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I N T R O D U C T I O N

Although there is general agreement concerning the 
membrane topology of channels formed by the con-
nexin gene family, there is considerable controversy 
concerning which of the four transmembrane (TM) 
helices and two extracellular loops are involved in pore 
formation as well as the organization of the remaining 
TM segments (for review see Yeager and Harris, 2007 
and Verselis, 2009). A hemichannel or connexon is 
formed as a hexamer of an integral membrane protein 
(connexin) that spans the membrane four times with 
two extracellular loops (E1 and E2) and intracellular 
amino (NT) and carboxy termini. Based on an improved, 
but still low, 5.7 Å in plane and 19.8-Å vertical resolution 
cyroEM structure of Cx43 intercellular channels (Unger 
et al. 1999), Fleishman et al. (2004) constructed a com-
putational C model of the structure of Cx32 gap junc-
tions in which the third TM helix (TM3) formed the 
majority of the channel pore. Using a combination of 
molecular modeling and molecular dynamics, Pantano 
et al. (2008) refined this model to provide a fully atomistic 
representation of the Cx32 hemichannel. In this model, 
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TM3 formed the majority of the pore in the TM region 
with the narrowest point of the pore at residue Y151 
located in TM3 near the border of the second extracel-
lular loop (E2). Furthermore, this model depicts E2 as 
forming most of the pore at the extracellular entrance 
of the hemichannel.

The assignment of TM3 as the major pore-lining helix 
is partially consistent with the experimental data of 
Skerrett et al. (2002). This study determined the accessi-
bility of cysteine substitutions to the thiol modification 
reagent maleimidobutyryl biocytin (MBB) in macro-
scopic recordings of Cx32 intercellular channels formed 
in paired Xenopus oocytes in which one oocyte was cut 
open. The authors concluded that TM3 was the major 
pore-forming helix when the channel resided in the 
open state with a minor contribution of TM2 at the cyto-
plasmic end of the pore. Notably, MBB treatment of 
Y151C channels, which Pantano et al. (2008) model as the 
narrowest part of the pore, had only a small effect, sur-
prisingly increasing rather than decreasing macroscopic 
conductance by 10%. Residues in TM1 were proposed 
to enter the channel pore when the channel resided in 
the closed state. In contrast, Kronengold et al. (2003)  
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gating” gives the appearance of a complex gating event 
with a measurable time constant (Trexler et al., 1996; 
Oh et al., 2000). At least a portion of the voltage sensor 
for the Vj gate resides in the NT of Cx32 and Cx26, and 
charged residues at the TM1/E1 border may also be 
involved (Verselis et al., 1994; Oh et al. 2000). The polar-
ity of Vj gating of Cx32 and Cx26 hemichannels can be 
reversed by the addition of negatively or positively 
charged amino acids at several positions within the first 10 
amino acids of the NT (Verselis et al., 1994; Purnick et al.,  
2000b; Oh et al., 2004), and it appears that “Vj gating”  
results from the individual movement of the six connexin 
subunits rather than a concerted movement of all six sub-
units (Oh et al., 2000). It has been proposed that Vj gat-
ing transitions might involve changes in the conformation 
of a proline kink motif in TM2 (Suchyna et al., 1993; Ri 
et al., 1999). Nothing is known about the location of the 
voltage sensor or changes in conformation underlying 
loop or slow voltage-dependent gating in unopposed 
Cx32*Cx43E1 hemichannels.

Here, we report that the pore structure of the unap-
posed Cx32*Cx43E1 hemichannel is very similar if not 
identical to that of Cx46 and Cx50 unapposed hemi-
channels in the vicinity of the TM1/E1 border. Further-
more, we demonstrate that the cysteine substitution of 
residue A43 located at the TM1/E1 border forms a high 
affinity cadmium binding site only when the channel 
resides in a closed conformation resulting from voltage-
dependent loop gating, and that A43C residues can 
form homotypic disulphide bonds when oocytes are cul-
tured in bath solutions containing 5 mM Ca2+, a condi-
tion that favors channel closure. A40C residues also 
bind Cd2+ when the channel is closed by loop gating but 
with apparently much lower affinity than A43C chan-
nels. We propose that the mechanism of loop-gating 
closure of Cx32*Cx43E1 unapposed hemichannels 
involves a rotation of TM1/E1 and an inward tilt either 
of each connexin subunit or each TM1 helix.

M AT E R I A L S  A N D  M E T H O D S

Site-directed mutagenesis, RNA synthesis, and oocyte 
injection
Site-directed point mutations were constructed using oligonucle-
otide primers (Gene Link) and the quick-change method (Agi-
lent Technologies). All mutations were cloned into the plasmid 
vector pGEM-7ZF+ (Promega) and sequenced. RNA was tran-
scribed by using the Message-Machine kit with T7 RNA poly-
merase (Applied Biosystems) according to the manufacturer’s 
instructions. 50 nl of 1 ng/nl RNA was injected into each Xenopus 
oocyte obtained from Xenopus laevis (Xenopus 1) by standard pro-
cedures. After RNA injection, oocytes were cultured at 16°C in 
ND96 solution containing (in mM): 88 NaCl, 1 KCl, 5 CaCl2,  
1 MgCl2, 10 HEPES, 2.5 pyruvate, and 0.1% glucose, pH 7.6.

Membrane protein purification and Western blots
Membrane proteins from 20 oocytes, cultured in ND96 containing 
5 mM CaCl2, were labeled with NHS-PC-LC-Biotin and purified 

demonstrated, with single-channel studies of Cx46 unap-
posed hemichannels, that residues located in the first 
TM helix (TM1) and first extracellular loop (E1) were 
modified by several methanthiosulfonate (MTS) reagents 
when the channel resided in the open state (see Fig. 10 A). 
There was no evidence of modification of residues in the 
second half of TM3 that would be pore lining in the atom-
istic model of Pantano et al. (2008) and were assigned to 
be pore lining by Skerrett et al. (2002). Modification of 
residues at two positions, I33C and M34C in TM1 of 
Cx32*Cx43E1, a Cx32 chimera in which E1 of Cx32 is 
replaced by that of Cx43, and I34C and L35C in Cx46 
unapposed hemichannels with MBB, was reported by 
Zhou et al. (1997). These two studies implicate TM1/E1 
rather than TM3/E2 as pore forming in Cx46 and 
Cx32*Cx43E1 unapposed hemichannels. Oh et al. (2008) 
reported modification of the T8C residue, which is  
located in the NT of unapposed hemichannels formed 
by Cx32*Cx43E1. Several studies have established the 
likelihood that the NT of Cx32 forms a vestibule at the 
intracellular entry of both the intercellular channel 
and unapposed Cx32*Cx43E1 hemichannel (Verselis 
et al., 1994; Oh et al., 2000, 2004, 2008; Purnick et al., 
2000a,b). Collectively, studies of unapposed hemichan-
nels implicate residues in NT, TM1, and E1 as contribu-
tors to the pore lining of connexin channels (for review 
see Verselis, 2009).

Knowledge of the structure of the connexin channel 
pore is not only essential to understand the selective 
permeation of connexin channels, but also to elucidate 
the molecular mechanisms of transjunctional (Vj) volt-
age gating. Harris et al. (1981) were the first to ascer-
tain that the transjunctional voltage sensors of connexin 
channels must lie within the aqueous pore rather than 
in separate domains as exemplified by the superfamily 
comprising voltage-gated sodium, potassium, and calcium 
channels (Bezanilla, 2000; Tombola et al., 2006). They 
reasoned that the difference in the membrane poten-
tial of two coupled cells, Vj, would manifest itself as a 
voltage gradient along the length of the connexin channel 
pore. Because voltage gating in response to Vj depends 
only on the relative difference in potential of the two 
cells and not the absolute membrane potential, charged 
amino acids that form the voltage sensor must reside in 
the pore lining of connexin channels (see also Bargiello 
and Brink, 2009).

