
115 kHz tuning repetition rate ultrahigh-speed wavelength-swept
semiconductor laser

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma
Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital,
50 Blossom Street, BAR 704, Boston, Massachusetts 02114

Abstract
We demonstrate an ultrahigh-speed wavelength-swept semiconductor laser using a polygon-based
wavelength scanning filter. With a polygon rotational speed of 900 revolutions per second, a
continuous wavelength tuning rate of 9200 nm/ms and a tuning repetition rate of 115 kHz were
achieved. The wavelength tuning range of the laser was 80 nm centered at 1325 nm, and the average
polarized output power was 23 mW.

Rapidly swept continuous-tuning lasers have become important light sources for a number of
applications, including reflectometry, grating interrogation, and biomedical imaging.1–5 A
high repetition rate of tuning is highly desirable, in particular, for optical frequency-domain
imaging (OFDI) in biomedical applications, because the sweep rate determines the A-line
acquisition rate and, therefore, imaging speed.5 While significantly improved imaging rates
have been demonstrated with OFDI,5,6 realizing the full potential of this technology for high-
speed imaging will require advances in wavelength-swept lasers. Recently a wavelength-swept
laser with an unprecedentedly high repetition rate of 15.7 kHz and a wavelength sweep range
of over 73 nm centered at 1.3 μm was demonstrated.7 The rapid wavelength sweep was
accomplished by use of an intracavity wavelength filter based on a polygonal mirror scanner.
For this filter, one complete wavelength sweep was produced for each partial rotation of the
polygon through an angle of 2π/N, where N was the number of mirror facets. The characteristic
tuning repetition rate of the laser was therefore determined by the product of the rotational
speed and the number of facets of the polygon. The most straightforward way to increase the
tuning speed without changing the filter configuration would be to simply increase the
rotational speed of the polygon. Mechanical considerations, however, ultimately limit this
approach, and significant improvements over previous designs are not feasible. Increasing the
number of polygon facets also has a limitation. In OFDI, the finesse of the laser's spectral
emission determines the ratio of the ranging depth to the resolution; to achieve high resolution
and large ranging depth the laser spectrum must have a high finesse. Since the finesse of the
polygon-scanning filter was proportional to the facet-to-facet angle of the polygon, increasing
the number of mirror facets would decrease the finesse of the filter and compromise OFDI
performance. In this Letter, we describe novel configurations for the polygon-scanning filter
that overcome these limitations and demonstrate a wavelength tuning repetition rate of 115
kHz while maintaining a sufficiently high finesse for large ranging depth and high-resolution
OFDI.

The previously published polygon filter design comprised a fiber optic collimator, a diffraction
grating, a telescope to invert the angular dispersion from the grating, and a polygonal mirror
to retroreflect light back through the optical system to the collimator. By positioning the
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polygon spin axis at the center of the image plane of the telescope, the surface normal of each
facet determined the wavelength selected on reflection. Three novel filter configurations,
depicted in Fig. 1, overcome the scanning repetition-rate limitation of the previous design
through the utilization of multiple reflections from the polygon. Considering the design
depicted in Fig. 1(a), the polygon has been moved away from and off the axis of the telescope
so that the mirror facet is at the image plane, and a planar mirror has been added as an end
reflector. In this case, the sweep angle of the reflected light from the polygon mirror is double
the polygon's rotation angle. Since the free spectral range (FSR) of the filter is proportional to
the sweep angle, the FSR will be twice that for the case when the polygon simply retroreflects
the light back to the telescope. Although increasing the FSR may be important for certain
applications, an alternative would be to double the number of facets on the polygon, thereby
maintaining a constant FSR but doubling the wavelength scanning speed and the repetition
rate.

In contrast with the design of Fig. 1(a), an alternative approach to increasing the scanning
repetition rate while not requiring higher facet density is depicted in Fig. 1(b). In this design,
two planar end reflectors are employed with a relative angle equal to the polygon facet-to-facet
angle, θ′. This arrangement allows two wavelength sweeps to be made while the polygon is
rotated through angle θ′. For a polygon with the same number of facets as in the previous filter
design,7 the two-end-reflector scheme would provide an identical FSR but a wavelength
scanning repetition rate that is twofold greater. The tuning repetition rate can be further
increased, by a factor of M, through the use of M end reflectors. In this case, however, the FSR
would be reduced by a factor 2/M. To obtain uniform wavelength sweeps in this configuration,
the end reflectors must be accurately aligned with a constant interval of angular separation.

The performance improvements described above for the double-pass configurations can be
extended by increasing the number of reflections from the polygon. Figure 1(c) depicts a
configuration in which light reflected from the polygon is redirected, via a 1:1 folded telescope,
to illuminate another mirror facet prior to retroreflection into the laser. For a polygon with the
same number of facets as in the previous filter design, this design would yield an increase in
the FSR by a factor of 4. Alternatively, a polygon having four times more facets than that used
in the previous scheme7 would yield an equivalent FSR but would increase the tuning speed
and repetition rate fourfold. In practice, the FSR increase is ultimately constrained by the facet-
size reduction since the magnification of the telescope needs to be adjusted to match the beam
size to the facet size.

