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ABSTRACT
The lectin Siglec-8 (sialic acid-binding, immunoglobulin-like
lectin), which is selectively expressed on eosinophil surfaces
and regulates eosinophil survival, preferentially binds to the
glycan 6�-sulfo-sialyl Lewis X (6�-sulfo-sLex). Antibody engage-
ment of Siglec-8 on eosinophils causes their apoptosis, sug-
gesting that engagement of Siglec-8 with its natural glycan
ligands in vivo may control allergic inflammation. We report that
a soluble synthetic polymer displaying 6�-sulfo-sLex glycan
selectively binds to human eosinophils and human embryonic
kidney 293 cells expressing Siglec-8. Binding was inhibited by

anti-Siglec-8 antibody. In whole blood, eosinophils were the
only leukocyte subtype to detectably bind polymeric 6�-sulfo-
sLex. Interleukin-5-primed eosinophils underwent apoptosis
when incubated with either anti-Siglec-8 monoclonal antibody
or polymeric 6�-sulfo-sLex, although the glycan polymer was
less effective. These data demonstrate that a soluble, multi-
valent glycan selectively binds to human eosinophils and in-
duces their apoptosis in vitro and provide proof-of-concept that
such a reagent could be used to selectively target eosinophils.

Siglecs are a family of single-pass cell surface receptors
that contain N-terminal sialic acid-binding domains (Varki
and Angata, 2006; Crocker et al., 2007; von Gunten and
Bochner, 2008). Among all of the known human Siglecs, each
has a unique pattern of cell surface expression ranging from
a single cell type, such as sialoadhesin (Siglec-1) on macro-
phages, to a wide range of cell types, such as CD33 (Siglec-3)
on most leukocytes (Varki and Angata, 2006; Crocker et al.,

2007; von Gunten and Bochner, 2008). Somewhat more se-
lective in cellular expression pattern is Siglec-8, found on
eosinophils and mast cells and, to a lesser degree, on human
basophils (Floyd et al., 2000; Kikly et al., 2000). Although all
Siglecs bind sialic acid, each exhibits a distinct preference for
the type of sialic acid, its glycosidic linkage, and the presence
of underlying glycans (Varki and Angata, 2006; Crocker et
al., 2007). However, whereas Siglec-8 binds weakly to 2,3-
linked sialic acids (Floyd et al., 2000; Bochner et al., 2005), it
shows a remarkable preference for 6�-sulfated-sialyl-Lewis
X [6�-sulfo-sLex; NeuAc�2-3Gal(6-O-SO3)�1-4(Fuc�1-3)GlcNAc]
without recognizing closely related glycans like sLex and
6-sulfo-sLex (Bochner et al., 2005). Because Siglec-8 engage-
ment with specific antibodies induces eosinophil apoptosis
(Nutku et al., 2003, 2005; Nutku-Bilir et al., 2008), it remains
unknown whether a glycan ligand-based material would
have a similar effect. Therefore, we determined whether a
synthetic polymer-based ligand decorated with the 6�-sulfo-
sLex glycan ligand of Siglec-8 would have the same cellular
binding specificity and biology as that seen with monoclonal
antibodies.
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Materials and Methods
Generation of Stable Siglec-8-Transfected Human Embry-

onic Kidney 293 Cells. Human embryonic kidney 293 (HEK 293)
cell stable transfectants expressing levels of Siglec-8 similar to levels
found on eosinophils were prepared and maintained as described
previously (Kikly et al., 2000; Yokoi et al., 2008).

Purification of Human Eosinophils. Human eosinophils were
isolated from peripheral blood by density gradient centrifugation,
red cell hypotonic lysis, and immunomagnetic negative selection as
described previously (Matsumoto et al., 1995).

Polyacrylamide Conjugates. Thirty-kilodalton label-free and bio-
tinylated conjugates were obtained as described previously (Bovin et al.,
1993) by coupling aminopropyl glycosides to poly(4-nitrophenyl acry-
late) followed by quenching of the polymer active groups with ethanol-
amine. The 2000-kDa polymers were obtained similarly starting from
poly(4-N-hydroxysuccinimidyl acrylate) (Shilova et al., 2005). Spacer-
armed tetrasaccharides 6�-sulfo-sLex, sLex, and 3�-sulfo-sLex were syn-
thesized as described previously (Zemlyanukhina et al., 1995; Pazy-
nina et al., 2003; G. V. Pazynina, V. Severov, M. L. Maisel, I. M.
Belyanchikov, and N. V. Bovin, submitted for publication).