All vertebrate gap junctions display sensitivity to Vj. 
Two distinct mechanisms of Vj dependence have been 
described in both intercellular and unapposed hemi-
channels. These have been termed “Vj” or “fast” gating 
and “loop” or “slow” gating. In single-channel records, Vj 
or fast gating corresponds to fast transitions between the 
open state and at least one of three distinct subconduc-
tance states, whereas loop or slow gating involves a series 
of small amplitude transitions that link the open and a 
fully closed state. Consequently, channel closure by “loop 
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able to connexin hemichannels are evident after injec-
tion of W44C RNA. Membrane insertion of W44C by 
Western blotting was not examined.

Accessibility of cysteine substitutions to MTSEA–biotin-X
Fig. 2 shows that cysteine substitutions of V38 and G45 
residues are accessible to modification with MTSEA–bi-
otin-X when the Cx32*Cx43E1 channel resides in the 
open state and when the sulfhydryl reagent is applied 
from either the intracellular or extracellular side of the 
channel pore by addition to the bath solution. The step-
wise reductions in current shown in this figure are not 
reversed by the removal of MTSEA–biotin-X by washing 
with bath solution, consistent with chemical modifica-
tion of the cysteine residue.

with a NeutroAvidin column according to the manufacturer’s sug-
gested procedure (Thermo Fisher Scientific). Proteins were released 
from the avidin column by treatment with 10% SDS and separated 
by SDS-PAGE through 4–20% Tris-glycine gradient gels (Invitro-
gen). After SDS-PAGE, proteins were transferred to PVDF mem-
brane (Millipore) by semidry electro blotting (Owl Apparatus). 
Connexin proteins were localized with anti-Cx32 monoclonal anti-
body (Sigma-Aldrich) with a WesternBreeze Chromogenic Western 
Blot Immunodetection kit (Invitrogen).

Electrophysiological recording
Macroscopic oocyte membrane currents were recorded from 
Xenopus oocytes placed in an RC-1Z recording chamber (Warner 
Instruments). The basic bath solution contained (in mM): 100 
CsOH–methanesulphonic acid, 1.8 CaCl2, and 10 HEPES, pH 7.6. 
Additional reagents were added to this solution to the concentra-
tions stated in the text. Dibromobimane (bBBr; Invitrogen) was 
dissolved in DMSO and diluted to the desired concentration. 
Gravity perfusion with suction was used to exchange bathing solu-
tions. The volume of the chamber was 1.0 ml. Recording pipettes 
contained 3 M KCl and 10 mM HEPES, pH 7.6. A 3-M KCl agarose 
bridge connected the recording chamber to a ground chamber 
containing 3 M KCl and 10 mM HEPES, pH 7.6. Recordings were 
performed using either a GeneClamp 500 voltage clamp (MDS 
Analytical Technologies) or CA-1B high performance oocyte 
clamp (Dagan Instruments). Macroscopic currents were obtained 
at a sampling frequency of 5 kHz, filtered at 200 Hz, and when 
necessary decimated 50-fold for presentation.

Single-channel currents were recorded as described by Oh et al. 
(2000, 2004). MTSEA–biotin-X (2-((6-((biotinoyl)amino)hex
anoyl)amino) ethylmethanethiosulfonate)) was purchased from 
Biotium, Inc., dissolved in DMSO (Sigma Chemical) to a stock 
concentration of 250 mM, and kept on ice before further dilution. 
Dilutions were made to a final concentration of 1 or 0.5 mM in 
bath solution just before bath application.

R E S U LT S

With the exception of E41C, S42C, and W44C, unap-
posed Cx32*Cx43E1 hemichannels containing individual 
cysteine substitutions at residues V37 through G45 dis-
play voltage-dependent changes in macroscopic conduc-
tance that are qualitatively similar to that of the parental 
Cx32*Cx43E1 channel. Fig. 1 A illustrates a family of 
current traces obtained from an oocyte expressing 
Cx32*Cx43E1 that were elicited by a series of voltage polar-
izations from a holding potential of 0 mV. As reported 
by Oh et al. (2000), the relaxation of current that is 
observed at hyperpolarizing potentials results from the 
closure of either the loop and/or Vj gates. Cx32*Cx43E1 
channels reside primarily in the open state at voltages 
more positive than -40 mV.

Macroscopic currents elicited by voltage for both 
E41C and S42C are too small (usually <300 nA) to be 
analyzed with confidence due to the expression of endog-
enous oocyte currents. Fig. 2 B illustrates a family of 
current traces elicited by a series of voltage polariza-
tions from a holding potential of 0 mV that were obtained 
from an uninjected oocyte. Low levels of membrane 
insertion of E41C and S42C were confirmed by Western 
blots (not depicted). No macroscopic currents attribut-

Figure 1.  (A) Macroscopic current traces obtained from WT 
Cx32*Cx43E1 unapposed hemichannels after polarizations in 
20-mV increments between -90 and 50 mV from a holding potential 
of 0 mV. The small increase in current level at large positive volt-
ages results from the activation of an endogenous oocyte channel 
as assessed by recording uninjected oocytes. (B) Macroscopic cur-
rent traces obtained from an uninjected oocyte illustrating typical 
endogenous currents present in oocytes obtained from Xenopus 
1 frogs in Cs-MES bath solutions. There is variability in the form 
and magnitude of endogenous currents among oocytes, but in 
most cases endogenous currents contribute <300 nA.
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ductance are observed when the channel resides in the 
open state. This result shows that at least five of six G45C 
residues can be modified when the sulfhydryl reagent is 
applied to the extracellular side of the channel pore.

Fig. 2 C illustrates a record of an inside-out patch 
containing a single V38C channel. Again, this record 
shows that the V38C channel is accessible to modifica-
tion when the channel resides in the open state and 
when the reagent is applied to the intracellular side of 
the channel pore. In this case, there are four stepwise 
changes in conductance, indicating that at least cysteine 
residues in four of six subunits are modified. Fig. 2 D 

Fig. 2 A illustrates an inside-out patch clamp recording 
of two G45C channels after the application of MTSEA–
biotin-X. When the channel resides in the open state, 
9 of a possible 12 stepwise reductions in current are 
observed. Based on the assumption that each step reflects 
a reaction between a single cysteine residue and the 
MTS reagent, it appears that at least five G45C residues 
are accessible to modification when the reagent is 
applied to the intercellular side of the channel pore. 
Fig. 2 B illustrates comparable modification of G45C 
residues in an outside-out recording of a single active 
channel. In this patch, five stepwise reductions in con-

