous conductances, makes testing their 
properties difficult. Such studies might be facilitated 
by manipulations that increase [Ca2+] to maximize TRP 
channel potentiation.

Resting [Ca2+] in most neurons is typically 50–150 nM, 
but repetitive activity and back-propagating action poten-
tials can generate [Ca2+] elevations of 0.2 to >1 µM in 
dendrites and dendritic spines via activation of CaV chan-
nels (e.g., Helmchen et al., 1996; Sabatini et al., 2002). Ac-
tivation of NMDA receptors can generate even higher 
levels, >10 µM in spines (Petrozzino et al., 1995). These 
[Ca2+] would be sufficient to potentiate TRPC5 channels 
when occurring simultaneously with GPCR activation and, 
again, enhance depolarization and Ca2+ entry.

Although the subcellular localization of TRPC5 chan-
nels in adult neurons is unknown, TRPC5 is expressed 
throughout the soma and processes, including growth 
cones, of embryonic hippocampal neurons (Greka et al., 
2003). Ca2+ is critically important in controlling growth 
cone motility (for review see Gomez and Zheng, 2006), 
and CaV channels, internal stores, and receptor-activated 
channels all contribute to growth cone [Ca2+]. The Ca2+-
dependent potentiation of TRPC5 might make it a cru-
cial integrator of these multiple signals.
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