Flow Cytometry. Binding of Siglec-8 monoclonal antibodies 2E2,
2C4, and 9G4 (all murine IgG1, generously provided by Dr. John
White, GlaxoSmithKline, Uxbridge, Middlesex, UK), sLex IgM mono-
clonal antibody FH6 (Bochner et al., 1994), a polyclonal sheep anti-
human Siglec-8 antibody (Tateno et al., 2005), and appropriate iso-
type controls (all used at 10 �g/ml concentrations unless otherwise
indicated) was determined in heparinized whole blood or on purified
eosinophils by use of indirect immunofluorescence and flow cytom-
etry as described previously (Kikly et al., 2000; Nutku et al., 2003).
Binding of saturating concentrations (10 �g/ml) of biotinylated 30- or
2000-kDa 6�-sulfo-sLex-containing polyacrylamide (PAA) polymers
and controls [30-kDa 3�-sulfo-Lex-PAA and sLex-PAA; 2000-kDa Lac-
Nac-PAA (Rapoport et al., 2006; Tateno et al., 2007)] was detected by
use of saturating concentrations of fluorescein isothiocyanate-
streptavidin (R&D Systems, Minneapolis, MN) and flow cytometry.
In some experiments, cells were preincubated as described previ-
ously (Nimrichter et al., 2008) for 90 min at 37°C with sialidase
[either from Clostridium perfringens, 1.6 U/ml from Sigma-Aldrich
(St. Louis, MO), or from Vibrio cholerae, 10 mU/ml from Roche
Diagnostics (Indianapolis, IN)] or monoclonal or polyclonal Siglec-8
antibodies (20 min, 4°C) before incubation with various PAA materials.

Adhesion Assays. Biotinylated glycan-conjugated PAA polymers
(at an optimal concentration of 10 �g/ml) were immobilized on strepta-
vidin-coated 96-well plates (Pierce Chemical, Rockford, IL), and adhe-
sion of calcein-AM-labeled HEK 293 cell suspensions was tested under
static conditions (30 min, room temperature) essentially as described
previously for eosinophils (Matsumoto et al., 1997). In some experi-
ments, cells were preincubated with either monoclonal or polyclonal
Siglec-8 antibodies before testing cell adhesion as indicated.

Apoptosis Assays. Purified eosinophils were cultured for 24 or
72 h in interleukin 5 (IL-5) (10 ng/ml, R&D Systems), and then either
10 �g/ml 2C4 antibody or 10 �g/ml 2000-kDa PAA polymers were
added for an additional 24 h. None of the cultures was performed
without IL-5 because cytokine exposure is needed to see apoptosis to
Siglec-8 antibodies alone (Nutku et al., 2003; von Gunten et al., 2007;
Nutku-Bilir et al., 2008). Thus, no secondary antibodies were in-
cluded. Cell survival was then assessed by flow cytometric analysis
after labeling with annexin-V and propidium iodide as described
previously (Nutku et al., 2003; Nutku-Bilir et al., 2008).

Statistical Analyses. Paired two-tailed Student’s t test was
used to compare values, and results were considered significant for
p values �0.05.

Results
6�-Sulfo-sLex-PAA Polymer Selectively Binds to

Siglec-8. Initial experiments used wild-type HEK 293 cells

and HEK 293 cells stably transfected with Siglec-8. As shown
in Fig. 1, such transfected cells prominently and selectively
label with Siglec-8 antibody (2E2) and also bind 30-kDa
6�-sulfo-sLex-PAA but not the closely related control glycan-
PAA polymers (sLex and 3-sulfo-sLex) that differ from 6�-
sulfo-sLex only by the absence of the sulfate residue or the
sulfate attachment site. Further evidence of specificity of
binding is shown in Fig. 2, where a polyclonal sheep Siglec-8
antibody blocked 6�-sulfo-sLex-PAA binding to the Siglec-8-
HEK 293 cell transfectants. This differs from results ob-
tained by use of a mixture of all three Siglec-8 monoclonal
antibodies, which failed to inhibit polymer binding, demon-
strating that the polyclonal reagent, unlike the monoclonal
antibodies, recognizes the carbohydrate binding site. Consis-
tent with this conclusion is the observation that preincuba-
tion of Siglec-8-expressing HEK 293 cells with polyclonal
antibodies does not reduce binding of any of the monoclonal
antibodies, or vice versa (data not shown).