Figure 2.  G45C and V38C residues are modified by MT-
SEA–biotin-X. Segments of patch clamp records of G45C 
and V38C after the addition of MTSEA–biotin-X to the 
bath solution at a final concentration of 1 or 0.5 mM. 
Arrows at the bottom of each panel mark step changes in 
conductance that are consistent with the reaction of a cys-
teine residue with MTSEA–biotin-X. Changes in current 
levels were determined with the all-point histograms shown 
on the right side of each panel. (A) Inside-out recording 
of two G45C channels. Nine conductance changes are 
evident, consistent with modification of 9 of 12 available 
G45C residues. The first modification event occurred 20 s  
after the bath application of 1 mM MTSEA–biotin-X.  
(B) Outside-out recording of a single G45C channel illustrat-
ing five conductance changes, consistent with modification 
of five of six available cysteine residues. The first modification 
event occurred 6 s after the bath application of 1 mM MT-
SEA–biotin-X. (C) Inside-out recording of a single V38C 
channel illustrating four conductance changes consistent 
with modification of four of six available subunits. The first 
modification event occurred 18 s after the bath application 
of 1 mM MTSEA–biotin-X. (D) Outside-out recording of a 
single V38C channel illustrating six conductance changes. 
It is not clear if the final conductance change, marked 
by an asterisk, resulted from a reaction, gating event, or 
channel loss; thus, at least five of six cysteine residues are 
modified. The first modification event occurred 64 s after 
the bath application of 0.5 mM MTSEA–biotin-X. The 
longer time to the first modification event correlates with 
the lower concentration of MTSEA–biotin-X used in this 
record (0.5 mM vs. 1.0 mM) than was used in the previous 
records. (D1) This is an enlargement of the boxed region 
of D. The event marked by the single asterisk is a Vj-gating 
transition that occurred after modification of two cysteine  
residues. The event marked by two asterisks is a loop-gating  
transition that occurred after three cysteine subunits were 
modified by MTSEA–biotin-X. Note that the loop- or slow-
gating event involves a series of small amplitude transitions 
giving the appearance of a complex gating event with a 
measurable time constant, whereas the Vj-gating event 
occurs as a single fast step between the open state and a 
subconductance state. Zero current level indicated by the 
dashed line is the leak-subtracted current.
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these residues to MTSEA–biotin-X was not examined in 
excised patches. Low or lack of expression precluded 
examination of modification of channels formed by 
E41C, S42C, and W44C.

We conclude that residues V38C and G45C line the 
aqueous pore of the open Cx32*Cx43E1 unapposed 
hemichannel, whereas residues V37C, A39C, A40C, and 
A43C do not appear to be accessible to thiol modifica-
tion when the channel resides in the open state.

Effects of DTT, TPEN, and TCEP on membrane currents 
produced by A43C
Typically, oocytes injected with A43C RNA display low lev-
els of current when examined 1–2 d after injection. Given 
that A43C residues do not appear to line the pore of the 
open channel, this observation suggested a possible inter-
action among the substituted cysteine residues that may 
involve disulfide bond formation or interactions with diva-
lent metal ions when the channel resides in a closed state. 
These possibilities were explored by examining the effects 
of disulphide bond reducing agents and transition metal 
chelators on A43C membrane currents.

Treatment of A43C oocytes, displaying small initial cur-
rents, with low concentrations of dithiothreitol (DTT; 
20 µM), results in a rapid and large increase in mem-
brane current (Fig. 3) that is attributable to the activa-
tion of connexin hemichannels already inserted into the 
oocyte membrane. In the case shown, currents attribut-
able to A43C unapposed hemichannels increase fivefold 
after the application of DTT. Overall, the efficacy of DTT 
to increase currents was variable, ranging from a small 
effect to a 10-fold increase (n = 77 oocytes). The variabil-
ity in the effect of DTT roughly correlates with the time 

demonstrates the modification of V38C residues in a 
single channel recording obtained in the outside-out 
configuration. In addition, the record illustrates that 
both Vj and loop gates are operational when two and three 
subunits are modified, respectively, by MTSEA–biotin-X. 
In the enlarged section of the trace, Fig. 2 D1, the channel 
undergoes a Vj-gating transition (marked by an asterisk) 
after two stepwise reductions in conductance and shortly 
after reopening a third modification occurs. Shortly 
thereafter, the channel undergoes a loop-gating event 
(marked by two asterisks) that appears to result in full 
channel closure. After reopening from the fully closed 
state, two additional stepwise changes in conductance 
are observed that are consistent with modification of 
the remaining two subunits (Fig. 2 D). It is not clear if the 
final step (marked by the asterisk in Fig. 2 D) resulted 
from a modification, gating event, or channel loss, as the 
resulting conductance is similar to that of complete 
channel closure by loop gating. Consequently, we con-
clude that at least five of six cysteine residues are modified. 
No modifications were observed or can be inferred to have 
occurred when the V38C channel resided although briefly 
in either the Vj- or loop-gated closed conformation. In all 
cases, removal of unreacted MTSEA–biotin-X by wash-
ing with bath solution had no effect on the conductance 
of reacted channels.

There is no evidence that MTSEA–biotin-X modifies 
the open state of channels formed by cysteine substitu-
tions at residues A40 and A43 as assessed by single-channel 
recording of excised patches (not depicted). No modi-
fication was apparent in macroscopic recordings of 
V37C and A39C channels at hyperpolarizing or depo-
larizing potentials (not depicted). The accessibility of 

Figure 3.  DTT and cadmium alter levels of A43C 
currents. Macroscopic currents elicited from an oo-
cyte expressing A43C unapposed hemichannels with 
the voltage paradigm shown at the top of the panel. 
The central bar indicates the time and duration at 
which the bath solution containing 100 mM Cs-MES, 
1.8 mM CaCl2, and 10 mM HEPES, pH 7.6, was ex-
changed with the same bath solution except con-
taining either 20 µM DTT or 10 µM CdCl2. Currents 
increased to a steady-state level approximately five-
fold greater than the initial currents after exposure 
to 20 µM DTT and decreased to 80% of maximum 
after treatment with 10 µM CdCl2. The reduction in 
current was not changed substantially by washing  
with the bath solution but was reversed to pre-cadmium 
levels after wash with 20 µM DTT.
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Treatment of uninjected oocytes with 20–100 µM DTT, 
10 µM TPEN, or 500 µM TCEP has little if no effect on 
the levels of endogenous oocyte currents.

Effect of cadmium on A43C membrane currents
The effect of TPEN and the absence of an additive effect 
of DTT, observed in most cases, suggest that chelation of 
transition metals rather than disulfide bond formation 
underlies the increase in A43C current. This possibility 
was explored further by examining the effect of cad-
mium, a soft, highly polarizable group IIB transition 
metal that can coordinate with cysteine residues, on 
A43C membrane current. Fig. 3 illustrates that DTT-
treated A43C oocytes display a large reduction in cur-
rent after wash with DTT-free solution and subsequent 
application of 10 µM Cd2+. In the trace shown, current 
levels are reduced by >80% in the presence of 10 µM 
Cd2+ and are not restored by washing with Cd2+-free solu-
tion for the time indicated. The residual currents are most 
likely a combination of endogenous oocyte currents and 
leak current, both of which are variable between oocyte 
batches and were not subtracted.

The reduction of A43C currents by cadmium is inde-
pendent of the amount of current increase caused by 
DTT treatment. The average reduction with 10 µM Cd2+ 
is 73 ± 6% (n = 18). Treatment of A43C oocytes with 1 µM 
Cd2+ results in a 70 ±1% (n = 3) decrease in current. The 
similarity in the magnitude of inhibition at these concen-
trations suggests that the Cd2+ binding affinity is high. 
The connexin currents can only be restored to pre-Cd2+ 
levels by treatment with either 20 µM DTT, 10 µM TPEN, 
or 500 µM TCEP. Extensive washing with Cd2+-free  
solutions has little effect on current levels with the dura-
tion of the wash used in this study. 10 µM Cd2+ has no  
effect on membrane currents attributable to parental 
Cx32*Cx43E1 channels or endogenous channels. 100 µM 
Cd2+ causes some reduction in parental currents, but the 
effect is readily and completely reversed after wash with 
Cd2+-free solutions (not depicted).