The filter design depicted in Fig. 1(c) was constructed using a custom polygon-scanning mirror
with 128 facets, corresponding to θ=2.81°, and individual facet widths of 1.56 mm. The
rotational rate of the polygon could be continuously adjusted up to a maximum speed of 900
revolutions per second, corresponding to a filter repetition rate of 115.2 kHz A telescope
comprising a pair of achromatic lenses with F1=100 mm and F2=25 mm was placed between
a diffraction grating and the polygon mirror. The focal lengths of the telescope lenses were
chosen to produce a 1/e2 beam width of 1.86 mm (3 dB beam width of 1.09 mm) on the polygon
mirror, slightly larger than the facet width. Using a relatively low-groove-density blazed
diffraction grating (600 lines/mm) reduced the field curvature aberration in the telescope.8 A
folded telescope, comprising two identical 60 mm focal-length achromatic lenses and two
mirrors, M1 and M2, redirected the light from the polygon to a second facet at a separate location
on the polygon mirror. An end reflector, M3, was used to retroreflect light back to the incident
path and subsequently back into the laser cavity. The FWHM bandwidth of the filter, measured
with an optical spectrum analyzer, was 0.16 nm, slightly broader than the theoretical value of
0.15 nm. We attribute this slight discrepancy to the mismatch between the facet size and the
optical beam size at the polygon. The measured FSR of the filter was 80.3 nm, in good
correspondence with the theoretical value of 80.4 nm. For comparison, the previous filter
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design,7 using the same diffraction grating, telescope and polygon, would yield a FSR of 20.1
nm.

To test the tuning performance of this filter, a unidirectional fiber-optic resonator was
constructed (Fig. 2). A broad-bandwidth semiconductor optical amplifier (Covega BOA1017)
was used as the gain medium for the laser and was coupled to the filter via an optical circulator.
Semiconductor optical amplifiers are well suited for high-speed wavelength tuning because of
their high gain, robustness, and fast gain response characteristics. A 50/50 fiber optic coupler,
positioned after the amplifier, functioned as an output coupler for the cavity. Time-averaged
spectra emitted from the laser were acquired using an optical spectrum analyzer in peak-hold
mode. The instantaneous line-width was characterized for various polygon rotational speeds
by use of a variable-delay Michelson interferometer, external to the cavity, to measure the
coherence length of the laser emission. At a tuning repetition rate of 32 kHz, these
measurements yielded an instantaneous linewidth of 0.16 nm. Although the filter tuning was
in the same direction as the self-frequency shift occurring in the amplifier (short wavelength
to long wavelength),7 operating the filter at faster speeds resulted in an increased linewidth
and a decreased coherence length. To reduce this effect, a shorter cavity round-trip path length
is desirable to obtain the smallest possible offset of the filter center wavelength per round trip.
9 The round-trip optical path length of the laser cavity used in this demonstration was 5.2 m,
including a 1.3 m round-trip path in the filter and a 3.9 m path through the fiber ring cavity
and amplifier.

Figure 3(a) depicts the laser output power measured over the course of four wavelength scans
while the polygon scanner was operated at its maximum rotational rate. The observed scan
duration of 8.7 μs and 100% duty cycle correspond to a repetition rate of 115 kHz. The peak
power and the average power emitted by the laser were 31.2 and 23.3 mW, respectively, and
the instantaneous linewidth was 0.23 nm. Although this linewidth is broadened relative to that
for slower tuning speeds, a biologically relevant ranging depth of 3.3 mm could still be achieved
in OFDI systems with frequency shifting.10 The solid black curve of Fig. 3(b) shows the
integrated laser output spectrum and demonstrates the 80 nm edge-to-edge tuning range of the
laser (67 nm at 3 dB), in good correspondence to the FSR of the filter. For comparison, the
filter was reconfigured, using the same optical components, to represent the previous design.
7 In this case the wavelength tuning range, depicted by the gray curve in Fig. 3(b), was found
to be 21 nm. Using the filter design of Fig. 1(a), we observed a tuning range of 42 nm [dashed
curve, Fig. 3(b)].

In conclusion, broadly tunable, high-speed wavelength-swept lasers are important for many
applications including medical imaging. We have described novel tunable optical filters based
on multi-faceted polygon scanners and have demonstrated their use for ultrahigh-speed and
ultrahigh-repetition-rate operation of a wavelength-swept semiconductor laser. The observed
tuning velocity of 9200 nm/ms is, to our knowledge, the fastest laser tuning speed achieved to
date and may enable image acquisition rates in OFDI greater than 200 frames per second.
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Fig. 1.
Schematics of polygon-scanning filter operation. (a) Filter configuration for doubling either
the FSR or the wavelength scanning speed. (b) Filter configuration allowing two wavelength
sweeps during one polygon facet-to-facet angle rotation by using two end reflectors. (c)
Polygon filter configuration for the wavelength sweep rate of 115 kHz.
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Fig. 2.
Schematic of the wavelength-swept laser with the polygon-scanning filter of Fig. 1(c): SOA,
semiconductor optical amplifier; PCs, polarization controllers.
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Fig. 3.
(a) Oscilloscope trace of the laser output, showing four tuning cycles at a repetition rate of 115
kHz. (b) Integrated laser output spectrum. Solid black curve, laser output with the proposed
polygon-scanning filter of Fig. 1(c) for a 115 kHz tuning repetition rate. Gray curve, laser
output with the previous filter design7 using the same optical components. Dashed curve, laser
output with the filter design of Fig. 1(a) using the same optical components.
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