Further evidence of the functionality of 6�-sulfo-sLex-PAA
binding to Siglec-8 is shown in Fig. 3 by use of an adhesion
assay in which this or various control 30-kDa polymers were
immobilized on plastic surfaces, and adhesion of Siglec-8-
transfected or mock-transfected HEK 293 cells was tested
under static conditions. Significant attachment was only ob-
served with HEK 293 cells transfected with Siglec-8 and
immobilized 30-kDa 6�-sulfo-sLex-PAA polymer (p � 0.007),
and adhesion was eliminated by preincubation of the HEK
293 transfectants with polyclonal Siglec-8 antibody but not
any of the monoclonals (Fig. 3; data not shown).

Surprisingly, and in marked contrast, when this same
6�-sulfo-sLex-PAA 30-kDa polymer was tested for its ability
to bind purified eosinophils, either in flow cytometry or in
static adhesion assays, no detectable binding was seen, even
though these cells expressed levels of Siglec-8 virtually iden-
tical to the HEK 293 transfectants, as determined by anti-
body labeling and flow cytometry (data not shown). Because
previous studies suggest that endogenous cell surface sialic
acids can bind in so-called “cis” configuration and block Siglec
ligand binding (Crocker et al., 2007), eosinophils were pre-
treated with sialidase to remove surface sialic acids (which
was confirmed by complete loss of sLex surface expression by
eosinophils), yet neither treated nor untreated eosinophils
bound to the 30-kDa 6�-sulfo-sLex-PAA polymer (data not

Fig. 1. HEK 293 cells stably transfected with Siglec-8 have the ability to
bind 30-kDa 6�-sulfo-sLex-PAA polymer. Shown are flow cytometric his-
tograms comparing mock-transfected HEK 293 cells that fail to bind
Siglec-8 antibody and 6�-sulfo-sLex-PAA polymer. Also shown is the fail-
ure of binding of several structurally similar glycan-conjugated polymers.
Results are representative of two experiments with similar results.
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shown). However, when a much larger (2000-kDa) 6�-sulfo-
sLex-PAA polymer was tested, binding to purified eosinophils
was readily detected (net mean fluorescence of 14.9 � 7.9,
mean � S.D., n � 11 with nine different donors), whereas a
control 2000-kDa glycan polymer, LacNAc-PAA, did not bind
(Fig. 4; data not shown). As was observed with the HEK 293
cell transfectants, binding of 2000-kDa 6�-sulfo-sLex-PAA
polymer to human eosinophils was completely inhibited by
polyclonal anti-Siglec-8 antibody (102 � 20% inhibition, n �
11 with nine different donors), but not by any of the mouse
monoclonal antibodies or the 30-kDa 6�-sulfo-sLex-PAA poly-
mer (data not shown).

6�-Sulfo-sLex-PAA Polymer Uniquely Binds to Eosin-
ophils in Whole Blood. Further evidence of the specificity
of eosinophil binding to the 6�-sulfo-sLex glycan was provided
by assays in which heparinized whole blood was incubated
with biotinylated 2000-kDa 6�-sulfo-sLex-PAA or control
polymer, and flow cytometry was performed after the addi-
tion of fluorochrome-conjugated streptavidin. As shown in
Fig. 4, attachment of 6�-sulfo-sLex-PAA polymer to eosino-
phils was readily apparent, while no labeling of lymphocytes
or neutrophils was observed and monocytes displayed a de-
gree of reduced fluorescence. Interestingly, neutrophils and a

subset of lymphocytes consistently and selectively bound the
2000-kDa control LacNAc polymer. As reported previously
(Kikly et al., 2000), basophils were weakly labeled with Si-
glec-8 antibody, but no detectable labeling with 6�-sulfo-sLex-
PAA polymer was seen (data not shown), presumably be-
cause of the low levels of basophil surface expression of
Siglec-8.