Western blots indicate that A43C channels can form 
disulfide bonds
Although electrophysiological studies indicate that low 
levels of A43C currents observed 1–2 d after injection 
likely occur as a consequence of metal coordination, 
Western blots of membrane-inserted A43C channels cul-
tured in ND96 media containing 5 mM Ca2+, a concentra-
tion that strongly favors connexin hemichannel closure 
and appears to increase the survival time of injected 
oocytes presumably by reducing connexin membrane 
currents, demonstrate that disulfide bonds can form 
between neighboring A43C residues (Fig. 4). As shown 
in Fig. 4 A, 75–80% of connexin immunoreactivity is 
localized to a band whose molecular weight corresponds 
to that expected for a connexin dimer (54 kD), whereas 
the remainder corresponds to the lower molecular 

interval between injection and recording. Generally, 
records obtained from oocytes 3–4 d after injection dis-
play larger initial A43C currents and a much smaller in-
crease in current after treatment with DTT. Comparable 
increases of A43C currents can be obtained by treatment 
with 500 µM Tris(2-carboxyethyl) phosphine (TCEP), a 
membrane-impermeant reagent, suggesting that disul-
phide bond formation may underlie the attenuation of 
initial A43C currents. However, 10 µM N,N,N’,N’-tetrakis-
(2-pyridylmethyl)-ethylenediamine (TPEN), a membrane- 
permeable transition metal chelator with a low affinity 
for Ca2+ and Mg2+ that does not reduce disulphide bonds, 
has an effect comparable to the two disulfide reducing 
agents. Application of DTT after TPEN treatment does 
not substantially increase A43C currents in most oocytes, 
but does so in a small percentage, suggesting an addi-
tional action of DTT in some cases. It should be noted 
that, in addition to reducing disulphide bonds, DTT can 
also chelate metal ions with high affinity (Krezel et al., 
2001), whereas TCEP is a weaker chelator of metal ions 
(Krezel et al., 2003). Removal of DTT by extensive wash-
ing of oocytes expressing A43C is often accompanied by 
a slow reduction in current levels that can be reversed by 
subsequent treatment with DTT or TPEN (Fig. 3).

Increased currents in response to micromolar concen-
trations of DTT, TPEN, and TCEP are not observed in 
the parental Cx32*Cx43E1 channel nor in any other cys-
teine substitutions examined in this study (not depicted). 

Figure 4.  Western blots of WT (Cx32*Cx43E1) and mutant 
(A43C) membrane-inserted hemichannels. + and - symbols at 
the bottom of each panel denote treatment of the sample with 
or without either 50 mM DTT or 10 mM TPEN before SDS-elec-
trophoresis through 5–40% gradient polyacrylamide gels. The 
position of pre-stained molecular weight standards (Thermo 
Fisher Scientific) are presented as bars on the right side of the 
figure. The band with molecular weight 50 kD corresponds to 
a connexin dimer, whereas the monomer has an electrophoretic 
mobility comparable to a molecular weight standard of 27 kD. 
Only treatment with DTT reduces the dimer to the monomeric 
connexin form.
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State dependence of Cd2+ inhibition and bBBr modification 
of A43C residues
Fig. 5 A illustrates that the inhibition of A43C currents 
by micromolar concentrations of Cd2+ occurs at hyper-
polarizing potentials that correlate with the voltage 
dependence of channel closure. Membrane currents 
are reduced to a steady-state level, 85% of their DTT-
treated value, after perfusion with 10 µM Cd2+ while the 
oocyte is repeatedly hyperpolarized by alternating steps 
between -90 and 0 mV. A similar reduction in current is 
observed when Cd2+ is applied to channels that had 
been closed in response to a long hyperpolarizing step 
to -90 mV, washed with Cd2+-free solution, and tested 
with polarizations alternating between -90 and +50 mV 
(Fig. 5 B). In contrast, the application of 10 µM Cd2+ after 
moderate hyperpolarization to -20 mV (not depicted), 
or depolarization to 30 mV (Fig. 5 C), voltages that 
strongly favor open-channel residency, has little if no effect 
on current levels. This result suggests that Cd2+ binds to 
A43C residues when the channel resides in a closed 
state. The marked reduction of A43C current by Cd2+ at 

weight monomer (27 kD). Treatment of the sample 
with 50 mM DTT shifts all immunoreactivity to the 
monomeric form. Notably, no molecular weight forms 
larger than dimers are observed in Western blots of 
homomeric A43C channels. Similar results were ob-
tained in 3 of 30 Western blot experiments. In most 
cases (27 of 30 blots), the intensity of the dimer is less 
than that of the monomer, accounting for 10–20% 
of the total immunoreactivity (Fig. 4 B). In this experi-
ment, the dimer was reduced to the monomeric form 
after treatment with 50 mM DTT but was insensitive to 
treatment with 10 mM TPEN. Fig. 4 C illustrates a 
Western blot of parental Cx32*Cx43E1 membrane-
inserted unapposed hemichannels. Only the connexin 
monomer is detected, and there is no change in mobil-
ity after DTT treatment. The results of the biochemi-
cal experiments indicate that disulfide bond formation 
may contribute in part to the reduced levels of A43C 
current, although in most cases it appears that binding 
of endogenous divalent metal ions, such as Cd2+, have 
a larger effect.

Figure 5.  Cadmium locks A43C unapposed 
hemichannels in a closed state. (A) Macro-
scopic currents elicited from an oocyte express-
ing A43C unapposed hemichannels with the 
voltage paradigm, steps from -90 to 0 mV, 
shown at the top of the panel. The central bar 
indicates the time and duration for which the 
bath solution containing 100 mM Cs-MES, 
1.8 mM CaCl2, and 10 mM HEPES, pH 7.6, was 
exchanged with the same bath solution except  
containing either 20 µM DTT or 10 µM CdCl2. 
Currents were decreased to 85% of maxi-
mum levels after treatment with 10 µM CdCl2. 
The reduction in current could only be re-
versed after a second exposure to 20 µM DTT.  
(B) 10 µM CdCl2 was applied to the channel 
after a long-duration hyperpolarizing step that 
would favor closure of both loop and Vj gates.  
After wash with Cs-MES bath solution, the extent 
of current reduction was assessed by a series of 
polarizing steps between -90 and 50 mV. Cur-
rents were reduced by 80% by Cd2+ treatment 
when the channels resided in a closed state. 
Currents could only be recovered fully after 
exposure to 20 µM DTT. (C) Macroscopic cur-
rents elicited from an oocyte expressing A43C 
unapposed hemichannels with the voltage 
paradigm, steps between 0 and 30 mV, which 
strongly favors population of the open-channel 
state. Application of 10 µM CdCl2 had no effect 
on the level of A43C current, indicating that 
A43C residues do not coordinate Cd2+ when 
the channel resides in the open state.
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on average to 75 ± 5% (n = 4) of their initial values by 
washing with Cd2+-free solution (Fig. 7 A). This suggests 
that 25% of heteromeric channels bind cadmium with 
high affinity. This measure of recovery is not influenced 
by variations in the levels of endogenous currents among 

large hyperpolarizing potentials can only be reversed 
after the application of 20 µM DTT (Fig. 5, A and B) or 
10 µM TPEN (not depicted).

Irreversible reductions in current also result when 
A43C channels are exposed to the polar, thiol cross-
linking reagent bBBr, with voltage paradigms that favor 
channel closure. This is illustrated in Fig. 6 A, where 
bBBr was applied during a series of hyperpolarizing 
steps to -90 mV from a holding potential of 0 mV. A43C 
currents are not decreased when this reagent is applied 
during depolarizing steps from 0 to 30 mV (Fig. 6 B), a 
voltage paradigm that maintains the channel in the open 
state. We did not attempt to verify that the reduction in 
current results from cross-linking neighboring A43C resi-
dues by examining changes in fluorescence intensity that 
are expected to occur if bBBr cross-linked neighboring 
cysteine residues (Kim and Raines, 1995). Thus, it is pos-
sible that the reduction in current was due to the modifi-
cation of individual thiols rather than cross-linking of 
neighboring thiol groups. However, regardless of the 
mechanism underlying the observed current reduction, 
the correlation between the voltage dependence of chan-
nel closure and inhibition of A43C current by bBBr indi-
cates that A43C residues are accessible to modification 
only when the channel resides in a closed conformation. 
bBBr has no effect on Cx32*Cx43E1 currents or those 
present in uninjected oocytes (not depicted).

Cd2+ inhibition of heteromeric A43C/wild-type (WT) 
channels
The reduction of A43C currents by Cd2+ could in princi-
ple arise from interactions between a single cysteine resi-
due and single Cd2+ ion (i.e., a lower affinity monodentate 
interaction) or by the formation of a dative covalent 
bond (coordination) involving a single Cd2+ ion and mul-
tiple cysteine residues (i.e., a higher affinity polydentate 
interaction). To further examine the molecular basis for 
the reduction in A43C currents by Cd2+, we examined the 
efficacy of Cd2+ current reduction and recovery after 
wash in heteromeric channels formed by coinjection of 
A43C and WT RNA.

Currents attributable to heteromeric channels formed 
by coinjection of equal amounts of A43C and WT 
Cx32*Cx43E1 RNA are less sensitive to inhibition by 
10 µM Cd2+ after initial treatment with 20 µM DTT and 
wash with Cs-MES bath solution than currents of homo-
meric A43C channels. With the 1:1 RNA ratio, currents 
are reduced by 58 ± 14% (n = 8), suggesting that fewer 
cysteine residues are available to bind cadmium and/or 
that the affinity of cadmium binding is reduced in het-
eromeric channels. The large variation in effect can be 
explained in part by variation in the expression among 
oocytes of endogenous currents that are not affected by 
Cd2+. Notably, however, heteromeric channel currents 
that have been inhibited by treatment with 10 µM Cd2+ 
subsequent to DTT treatment and wash can be restored 

Figure 6.  Modification of A43C residues by bBBr occurs at volt-
ages that favor channel closure. (A) Macroscopic currents attrib-
utable to A43C channels are irreversibly decreased when exposed 
to bBBr during a voltage paradigm, steps between 0 and -90 mV, 
which elicits gating transitions between the open (0 mV) and 
either loop- and/or Vj-gating closed states (-90 mV). (B) Applica-
tion of bBBr during a voltage paradigm, steps from 0 to 30 mV, 
which favors population of the open-channel state, has no effect 
on A43C macroscopic currents. The central bar in both panels 
indicates the time and duration for which the bath solution con-
taining 500 µM TCEP was exchanged with the same bath solution 
containing 1 mM bBBr and subsequently washed with TCEP con-
taining bath solution.
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the number containing five or more subunits (10%), sug-
gesting that at least four cysteine-containing subunits are 
involved. The deviation from the expected values sug-
gests that the order of subunit arrangement in channels 
containing four cysteine subunits may be important in 
creating a high affinity site.

In the case of heteromeric channels formed by 
coinjection of four parts A43C RNA to one part 
Cx32*Cx43E1 RNA, the inhibition of current by 10 µM 
Cd2+ (87 ± 8.7%; n = 4) is greater than that observed 
for 1:1 heteromeric channels, and currents are restored 
to 49 ± 8% (n = 4) of pre-Cd2+ levels by washing with 
Cd2+-free solution (not depicted). In this case, 51% of 
channels are inferred to bind Cd2+ with high affinity, 
whereas 96% of channels are predicted to contain 
three or more cysteine subunits, 83% contain four or 
more A43C subunits, and 53% contain five or more 

oocytes, and therefore provides a reliable estimate of the 
proportion of channels that bind Cd2+ with high affinity. 
As there is little or no difference in the kinetics of activa-
tion of currents in response to polarizations to 50 mV 
before, during, and after the application of Cd2+ (Fig. 7 B), 
the differences in current levels observed with the experi-
mental paradigm used in Fig. 7 A cannot be ascribed to 
difference in the rates of channel activation.

Assuming that A43C and WT subunits are equally ex-
pressed and randomly assembled, 65% of channels are 
predicted by the binomial distribution to contain at least 
three A43C subunits, whereas 34% contain at least four 
A43C subunits, and 10% contain at least five A43C sub-
units when equal amounts of A43C and WT are injected. 
The percentage of channels estimated to contain a high 
affinity Cd2+ site (25%) is less than the number predicted 
to contain four or more subunits (34%), but greater than 

Figure 7.  Effect of 10 µM CdCl2 on heteromeric chan-
nels formed by coexpressing 1:1 mixtures of WT and A43C 
RNA. (A) Heteromeric channels were treated with 20 µM 
DTT and washed with Cs-MES, 1.8 mM Ca2+ bath solution 
before the application of Cd2+ shown in the trace segment. 
After the reduction of macroscopic currents by treatment 
with 10 µM CdCl2, currents were restored to 75% of pre- 
cadmium levels by washing with cadmium-free bath 
solution. The result is interpreted to indicate that 25% 
of channels form a high affinity cadmium site that “locks” 
the channel in a closed conformation (see Results).  
(B) Comparison of the kinetics of channel activation upon de-
polarization to 50 mV before (black trace), during (green 
trace), and after (red trace) the application of Cd2+ in the 
trace shown in A. The two current traces before Cd2+ were 
averaged, as were the final two current traces after wash. 
The green trace is current trace obtained just before wash 
with Cd2+-free solution. The similarity among normalized 
traces indicates that the differences in current levels are 
not a consequence of differences in the kinetics of activa-
tion, but most likely reflects the proportion of channels 
that can be activated by the voltage step.
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Figure 8.  Unapposed N2E+A43C hemichannels are locked by cadmium and accessible to bBBr modification when the channel is closed 
by loop gating, but not Vj gating. (A) Macroscopic current traces obtained from N2E+A43C unapposed hemichannels after polarizations 
to voltages shown in the inset of 0 mV. Current relaxations at hyperpolarizing and depolarizing potentials result from the closure of 
loop and Vj gates, respectively. (B) Macroscopic currents were recorded from oocytes expressing the double mutation, N2E+A43C. The 
N2E mutation reverses the polarity of Vj gating from closure at hyperpolarizing potentials to closure at depolarizing potentials but does 
not change the polarity of loop gating. The application of 10 µM CdCl2 during a series of voltage steps between 0 and -90 mV causes a 
large decrease in membrane currents that can only be reversed by treatment with 20 µM DTT. Polarizations to -90 mV strongly favor the 
closure of loop gates, whereas residency in the open state is favored at a holding potential of 0 mV. (C) Macroscopic currents recorded 
from N2E+A43C oocyte using a similar protocol to that used in Fig. 5 B. 10 µM CdCl2 was applied to the channel after a long-duration 
depolarizing step to 50 mV that strongly favors closure of only the Vj gates. After wash with Cs-MES bath solution, the effect of cadmium 
on Vj gate closed channels was assessed by the application of a series of polarizing steps between 0 and 50 mV. This polarization elicits 
gating transitions between the open and Vj-gating closed states. Currents were similar to those obtained before cadmium application, 
demonstrating that A43C residues do not coordinate cadmium when the channel is closed by Vj gating. (D) Macroscopic current traces 
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A43C subunits. The percentage of channels that appear 
to form a high affinity Cd2+ site in the 4:1 RNA ratio 
(51%) is similar to the percentage of channels expected 
to contain at least five subunits. Collectively, the results 
from 1:1 and 4:1 RNA ratios imply that at least four 
A43C residues interact with cadmium and this in turn 
suggests that coordination of Cd2+ underlies the high 
cadmium affinity of A43C channels.