6�-Sulfo-sLex-PAA Polymer Induces Eosinophil Apopto-
sis in Vitro. Engagement of Siglec-8 with monoclonal anti-
bodies causes eosinophil apoptosis (Nutku et al., 2003, 2005;
Nutku-Bilir et al., 2008). Therefore, it was of interest to
determine whether binding of the 2000-kDa 6�-sulfo-sLex-
PAA polymer had the ability to induce eosinophil apoptosis.
As shown in Fig. 5, IL-5-primed eosinophils, which are
known to be particularly sensitive to Siglec-8 antibody-me-

Fig. 2. Effect of different Siglec-8 antibodies on 30-kDa 6�-sulfo-sLex-PAA
polymer binding to HEK 293 cells stably transfected with Siglec-8. Black
bars represent data with no added antibodies. A polyclonal sheep Siglec-8
antibody had blocking activity (open bar), whereas a combination of
mouse monoclonal antibodies (50 �g/ml each of 2E2, 2C4, and 9G4), had
no blocking activity (gray bar). Results are from a single experiment
representative of three experiments with similar results. MFI, mean
fluorescence intensity.

Fig. 3. Adhesion of mock-transfected HEK 293 cells (open bars) and HEK
293 cells stably transfected with Siglec-8 (black bars) to various immobi-
lized substrates. Attachment was only observed when using 30-kDa 6�-
sulfo-sLex-PAA polymer and HEK 293 cells transfected with Siglec-8.
Data are means � S.E.M. of triplicate determinations and are from n �
2–4 experiments.

Fig. 4. The 2000-kDa 6�-sulfo-sLex PAA polymer selectively binds to
eosinophils among leukocytes in whole blood. Attachment of the 2000-
kDa 6�-sulfo-sLex PAA polymer and the 2C4 Siglec-8 monoclonal antibody
to eosinophils was readily apparent, whereas no labeling of monocytes,
lymphocytes, neutrophils, or basophils was observed. Binding of the
LacNAc control PAA polymer is seen for neutrophils and a subset of
lymphocytes. Results are representative of at least eight experiments
with similar results.

Fig. 5. IL-5-primed eosinophils undergo apoptosis when exposed to
Siglec-8 antibody or 6�-sulfo-sLex-PAA polymer. Results represent
means � S.D. from five experiments at 24 h and three experiments at
72 h. �, p � 0.02 compared with the CD44 control; ��, p � 0.03 compared
with the LacNac control; †, p � 0.005 compared with the CD44 control.
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diated apoptosis (von Gunten et al., 2007; Nutku-Bilir et al.,
2008), underwent apoptosis when incubated with 6�-sulfo-
sLex-PAA polymer after 72 h of culture with IL-5 (p � 0.03),
but not after 24 h of culture. The magnitude of the effect was
less than that seen with the 2C4 anti-Siglec-8 monoclonal
antibody and much less than that seen with the Fas anti-
body, both of which caused significant apoptosis after either
24 or 72 h of culture with IL-5. Enhanced sensitivity to
polymer was not the result of altered surface expression of
cell surface Siglec-8 during the culture because levels only
varied slightly and in no particular pattern (data not shown).

Discussion
Although we and others have previously demonstrated

eosinophil apoptosis with Siglec-8 antibody engagement
(Nutku et al., 2003, 2005; von Gunten et al., 2007; Nutku-
Bilir et al., 2008), our subsequent identification of a selective
and specific ligand for Siglec-8, namely 6�-sulfo-sLex (Boch-
ner et al., 2005), made it possible to test the hypothesis that
a synthetic polymer decorated with this glycan would have
the same cellular binding specificity and biology as that seen
with monoclonal antibodies. With use of a soluble glycan-
conjugated PAA polymer for initial proof-of-concept in the
development of a nonbiologically based agent for detecting
eosinophils and inducing their apoptosis, experiments re-
vealed both selective and specific 6�-sulfo-sLex binding to
Siglec-8 on transfected cells and on either purified eosino-
phils or eosinophils in whole blood. Affinity and avidity were
sufficient to also mediate cellular adhesion to 6�-sulfo-sLex