Cadmium coordination and thiol modification correlate 
with closure of “loop gates”
Polarization to -90 mV is sufficient to induce A43C 
channel closure by either one of two voltage-dependent 
mechanisms, Vj and/or loop gating. The ability of nega-
tive charge substitutions at the second amino acid resi-
due to selectively reverse the polarity of Vj gate from 
closure favored at negative to closure favored at positive 
potentials (Oh et al., 2000) provides a means to deter-
mine if Cd2+ interacts with cysteine residues in channels 
closed by either the Vj and/or the loop gate.

In macroscopic recordings of N2E+A43C in bath solu-
tions containing 1.8 mM Ca2+, the voltage dependence of 
loop gating is shifted to smaller hyperpolarizing potentials 
relative to A43C channels. N2E+A43C channel closure by 
loop gating is observed at voltages equal to or more nega-
tive than -30 mV compared with closure of either the Vj 
or loop gates at voltages more negative than -50 mV for 
the parental Cx32*Cx43E1 channel. Current relaxations 
at depolarizing potentials are attributable to closure of 
the Vj gates (Fig. 8 A). The reversal of Vj gating polarity 
in the double mutation, Cx32*Cx43E1(N2E+A43C) un-
apposed hemichannels, from closure at negative poten-
tials to closure at positive potentials was confirmed by 
single-channel recording (not depicted).

Fig. 8 B demonstrates that N2E+A43C channel currents 
are reduced substantially (70%) by 10 µM Cd2+ when 
the channel is repeatedly stepped from 0 to -90 mV, a volt-
age paradigm that favors closure of only the loop gates. 
On average, N2E+A43C currents are reduced by 62 ± 16% 
(n = 4), a reduction similar to that observed for A43C 
channels (73 ± 6%; n = 18). Reduction of N2E+A43C cur-
rents that can only be reversed by DTT or TPEN treat-
ment is also observed when Cd2+ is applied to channels 
after depolarizing steps to -30 mV (not depicted), a volt-
age that correlates with the shift in voltage dependence of 
loop gating described above. This result supports the view 
that Cd2+ coordination occurs only when the loop gates 
reside in the closed conformation.

There is no evidence that Cd2+ is coordinated by A43C 
residues when N2E+A43C channels are closed by Vj gat-
ing. This is illustrated in Fig. 8 C, where the closure of 
the Vj gates is elicited by membrane depolarization to 
50 mV. Subsequent application of 10 µM Cd2+ followed 
by wash with Cd2+-free bath solution at this holding 
potential does not result in the reduction of N2E+A43C 
currents when tested by alternating voltage steps between 
0 and 50 mV. We maintain that this is not a consequence 
of reduced concentration of Cd2+ at the A43C coordina-
tion site that is expected to occur as a consequence of 
the imposed positive voltage gradient that would tend 
to oppose Cd2+ entry into the channel, for the following 
reasons. First, similar results are obtained when 100 µM 
Cd2+ is applied in this protocol (not depicted). Recall 
that 100-fold less, i.e., 1 µM Cd2+, causes a marked reduc-
tion in A43C currents when the channels are closed by 
loop gating. Second, given the expected proximity of 
A43C residue to the extracellular surface of the chan-
nel, the fraction of the electrical distance that would be 
traversed by Cd2+ to the coordination site is expected to be 
small. Consequently, it is likely that concentration of Cd2+ 
at a holding potential of 50 mV would be sufficient to lock 
the channel if A43C residues adopted a conformation 
capable of coordinating Cd2+ when the N2E+43C chan-
nel is closed by Vj gating. 10 µM Cd2+ has little or no effect 
on currents attributable to N2E channels (not depicted).

Currents were reduced on average by 42 ± 18% (n = 5) 
when N2E+A43C channels are closed by hyperpolariza-
tion to -90 mV in the presence of bBBr (Fig. 8 D). bBBr 
has no effect on N2E+A43C currents when the oocytes are 
stepped from 0 to 50 mV, a voltage that closes only the Vj 
gates (Fig. 8 E). We conclude that A43C residues coordi-
nate cadmium ions and become accessible to bBBr modi-
fication when the channel is closed by loop gating, but not 
Vj gating.

DTT and cadmium effects on cysteine substitutions  
at other positions
In contrast to A43C, 20 µM DTT has no effect on unap-
posed hemichannels formed by A40C. However, 10 µM 
Cd2+ has a pronounced inhibitory effect, reducing A40C 
currents by 56 ± 20% (n = 12), but unlike A43C channels, 
the inhibition is readily reversed by washing with Cd2+-free 
solutions (Fig. 9 A). bBBr irreversibly reduces A40C  
currents by 42 ± 7% (n = 3) when applied at potentials 
that are sufficient to close the loop gates of this channel 
(Fig. 9 B).

elicited by repeated polarizations between 0 and -90 mV, a voltage paradigm that elicits transitions between open and loop gate closed 
channels. At the position indicated, channels were exposed to 1 mM bBBr in the presence of 500 µM TCEP and subsequently washed 
with 500 µM TCEP. The observed reduction in current is consistent with a reaction between the A43C residue and bBBr. (E) Macro-
scopic current traces elicited by repeated polarizations between 0 and 50 mV, a voltage paradigm that results in the opening and closing 
of Vj gates. At the position indicated, channels were exposed to 1 mM bBBr in the presence of 500 µM TCEP and subsequently washed 
with 500 µM TCEP. The absence of any reduction in current is interpreted to indicate the inaccessibility of A43C residues to bBBr modi-
fication when the N2E+A43C channel resides in the open state and the Vj-gated closed state.
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on the initial currents of these channels. Unapposed hemi-
channels formed by cysteine substitutions at V37 and A39 
are unaffected by the addition of 10 µM Cd2+ at both hy-
perpolarizing and depolarizing potentials, and initial cur-
rents are not changed after treatment with 20 µM DTT.

10 µM Cd2+ reduces currents slightly, 20%, in channels 
formed by V38C and G45C, the two residues modified by 
MTSEA–biotin-X in the open state, but the reduction is 
readily reversible by washing with Cd2+-free solutions, con-
sistent with low affinity binding. 20 µM DTT has no effect 

Figure 9.  Cadmium and bBBr reduce A40C currents. (A) Re-
duction of A40C unapposed hemichannel currents by CdCl2 
is reversed by washing. Macroscopic currents attributable to 
A40C residues were examined by applying a series of voltage 
polarizations between -90 and 50 mV. The application of 10 µM 
CdCl2 during this voltage paradigm causes a 90% reduc
tion in current in the case shown. However, unlike A43C chan-
nels, currents are fully restored by wash with cadmium-free 
bath solution. These results are interpreted to indicate that 
A40C residues do not form a high affinity cadmium binding  
site when the channel is closed by either loop or Vj gating.  
(B) A40C unapposed hemichannels are accessible to bBBr modi-
fication. BBBr was applied to the channels at the time indicated 
in the bar line as the channel was repeatedly stepped from -90 
to 50 mV. Currents were reduced by 50% at positive poten-
tials and were not reversed by wash.
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Fig. 10 A shows a helical wheel representation of residues 
R33 through G46 of Cx46. Reacted residues, shown in red, 
subtend an arc of 80° on one side of the helix, and 
based on the accessibility of the open state of channels 
formed by these residues to MTS reagents, Kronengold 
et al. (2003) conclude that they line the pore of the 
open Cx46 unapposed hemichannel. The homologous 
residues of Cx32*Cx43E1 are superimposed on the 
helical wheel in Fig. 10 B and indicate that residues 
V38, S42, and G45 are predicted to line the aqueous 
pore. We have confirmed that residues V38 and G45 
most likely line the pore of the open channel based on 
their reactivity to the membrane-impermeant MTSEA–
biotin-X from both sides of the channel pore. The pre-
dicted accessibility of S42C to thiol modification could 
not be tested due to low expression of this mutation. We 
did not examine the accessibility of M34C. Modification 
of this residue by MBB in Cx32*Cx43E1 channels has 
been reported by Zhou et al. (1997). Furthermore, in 
Cx46, cysteine substitutions of residues V44, A41, A40, 
and G38, which are homologous to residues A43, A40, 
A39, and V37 in Cx32*Cx43E1, were not modified by 
MTSET when the unapposed Cx46 hemichannel re-
sides in the open state (Kronengold et al., 2003). In 
addition, cysteine substitutions of E42 and W45 (E41 
and W44 in Cx32*Cx43E1) do not express membrane 
current in unapposed hemichannels formed by either 
connexin. The only difference in the behavior of cyste-
ine substitutions of residues at the TM1/E1 border of 
Cx46 and Cx32*Cx43E1 is the ability of Cx46E43C to 

D I S C U S S I O N

The structure of the open channel in the vicinity  
of the M1/E1 border
The data presented here demonstrate that cysteine sub-
stitutions at two residues, V38 and G45, which are located 
near the M1/E1 border of the unapposed Cx32*Cx43E1 
hemichannel, are modified by MTSEA–biotin-X when 
the channel resides in the open state. Furthermore, the 
accessibility of these residues to modification by the 
membrane-impermeant MTSEA–biotin-X from either 
the cytoplasmic or intracellular entry of the channel indi-
cates that these residues most likely reside in the chan-
nel pore rather than within a crevice in the protein core 
or within a crevice at the protein–lipid interface.

There is no evidence that cysteine substitutions of 
residues V37, A39, A40, and A43 are modified by MT-
SEA–biotin-X when the channel resides in the open 
state. Membrane currents attributable to V37C and 
A39C channels are not decreased by low concentrations 
of Cd2+, nor are currents of these channels increased 
after the application of DTT or TPEN. We conclude 
that residues V37, A39, A40, and A43 do not line the 
aqueous pore of the open channel, but rather, that they 
are likely to be buried within the protein core of the 
unapposed hemichannel.

The overall pattern of accessibility of cysteine substi-
tutions of residues 37–45 in Cx32*Cx43E1 matches that 
reported for the open unapposed Cx46 hemichannel by 
Kronengold et al. (2003) and Cx50 (Verselis et al., 2009). 

Figure 10.  Helical wheel representation of reactive residues at the TM1/E1 border of Cx46 and Cx32*Cx43E1. (A) Helical wheel rep-
resentation of residues R33 through G46 of Cx46. The residues span the TM1/E1 border, with residue E42 believed to be located on the 
membrane border. Residues accessible to MTS reagents applied to both the intercellular and extracellular face of the unapposed hemi-
channel are shown in red. These residues reside on one side of the helix, subtend an arc of 80°, and line the pore of the open Cx46 
unapposed hemichannel. Residue R33 is topmost in the figure, with the residue number increasing counterclockwise. Data are taken 
from Kronengold et al. (2003). (B) Helical wheel representation of homologous residues R32 through G45 of Cx32*Cx43E1 that line 
the pore of the open unapposed Cx32*Cx43E1 channel. Residues examined in this study are marked with asterisks. Two residues, V38C 
and G45C, react with MTSEA–biotin-X when the reagent is applied from either the intracellular or extracellular face of the channel and 
consequently are assigned as pore lining. Expression levels of S42C and E41C were insufficient to allow studies of accessibility to thiol 
modifying reagents, whereas W44C did not express membrane current. These residues are marked by two asterisks. (C) Helical wheel 
representation of the loop gate closed Cx32*Cx43E1 channel. The helical wheel pictured in B was rotated 140° clockwise to position 
residues A40C and A43C. This position accounts for the observed sensitivity of residues A40C and A43C to Cd2+ and their modification 
by bBBr when the channel is closed by loop gating (see Discussion).
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effectively locks the channel in the loop-gated closed 
conformation.

Studies of heteromeric A43C:Cx32*Cx43E1 chan-
nels suggest that the high affinity Cd2+ site involves at 
least four A43C residues and that the relative positions 
of coordinating residues may be important. Indeed, 
consideration of the electron configuration of Cd2+ 
([Kr]5s04d10) indicates that coordination would most 
likely involve four or fewer cysteine residues (see also 
Vargek et al., 1999). Loussouarn et al. (2001) have shown 
that coordination of Cd2+ by cysteine mutations of Kir 
channels results from a tetrahedral organization of four 
cysteine-S atoms coordinated to one central Cd2+. In 
this geometry, 5-Å separations of S atoms are optimal, 
although other coordination geometries involving fewer 
S or other atoms in the cysteine or adjacent residues 
are possible (Belcastro et al., 2005, 2009). The ability of 
A43C residues to form disulphide bonds (at least in bio-
chemical assays with channels closed by 5 mM Ca2+) sug-
gests that the channel can adopt a conformation that 
positions two S atoms within 2 Å. Although the rela-
tionship of this conformation that can be tested only 
biochemically to the loop gate closed state observed 
electrophysiologically cannot be established directly,  
it is possible that they may be similar. It is important  
to note that the biochemical and electrophysiological 
studies were performed in different concentrations of 
external calcium. Oocytes were cultured in higher (5 mM) 
external calcium solutions for the biochemical assay to 
ensure their viability while attempting to maximize con-
nexin channel expression. Verselis and Srinivas (2008) 
have shown that Cx46 currents are substantially reduced 
with increasing external Ca2+ and Mg2+ as a consequence 
of the stabilization of the closed loop gate conforma-
tion. If external Ca2+ has a similar effect on Cx32*Cx43E1 
channels, it is possible that 5 mM Ca2+ may stabilize the 
loop gate closed conformation and promote the forma-
tion of disulfide bonds.

In the biochemical studies, no molecular weight 
forms larger than dimers are observed. This result indi-
cates that disulfide bonding occurs between two of six 
available A43C residues in neighboring connexin sub-
units and supports the view that cysteines at other posi-
tions are not involved. Note that six cysteine residues 
can only form three pairs of dimers. If disulfide bonds 
were to form with cysteine residues at A43 and another 
native cysteine (CysX), one would expect that more 
than two subunits could be cross-linked, for example, 
the trimer A43C-CysX-A43C, the tetramer A43C-CysX-
A43C-CysX, and larger oligomers could form.

The simplest mechanism to achieve a conformation 
that positions A43C residues into the channel pore in 
the closed state is by a clockwise rotation of each TM1 
helix by 140° (Fig. 10 C). It should be noted that rota-
tion by itself would not be sufficient to position the S 
atoms of these cysteine residues within the distance 

express membrane currents while the homologous resi-
due in Cx32*Cx43E1, S42C, does not. Collectively, these 
results indicate a substantial degree of similarity in the 
pore structure of Cx46 and Cx32*Cx43E1 in the vicinity 
of the TM1/E1 border.