PAA polymer-coated surfaces. Glycan binding was inhibited
by a sheep polyclonal antibody but not by any of our available
mouse monoclonal antibodies. Although it was not as effec-
tive as the monoclonal antibodies, binding of 6�-sulfo-sLex-
PAA polymer also induced eosinophil apoptosis. To our
knowledge, this is the first time a soluble glycan has been
used to selectively recognize and kill eosinophils and raises
the possibility of developing enhanced glycan-based Siglec-8
ligands for diagnostic or therapeutic purposes in which
eosinophil-specific targeting is desired.

The reason that 30-kDa 6�-sulfo-sLex-PAA polymer bound
HEK 293 cell transfectants, but not eosinophils, remains
unknown but is probably not due to cell surface sialic acid
interference because their removal from the surface of eosin-
ophils with sialidase had no effect. One possibility is that the
larger polymer has the potential to span Siglec-8 over a wider
area of the eosinophil surface or fortuitously expresses the
glycan ligand in groupings that match the grouping of Si-
glec-8 on the eosinophil surface.

Although the 2000-kDa polymer does induce eosinophil
apoptosis, it is not as effective as the antibody. The reason for
this difference is unclear, but it may be the result of differ-
ences in multivalent versus polyvalent binding and the re-
duced flexibility of a dimeric antibody for inducing cross-
links compared with a large, highly flexible PAA polymer.
Indeed, the density of carbohydrate decoration is high, on the
order of several hundred per PAA molecule. Further optimi-
zation of the polymer rigidity, size, and density of decoration
with 6�-sulfo-sLex glycan may enhance both potency and
efficacy for binding and induction of apoptosis. However, the
goal of the present experiments was to achieve proof-of-con-
cept regarding the ability of a soluble glycan ligand of Si-

glec-8, specifically a 6�-sulfo-sLex glycan, to selectively bind
eosinophils among all other cells in peripheral blood, and to
induce their apoptosis. This was important because subse-
quent to our publication showing specificity of binding of
6�-sulfo-sLex for Siglec-8 (Bochner et al., 2005), additional
glycan array screens performed by the Consortium for Func-
tional Glycomics with other lectins (www.functionalglycom-
ics.org) suggested that more structures, including Siglec-7,
might be capable of binding this glycan. The fact that no
detectable binding to any other leukocyte subtype was seen,
including monocytes, CD8� T lymphocytes, and NK cells
that express Siglec-7 (Nicoll et al., 1999; Angata and Varki,
2000), suggests that 1) endogenous binding sites may be
masked by cell surface sialic acids, 2) binding specificity or
affinity is less than that for Siglec-8, or 3) levels of Siglec-7 on
these cells do not permit detectable levels of polymer attach-
ment.

The closest functional mouse paralog to Siglec-8 is Siglec-F,
which is also expressed on eosinophils and, like human eo-
sinophils, preferentially binds 6�-sulfo-sLex (Tateno et al.,
2005). Previous work showing that Siglec-F antibody admin-
istration to mice leads to profound and selective eosinophil
apoptosis and depletion (Kearley et al., 2007; Zimmermann
et al., 2008; Song et al., 2009) suggests that in vivo admin-
istration of the 6�-sulfo-sLex PAA polymer might have a
similar effect, but unfortunately sufficient quantities are not
yet available to perform such experiments. Other in vitro
experiments with murine eosinophils have shown, however,
that this same glycan-decorated polymer binds to murine
eosinophils via Siglec-F and triggers its internalization via a
pathway involving ADP ribosylation factor 6 but indepen-
dent of dynamin and clathrin (Tateno et al., 2007). Additional
experiments in vivo suggest the presence of a lung ligand for
Siglec-F (Zhang et al., 2007). Its exact molecular identity
remains incompletely defined but is currently under investi-
gation (Bochner, 2009). Regardless, selective and specific
engagement of Siglec-8 on eosinophils by natural or synthetic
6�-sulfo-sLex-containing ligands, glycomimetics, or antibod-
ies could be useful in controlling eosinophilic inflammatory
responses in vivo.
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