The appearance of four to five stepwise changes in 
conductance of G45C and V38C after the application  
of MTSEA–biotin-X suggests that the pore diameter is 
large in the vicinity of these residues when the channel 
resides in the open state. To estimate the pore size of 
the open channel in the vicinity of residues V38 and 
G45, we constructed a molecular model of MTSEA–
biotin-X that was geometry optimized in an aqueous 
periodic box with Hyperchem software. The modeled 
structure rendered with CPK spheres can be enclosed 
in a periodic box with minimum dimensions of 11.05 × 
8.15 × 20.4 Å, giving a geometric mean dimension for 
this structure of 12.25 Å. Assuming hexagonal packing 
and modification of all six subunits, the minimal diam-
eter of a pore that could accommodate six MTSEA–
biotin-X molecules is 36 Å based on the geometric 
mean dimension of the thiol reagent (see Yu et al., 
2009). However, it is likely that the pore diameter is 
somewhat smaller, probably in the range of 25 to 30 Å, 
as we most often observe four or five stepwise changes 
in conductance attributable to thiol reactions. The large 
pore size and lower affinity of cadmium ions for single 
cysteine residues could explain the small decrease 
(20%) in conductance that is observed when 10 µM 
Cd2+ is applied to open V38C and G45C channels. Pre-
sumably, these residues display low affinity monoden-
tate interactions with Cd2+ when the channel resides in the 
open state, as the current reduction is readily reversed 
by washing with Cd2+-free solutions.

Conformational changes associated with loop gating
Based on excised patch channel recordings, it does not 
appear that the A43C residue can react with MTSEA–
biotin-X when the channel resides in the open state. 
However, in macroscopic records, this residue forms a 
high affinity cadmium binding site and reacts with the 
thiol-reactive bBBr at hyperpolarizing membrane po-
tentials that are sufficient to close both the Vj and loop 
gate. These observations, combined with the failure to 
observe any inhibition of A43C currents by cadmium at 
moderate hyperpolarizing and depolarizing membrane 
potentials, conditions that strongly favor population of 
the open state of channel, support the view that the 
mechanism of Cd2+ block and bBBr modification is state 
dependent. Examinations of A43C channels on the N2E 
background, which reverses the gating polarity of the Vj 
gate, indicate that closure of the loop gate, not the Vj 
gate, is required for high affinity Cd2+ binding and bBBr 
accessibility. We propose that the closure of the loop 
gate results in a conformational change that provides 
accessibility of A43C residues to bBBr and that Cd2+ 
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subunits or TM1 helices that form the Cx32*Cx43E1 
unapposed hemichannel.

Appendix
Before the publication of this paper, Maeda et al. (2009) 
reported the structure of the connexin 26 gap junction 
channel at 3.5 Å resolution. There is reasonably good 
agreement between the crystal structure and functional 
studies reported here and by Kronengold et al. (2003) 
that assign residues at the TM1/E1 border as pore lining, 
assuming that the crystal structure corresponds to the 
open state of the gap junction channel. Residue G45 
lines the open pore of Cx26 gap junction and the corre-
sponding substituted cysteine residue, G45C, is modified 
by MTSEA–biotin-X when the unapposed Cx32*Cx43E1 
hemichannel resides in the open state. Residues A39, 
A40, and V43 are buried within the protein core of the 
open Cx26 gap junction channel in agreement with the 
results of the current study. There are some differences; 
notably, residue V37 is predicted to line the pore of the 
open Cx26 gap junction channel, whereas V37C does not 
appear to be modified by MTSEA–biotin-X; rather the 
neighboring residue, V38C, is modified. These differ-
ences may reflect a minor divergence in the structure of 
the gap junction channel from that of an unapposed 
hemichannel or may reflect conformational changes 
resulting from the incorporation of a cysteine residue at 
certain positions. The crystal structure of the Cx26 gap 
junction indicates a rather complex structure at the 
TM1/E1 border (Fig. 4 b in Maeda et al., 2009) that 
involves a substantial bend initiated in the vicinity of 
the 43rd residue and a transition from an approximate 
-helical conformation of residues 34–42 in TM1 to a 
short 3–10 helix involving residues 43–48 in E1. Consid-
eration of the crystal structure suggests a possible mecha-
nism underlying channel closure by loop gating that 
involves a relaxation of the bend in the vicinity of the 
43rd residues that could result in the formation of a con-
striction at the extracellular entrance of the channel pore 
and changes in the helical periodicity of the TM1/E1 
segment that would be required to place the 40th and 
43rd residues into the channel pore at the required 
distance to interact with Cd2+ when the unapposed 
Cx32*Cx43E1 channel resides in the closed conforma-
tion. This contrasts the simplistic model proposed in the 
current paper that involves a rotation and inward tilt of 
an -helical TM1/E1 segment as depicted in Fig. 10. A 
similar change in the bend angle of the 43rd residue 
(44th residue in Cx50) could underlie the conforma-
tional change of the Cx50 unapposed hemichannel dur-
ing loop gating as described by Verselis et al. (2009), 
suggesting that the basic mechanism of loop gating may 
be similar in the two unapposed hemichannels.

We thank Terrence Seales for technical support and Nir Ben-Tal 
and Sarel Fleishman for discussion.

required to coordinate Cd2+ or form disulfide bonds. 
Recall that the pore diameter of the channel at the level 
of V38 and G45, residues that flank A43, is probably in 
the range of 25 to 30 Å, much greater than the 5-Å 
separations of four A43C S atoms that are optimal for 
Cd2+ coordination or 2 Å for disulfide bond forma-
tion. We propose that in addition to rotation, either 
each connexin subunit or each individual TM1 helix 
tilts into the channel pore bringing A43C residues to 
within 2–5 Å when the loop gate is closed. We predict 
that additional conformational changes occur to pre-
vent steric clashes among the extracellular domains of 
the six subunits when the channel is closed.

In this model, A40C residues would also rotate into 
pore (Fig. 10 C), but the resulting distance between S 
atoms even after tilt must be too large to allow high 
affinity coordination of Cd2+. This would account for 
the apparent low affinity of A40C channels to bind Cd2+ 
as indicated by the reversibility of the Cd2+ block of 
A40C channels after wash with cadmium-free solutions. 
The rotation would move residues V38 and G45 out of 
pore into the protein core, predicting inaccessibility of 
these residues to thiol modification reagents when the 
channel resides in a voltage loop-gated closed state, 
whereas V37 and A39 would move from one interhelical 
surface to another, explaining the absence of Cd2+ block 
and any effect of DTT and TPEN on open or closed 
V37C and A39C channels and the apparent failure of 
these residues to react with MTSEA–biotin-X in macro-
scopic recordings over a range of polarizations.

It is interesting to note that the results presented here 
differ from the results recently presented by Verselis 
et al. (2009) for Cd2+ coordination by cysteine substitu-
tions of Cx50 channels. In Cx50, cysteine substitutions 
of two residues, F43 and G46 that line the pore of the 
open channel in the TM1/E1 region, appear to contrib-
ute in the formation of a high affinity Cd2+ site at hyper-
polarizing membrane potentials that favor loop gate 
closure in low Ca2+ (0.2 mM) bath solutions. It remains 
to be established if the differences in the results reflect 
different conformational changes underlying a common 
voltage-dependent loop-gating mechanism in channels 
formed by Cx50 and Cx32*Cx43E1, a different closed 
conformation as a consequence of different amounts of 
Ca2+ used in the two studies, or if they reflect different 
voltage-dependent gating mechanisms in the two unap-
posed hemichannels that manifest themselves as similar 
appearing transitions.

In summary, the data presented here establish that 
the structure of the open Cx32*Cx43E1 unapposed 
hemichannel pore is very similar if not identical to that 
of Cx46 and Cx50 unapposed hemichannels in the vi-
cinity of the TM1/E1 border. In addition, the confor-
mational changes underlying loop gating, but not Vj 
gating, appear to involve a rotation of the TM1 helix 
and an inward tilt of either each of the six connexin 
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